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CHAPTER 1. INTRODUCTION AND SUMMARY

1.1 Introduction

A formal quality control program was introduced in the early 1960's by

the Sodal Security Administration (SSA) to provide guidance in assessing sources of

error in the administration of the Aid to Families with Dependent Children (AFDC)

program in the various states. The Quality Control (QC) program required each

state to institute a review of a sample of cases receiving benefits from AFDC, to

carefully reinvestigate these cases and to evaluate the eligibility and amount of the

payment made for each sample case, and to provide other information. The

prindpal purpose of the QC review was to identify sources of error, to measure the

magnitude of errors to the extent feasible, and to provide information that could

guide in taking corrective action. The corrective action could be in the form of

improving the administration of the system or of modifying legislation or

regulations that were sources of problems.

The state QC sample has been drawn and administered by each state

within the framework of the Federal regulations that prescribe and guide the QC

program. The program is complicated by the fact that each state has different

eligibility requirements and allowances, and the QC administration in a state needs

to reflect these differences. Sample sizes in the larger states have been about 1200

cases to be reviewed in each successive six-month period, with smaller samples in
the states with small caseloads.!

A Federal subsample was drawn from the QC sample in each state to

guide and facilitate the administration of QC. The eligibility and the AFDC

allowance for the subsampled cases were again intensively reviewed and evaluated.

This review provided a framework for improving the quality and comparability of

loptiorud smaller state sample sizes were recently authorized when (2(: was placed on an annual basis
provided the state signed · statement waiving its right to challenge the validity of the error rate
based on the reduced sample size.
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administration of the quality control programs although still taking account of the

differences in state systems.

Steps were taken in 1973 toward instituting a program of disallowances

for states that did not meet a prescribed tolerance, by withholding the Federal share

of AFDC paymentsthat were made in error above the allowed tolerance level. This

tolerance, which had been administratively established by the Department of Health

and Human Services, was subsequently set aside by the Federal District Court as

lacking an empirical basis. In 1980, the Congress established decreasing tolerances to

be attained in fiscal years 1981 and 1982, with a tolerance of 4 percent in the

overpayment error rate in 1983. The 4 percent tolerance was reiterated in the Tax

Equity and Fiscal Responsibility Act (TEFRA) of 1982, which established a 3 percent

tolerance for fiscal year 1984 and thereafter. Consequently, an important goal of the

Federal QC sample review, in addition to providing guidance for improving

program administration and design, became to provide estimates of overpayment

error rates for the purpose of determining the amount of any disallowances.

It would be possible to es_mate the overpayment error rates directly

from the results obtained from the Federal subsample, without making use of the

available state _ results. However, Westat recommended a double sampling

procedure for drawing the Federal subsamples from the state samples and for

preparing estimates. This procedure produced considerably more precise results

from a given size of Federal subsample, and was adopted.

More specifically, a regression estimator was recommended by Westat,

in memoranda dated June 18, 1973 and July 19, 1973. 2 The regression estimator with

double sampling makes use of the results available from the full quality control

sample for a state, together with those for the Federal subsample. Its use, in practice,

has generally had the effect of reducing the sampling variance of estimates of

payment error rates by about 50 percent or more, as compared with using only the

Federal subsample. Stated in a different way, the double sampling plan and

estimator generally yield results equivalent in precision to what would have been

2Memorandum submitted by Morris Hansen, Westat, to John C. Young, Social and Rehabilitation
Service, DHEW, Review and rvabJafios of l_'opo_ uu of QC system for Federal estimates of
ineligible and overpayment casa, June 18,1973, and supplemental merno_um dated July 19,1973.
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obtained by at least doubling the size of the Federal subsarnple and basing the

estimate only on the Federal findings. However, if the Federal sample cases were

not reviewed by the state irt advance of the Federal review, the quality of the Federal

review would be adversely affected, and its cost considerably increased, since in the

present procedure the Federal reviewer has an easier job (and presumably does a

better job) because s/he has the advantage of the previous state review. Thus, to

maintain the same quality without the use of the double sampling estimator, not

only would the Federal sample have to be increased by a factor of two to three, but

the sample would also need to be reviewed by the state. For example, if the state

sample size is now 1200 and the Federal sample 360 (giving a total of 1560 reviews),

doubling the sample would mean state and Federal samples of 720 (giving a total of

1440 reviews). This would reduce the cost of the QC reviews by only 8 percent

(assuming about equal costs for the state and the Federal review). If the Federal

sample size had to be somewhat more than doubled to get the same precision, as is

likely, the cost would actually be increased. Even more important is the fact that

reducing the size of the state sample irt this manner would greatly reduce the

effectiveness of the QC program in its primary goal, that of identifying causes of

error and guiding appropriate corrective actions.

It should be noted that the double sampling and regression estimation

procedure does not "adjust" the state estimates - instead, it provides estimates of

what would result if the Federal QC review, preceded by a state review, were applied

to the entire caseload. It is simply a procedure for reducing the sampling error of the

estimate from the Federal subsample. It makes use of the fact that the Federal and

state findings on individual cases are highly correlated. Consequently, if the

overpayment errors based on state findings for the cases in the Federal subsample

are above those in the full state sample, then the Federal findings based on that

sample are likely also to be too high. The regression estimator adjusts for the

difference in average state findings in the two samples. A similar sampling error

adjustment results if the state findings in the Federal sample are below the state

findings in the full state sample. Thus, by use of the regression estimator, the

effective sample size of the Federal subsample is increased substantially since there

is a high correlation of case-by-ca_ Findings from the state and the Federal reviews.

The estimate based on the Federal review in a state may or may not agree with the
state estimate, depending on the amount of agreement between individual Federal

1-3
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and state case findings. Thus, the results from the regression esiamator are estimates

of what would be obtained if the state QC review, followed by the Federal review,

were applied each month to all cases receiving AFDC. Of course, such a procedure

would be prohibitively costly.

As currently used in AFDC, tee regr_sion es_rnator of the overpay-

ment error rate (referred to also as the payment error rate) for any given state is

i- + )
= .... = (])

where

n e

_' = Y. xi/n' is _he average ?rpayment error per case in the Federal
subsample as dete..:aned by the Federal review (it is the average
over all cases whether or _ot there was an overpayment error
involved);

n

= Y. yi/n is the average overpayment error in the state QC sample as
determined by the state review;

n'

_,' = Y yi/n' is the average overpayment error as determined by the state QC
review for the cases included in the Federal subsample;

n

= ]E ti/n is the average Ar'DC payment for the cases in the state QC

sample;

ri'

Y. xiyi - n'_ q, '

b = n' (2)
Y. (yi -_,') 2

is the regression coefficient estimated from the Federal
subsample;

n is the size of the state QC sample;,

n' is the size of the Fec eral subsample;
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xi, Yi,and ti are, respectively, for the i-th case in the designated state or
Federal sample, the amount of overpayment as determined in
the Federal review, the amount of overpayment as determined
in the state QC review, and the AFDC payment for the case;

= . (n-n') n, } 1/2t
is the estimated standard error of 1_'

Sv

b_--_ is the coefficient of correlation of x i and Yi, estimated from ther

Federal subsample;

= n' . . } 1/2

is the unit standard deviation of the payment errors as
determined in the Federal review and as estimated from the

Federal subsample;

n v

= O}
is the unit standard deviation estimated from the Federal

subsample of payment errors as determined in the state review.

The above and other formulas used (except as otherwise specified)

assume simple random sampling of the state QC sample from the file of AFDC

payment records, and of the Federal subsample from the state QC sample. In

practice, in most states the samples are drawn by proportionate stratified systematic

sampling procedures rather than simple random sampling. The stratification is by

months, with the same fraction of cases sampled each month. The systematic

selection within months ordinarily involves taking every k-th case from an ordered

list with a random start and with the ordering likely to involve geographic or

alphabetic sequencing, or both. Simple random sampling formulas are commonly

1-5
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applied in such situations, and in this app!ication they should give quite good

approximations. 3 In a few states, other modes of stratification are sometimes used.

In the original memoranda recommending the use of the regression

estimator to estimate the overpayment error rate and its standard error, '1_ was used

in the denominator instead of t, where ? is the average payment per case for the

total AFDC caseload for the period. It turned out that _ was not reasonably available

in practice, and t has been substituted. As indicated later in Appendix I, this

substitution has been quite satisfactory.

A question that has concerned us about these estimators is that the

regression estimator and its estimated standard error are based on approximations

that hold for large enough samples, but that may not be reasonably acceptable for

samples of the sizes used for the Federal subsample in some or all of the states. The

size of the Federal subsample for a six-month period has varied generally between
about 70 and 200 cases for the various states, and thus between about 140 and

400 cases for a full year. Ordinarily, samples of these sizes would not be considered

too small if the samples were drawn from populations that are not extremely

skewed. However, the populations in this case are extremely skewed, with no

payment errors found in about 80 to 90 percent of the cases, and with considerably

varying and highly skewed payment errors occurring in the remaining 10 to

20 percent of the cases.

Because of this concern, in a later memorandum 4 concerning the QC

program in Supplemental Security Income (SSI), we recommended, on the basis of a

preliminary evaluation, the substitution of a difference estimator for the regression

estimator. The difference estimator is of the same form as the regression estimator

except that a constant, k, is substituted for b Co is estimated from the sample and is

3We have compared such stratified sampling with simple random sampling for the Food Stamp QC
program, which is similar to the AFE)C_ progrmn, and found remarkably dose agreement of results
for the two procedures (i.e., simple random sampling and stratified proportionate sampling by
months).

4Memorandum dated September 30, 1961, submitted by Westat to Social Security Administration,
Office of Payment Eligibility and Qmdity.
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subject to sampling variability). The regression estimator is evaluated in Section 2.2,

where it is shown to provide unbiased or at most trivially biased estimates. The

difference estimator is evaluated for AFDC_ in Appendix B, and compared with

the regression estimator. This evaluation shows little difference between the two

estimators and leads us to condude that we see no advantages to AFDC in changing
to the difference estimator.

Some of the states have argued that if disallowances are to be imposed

they should not be computed on the basis of the point estimate, as now prescribed.

They suggest that since the overpayment error rates are based on samples, a lower

confidence bound should be used, e.g., a bound computed for the sample such that

there is a low probability that the lower bound of the confidence interval computed

for each of the possible samples is less than the true error rate, and a high probability

that it is greater.

Such an approach would, on the average, systematically and

substantially underestimate the amount which would be disallowed if the true error

rate were known. The state's gains would be the Federal government's loss.

Moreover, the amount of the disallowances would depend importantly on the

sample size (the disallowance for a state would be less for a given error rate, on the

average, if a smaller QC sample size were used). Also, a problem arises because a

state could lower the confidence bound by inadvertently or deliberately doing lower-

quality work in the state QC, thus increasing the sampling error of the regression

estimate of the payment error rate. This is because a reduction in the quality of the

state QC results would increase the number of discrepandes between the state and

Federal evaluations. These increased discrepancies would decrease the correlation

between the state and the Federal findings, and thus (as can be seen from

Equation (3) above) would increase si, the estimated standard error of the regression

estimator. Since, for example, a 95 percent nominal lower confidence bound is

computed by subtracting 1.64.5st_ from the estimated error rate, the result would be a

lower average value for the computed lower confidence bound and, hence, a

smaller cligallowance. Consequently, there might be an incentive for a state to lower

the quality of work, in order to avoid or reduce disallowances.

1-7
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We note (as discussed in Section 3.3 and in Appendix D) that a minor

change in the standard procedure for computing lower confidence bounds would

substantially eliminate this problem. This procedure involves assigning a

minimum value for the correlation of Federal and state £mdings (a minimum rho)

in estimating the variance.

While more research is desirable, we have made enough progress that

some guidance is provided in this report on the first two of the following important

questions that you have asked us to examine. These questions include the

following:

· Are the sampling procedures and the regression methodology
used by the AFDC-QC statistically valid?

· What are the considerations and constraints involved in the

choice of a lower confidence bound versus a point estimate in
determining disallowances?

· What are the considerations and constraints in the choice of

sample size for the state quality control samples and for the
Federal review samples?

· Are there anv means of decreasing the sampling errors (and
reducing the width of confidence intervals) of estimated state
error rates other than by increasing sample size?

In the following sections of this report, we provide some answers to

the first two of these questions in as nontechnical language as feasible, on the basis

of the work that has been completed. Fuller technical analyses and more detailed

considerations of some of the issues and the implications of alternatives are

included in the relevant appendices. Some very limited preliminary attention is

given in this report to the last two questions. They will be more fully considered in

a second report.

Before proceeding to the more detailed discussion, we provide a

summary of the principal conclusions from the work that has been done.
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1.2 Some Summary Results and Conclusions

On the basis of the evaluation work that has been completed, we are
able to summarize the results and conclusions as follows:

(1) The procedures specified for drawing the state samples and the

Federal subsamples are applications of standard and widely used sampling methods,

and if the samples are made large enough, they will yield estimates of overpayment

error rates as close as desired to the value being estimated. The value being

estimated is defined as the expected value that would be obtained if the entire

caseload were reviewed by both state and Federal reviewers (as is done for the

Federal subsample).

(2) The regression methodology for making estimates from the

samples provides statistically valid estimates, unbiased in the sense that, on the

average over all possible samples that could be drawn by the specified procedures for

a state, the regression estimate of the overpayment error rate is equal or very nearly

equal to the value being estimated. This statement holds for each of the differing

sample sizes in use in the various states. Moreover, as sample size increases, the

sampling errors of the regression estimates decrease, and consequently the estimates

are closer, on the average, to the value being estimated.

(3) The sample estimates of the variance of the estimates of

overpayment error rates are also, on the average, reasonably close to the variance

over all possible samples, and the computed sampling errors or confidence intervals

provide, on the average, acceptable measures of precision. However, the sampling

errors of the direct state variance estimates are so large that the use of the estimated

variance from a single state sample for purposes of estimating needed sample sizes

to achieve specified levels of precision, or to provide general measures of precision,

can yield exceedingly variable and misleading results. In Section 2.5 a pooled

variance estimation procedure is developed and presented that greatly improves the
variance estimates for such uses.

(4) Classical regression analysis requires the assumption of a linear

-- relationship between the dependent and the independent variables, and normal
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d: _tributions of the dependent variable for given values of the independent

variable(s). The use of the regression estimator in estimating AFDC overpayment

errors has been widely challenged on the grounds that the assumptions of classical

regression are grossly violated. However, these challenges do not recognize the

difference between dassical regression analysis and the application of the regression

estimator in sample c,.trveys, as in AFDC-QC. For such applications, the

assumptions are not required. Mathematical proof of the validity of the application

of the regression estimator in sample surveys with sufficiently large samples,

independent of the distribution from which the samples are drawn, is given by

Cochran in a classical paper on regression estimation in :_tmple surveys, s In

addition to that proof, we provide a number of examples involving different AFDC-

QC populations and sample sizes illustrating the fact that the application of the

regression estimator in AFDC for sample sizes similar to the sample sizes in use

does yield valid results, as described in points (1) through (3) above (see Section 2.2

and Appendix B). These illustrative results are provided for each of four sample

sizes for each of three illustrative test populations based on actual AFDC data.

(5) We also note that in the application of the regression estimator

to AFDC, the regressions involved are of sample means rather than of the original

observations and the relationships between the sample means are indeed closely

linear. Also, while the conditional distributions of the dependent variable for any

given value of the independent variable are slightly skewed, they are reasonably

close to normal (see Section 2.2). Consequently, although meeting the classical

assumptions is not necessary, they are in fact reasonably met in the application of

the regression estimator in AFDC Quality Control.

(6) The distributions of individual case overpayment errors are

highly skewed. Consequently, the nominal 95 percent confidence intervals which

are now computed from the samples on the assumption of normal distributions are

imperfect. If the distributions of overpayment errors were no,mai, then, on the

average in repeated samples, for the sample sizes in use, clo6e to 2-1/2 percent of the

time the value being estimated would be below the computed 95 percent confidence

5Cochran, W.G., $amplinff _ 14[k_ thru $aml_ling Units a_ of Ib_mal Size, IRIIIIiilLI_L_[_
American Statistical Association. Vol. 37, pp. 199-212, 1942.
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interval and close to 2-1/2 percent of the time it would be above. In fact, the "tails"

above and below the confidence intervals of the overpayment error rate estimates

depart considerably from these expectations. For considerably less than 2-1/2 percent

of the samples the lower confidence bound is above the value being estimated, and

for considerably more than 2-1/2 percent of the samples the upper confidence bound

is below the value being estimated. The combined effect is that confidence intervals

cover the values being estimated with somewhat less than the nominal 95 percent

probability. Thus, the precision actually achieved is somewhat less than would be

the case if the 95 percent confidence were actually achieved. Nevertheless, the

95 percent (or 90 percent) confidence intervals provide reasonably satisfactory

indicators of precision. It is important to note that the estimates of overpayment

error rates are unaffected by any imperfections in the computed confidence
intervals.

(7) We have developed and have done some testing of an

improved method for computing confidence intervals that will yield considerably

closer approximations to the nominal probabilities. The results appear in

Section Z4 and in Appendix C.

(8) The decision on whether to use point estimates or lower

confidence bounds in determining disallowances is a policy one, and depends on the

goals to be served. There are precedents for both approaches, as discussed in (12)

through (13) below.

(9) If the goal is to approximate the true disallowance, i.e., the

disallowance that would be made if the true overpayment error rate were known,

the point estimate satisfies the goal. Business organizations use sampling with

point estimates to settle the sharing of large costs or benefits, as in the distribution of

funds from jointly furnished services (for example, the distribution of funds by the

railroads from shipments that go over two or more lines), or as in the sharing of

joint costs (for example, joint maintenance costs of poles used to carry both

telephone and electric cables). Similarly, sample surveys with point estimates are

widely used in establishing rate bases for utilities (for example, to estimate

replacement cost of plant and equipment from inspections of samples of such

equipment) and in many other applications. Such applications of samples and the

1-11



Chapter 1. Introdact_o. and Summary

point estimate generally call for samples large enough to yield reasonably precise
estimates.

(10) Computation of annual disall0w_m ces from QC samples are

commonly subject to relatively large sampling errora_:_pecially if payment error

rates are less than about 4 percentage points above toleran:-e. Sampling errors of

disallowances can be as much as 50 to 100 percent or more of a single year's

disallowance. This problem could be substantially eliminated by making some

modifications in the way disallowances are administered, so as to take fuller

advantage of compensatior over time _see Section 3.7).

(11) If the goal is to assess disallowances separately for each year and

then only to the extent that they have been reasonably proved to be at least a

specified amount or more, then a lower confidence bound satisfies the goal. It is

common in auditing, for example, to follow up leads of evidence oi possible fraud

from sample audits only if a lower confidence bound of an estimate is exceeded. _

(12) Use of the lower confidence bound would, on the average, result

in AFDC disallowances that are much less than they would be if the true

overpayment error rates were known and used in computing disallowances. The

Federal government would absorb the loss, and this loss would be substantial.

Consequently, if lower .confidence bounds were to be adopted for computing

disallowances, cost-benefit considerations indicate that, for states in which large

disallowances are involved, it would be advantageous to the Federal government to

use considerably larger samples than those now used (see Sections 3.4 and 3.5).

Increases in state samples may also be called for.

(13) The determination of appropriate sample sizes for QC for

purposes of evaluating and guiding improvements in the AFDC program involves

difficult issues, and there are no simple answers. Some limited preliminary

discussion of these issues appears in Chapter 3.

&See,for emunple, Arktn. _ Sampli_ Methods for Aad/tora, McGraw-Hill Book Company, New
York, pp. 56-58, 107-1_
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(14) We see no obvious striking gains to be achieved by

modifications in the design of the QC samples other than by increasing the state or

Federal sample sizes. _ However, some gains may be feasible. Our explorations to

date in this area are quite limited, and further work is needed in order to evaluate

any such potential gains.

(15) We add a final remark on a topic that we believe should be

mentioned here. It has sometimes been suggested that the primary role of the QC

samples should be to dete_udne disallowances, and that corrective action inferences

could better be guided by other special analyses and studies. Such a separation seems

to be unnecessarily costly and undesirable. We anticipate that it may be possible to

increase the effectiveness of the QC sample by subjecting the data to discriminant

analyses, duster analyses, or other methods of error-prone profiling, and thereby

identify subclasses that contribute a high proportion of errors. Such studies could
lead to the introduction of more effective stratification and more efficient allocation

of the samples. The next phase of our study will include examining such methods

for improving precision without increasing sample size. Thus, if error-prone

profiling proves to be effective, it could also help provide the much-needed

improvements in precision of the QC sample when used for assessing

disallowances. At the same time, it would also increase its effectiveness for analyses

of sources of error and feedback for corrective action, and may also prove to be an

effective tool for improving case reviews in administration. To separate the two

uses would only add to cost and decrease perfo_n_nce.

We note also that other sources of data such as income tax matching,

wage matching, or bank matching have been suggested as an alternative to quality

control reviews. Such data can be very useful, to the extent that their use is cost

effective, in improving the administration of AFDC. Evaluation and possible

extension of such uses are part of the current program of the Office of Family

Assistance (OFA). These procedures do not replace the need for QC, but to the extent

that they lower error rates, they may reduce the need for corrective action and may
also reduce disallowances. After sufficient reduction in error rates has been

accomplished in a state, then a reduction in the size of the QC sample would be

appropriate in that state - but the sample must still be large enough to monitor for

_ early detection of a serious deterioration of quality.
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We first address the question:

· Are the sampling procedures and the regression
methodology used by the AFDC-QC statistically valid?

We have examined the specified sample selection and estimation

procedures, and have reviewed existing theory and in some cases extended the

theory. The available theory is not exact but holds for large enough samples.

However, available statistical theory does not tell us what size samples are large

enough; that is, what size samples are needed to achieve sufficiently close

approximations. Consequently, we have done extensive simulations by drawing

large numbers of independent samples from three test populations and prepared

estimates from them for alternative sample sizes for each of the populations. The

test populations, described in Appendix A, are samples of actual AFDC-4_i cases.

Many of our condusions are based on the results of these simulations.

In the balance of this report, we discuss more fully and illustrate the

basis for most of the summary remarks that appear at the end of Chapter 1, and

provide some extensions of them.

2.1 Test Populations

To examine the accuracy of the approximations, we have done

extensive testing with three test populations (referred to as Populations A, B, and C)

using actual AFDC-QC data from the Federal subsamples for the year ending

September 30, 1982.

%

Population A was created by taking the state and Federal QC results for

the cases induded in the Federal subsample for Illinois, New Jersey, Ohio, and

Pennsylvania. These were four large states that had roughly similar average

-- payments for AFDC and roughly similar average overpayment error rates.
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Population B used the state and Federal QC results for cases included in

the Fede: sample for Texas, South Carolina, Maryland, and Michigan. These are

relatively ,arge states with somewhat different characteristics from those of

Population A. --

Population C used the state and Fec d QC results for cases included in

the Federal subsample for six states with relati- sm .er AFDC-QC sample sizes,

including Arkansas, Colorado, Hawaii, Nebrask regon, and West Virginia.

Some of the characteristics of the three test populations and of the

AFDC results for all states for the six-month period ending September 1982 are

summarized in Table 2-1 and more fully in Appendix A.

Various tests were carried through by drawing 1000 independent

samples of each of a number of specified sample sizes from these test populations,

and computing and evaluating various estimates from these samples. Among the

sample sizes used in eva_uating the regression methodology were the following:

Annual samplesize

1 3 4

Sizeof statesample,n 2400 1200 880 350

Size of Federal subumlNe, n' 360 360 260 160

Each of the state samples was obtained by drawing with replacement

from the population a simple rant. om samp,e of the specified size, and then

drawing a simple random sample without replacement from the state sample for

:ne Federal subsample. Drawing the state sample with replacement has the effect of

making the simulation process equivalent to drawing the sample from a much

larger population, and in effect, simulates the drawing of the state sample from a

very large state AFDC population equivalent in composition to the test population.
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Table 2-1. Somecharacteristics of the test populations and of the full AFDC population (1982)

Test Population Average U.S.
6 months ending

Units A B C September 1982

Average AFDC payment (T) dollars 296 210 255 302

Standard deviation of payments ' 255 121 194 n/a

Overpayments
Average basedon Federal review " 21.6 15.0 16.9 20.
Average based on stateQC review " 17.2 16.7 13.7 n/a

Unit standard deviation of overpayments
Federal review " 70.5 58.6 fi6.1 n/a

Correlation of Federal and state
overpayments -- 0.83 0.94 0.81 0.85*

Overpayment rate (Federal review) percent 7.30 7.95 6.62 6.64

Percent with overpa_ts
(Federal review) percent 12.7 13.1 11.2 15.2

n/a - Not readily availab_

'Simple mean of the estimatm for the 45 lutes that did not treat their mmplm as -,a_;.iiBed samples for the state
QC during this period (themeanwu roughly the mine for the re_dn]_ smt_).

2-3



¢ha?ter 2. Statistical Validity of AFDCo_C Methodolo_

Table 2-2 shows state and Federal AFDC-QC sample sizes by state, for

the year ending September 30, 1982. Sample sizes 1 and 2 above correspond

approximately to and are illustrative of the sample sizes used in about 24 of the

larger states. Sample sizes 3 and 4 are illustrative of samples used in a number of
medium-sized and smaller states.

2.2 Evaluation of the Regression EaHmator

Classical regression analysis is based on the assumption of a linear

relationship between the dependent and the independent variables, and on the

assumption that the dependent variable is approximately normally distributed for

each value of the independent variable. However, as we have noted in Section 1.2,

the fact that the joint distribution of individual state and Federal case findings of

payment errors fails to satisfy these assumptions is not relevant for the choice of an

estimator. As can be seen from Equation (1), (Section 1.1), the regression estimator

depends, not on the relationship of state and Federal findings of error for the

individual cases, but on the relationship of the sample means of those findings in

the Federal subsample. Based on 1000 independent samples from each test

population for each of four sample sizes, it is dear that the relationship between the

means is closely linear. Figure 2-1 shows scatter diagrams of the relation of the

sample mean of Federal findings and the sample mean of state findings for the same

sample, for 1000 samples drawn from Test Population A for each of four different

sample sizes, l It is dear from the diagrams that there is little if any departure from a

linear relationship. Also, the distributions of the points about the fitted lines are

approximately although not quite normal. Thus, the assumptions of classical

regression analysis are fairly well satisfied. We emphasize again, however, that

although the classical assumptions appear to be reasonably well satisfied, meeting

them is not required in order to assure the validity of the regression estimator.

Rather, that validity requires only that the variances and covariance involved are

finite, and that the sample is sufficiently large (see Cochran, op. cit., p. 203, and see

also Appendix B). Since the first of these conditions is obviously satisfied when

sampling from a finite population such as the AFDC case determinations, it remains

only to ask if the samples used in AFDC_ are large enough. It is for this purpose

that we examine the results of sampling from test populations made up of real data,

using sample sizes that approximate those in actual use.

lSimilar diagrams for two other test populations are included m Appendix B.
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Table 2-2. Sample sizes by state for 12-month period ending September 30, 1982. [Samples are treated
as stratified samples in some states, with stratum figures shown in parentheses ( ).]

State Federal State Federal

sample sample sample sample
State n n' State n n'

Alabama 2,211 377 Michigan 2,396 361
Alaska 314 134 Mississippi 1,995 365

01 (225) (96) Minnesota 1,718 311
02 (89) (39) Missouri 2,,580 389

Arizona 748 229 Montana 330 156
Arkansas 1,070 301 Nebraska 424 183
California 2,432 366 Nevada 329 152
Colorado 908 274 New Hampshire 295 137

06 (129) (40) New Jev_y 2,358 362
07 (655) (193) New Mexico 636 208
61 (33) (8) New York 2,483 364
62 (91) (33) North Carolina 2,422 368

Connecticut 1,733 356 North Dakota 346 160
Delaware 304 167 Ohio 2,491 386
District of Columbia 938 266 Oklahoma 1,409 298
Florida 2,,534 394 O_gon 1,174 285
Georgia 2,445 376 Pennsylvania 2,466 375
Hawaii 605 210 Rhode Island 625 211
Idaho 334 129 South Carolina 2,431 376
Illinois 2,381 358 01 (1,221) (175)

01 (339) (47) 02 (1,210) (201)
02 (1,47'8) (223) South Dakota 326 151
0{3 (,564) (88) Tennessee 2,157 359

Indiana 2,063 364 Texas 2,399 374
Iowa 1,208 304 Utah 323 172
Kansas 776 242 V_mont 301 156

Kentucky 2,137 364 Virginia 2,330 358
Louisiana 2,421 382 Washington 1,942 341
Maine 631 218 West Virginia 971 273

Maryland 2,425 365 Wisconsin* 2,508 394
Massachusetts 2,401 354 01 (1,704) (266)

00 (1193) (175) 02 (804) (128)
(Il (594) (92) Wyoming 339 168
02 (614) (87)

*Figuresquoted L,_ twice thom for the last 6 months of the y_r.
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Figure 2-1. Mean finding of dollar error per case in 1000 independent samples for each of four
sample sizes, Population A
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Some of the results based on replicate samples drawn from
Population A are summarized in Table 2-3. Similar results were obtained for the

other test populations and are presented in Appendix B. These results indicate that

for the various sample sizes in use the regression methodology provides valid

estimates of overpayment error rates for the various sizes of annual state and'

Federal samples in use. By valid estimates, we mean that for a given sample size

the average of the estimates over a large number of samples is close to the value

being estimated, and that the computed sampling errors or confidence intervals

provide approximate but acceptable indicators of precision.

Illustrations are provided by comparing lines 1 and 2 of Table 2-3 and

also by comparing the differences between these (line 3) with their estimated

standard errors (line 4). For each sample size, the average of the overpayment error

rate estimates is closely equal to the overpayment error rate in the test population.

Similar results are seen from the additional comparisons available in Table B-3 of

Appendix B. While the estimates are almost all less than the population values, the

differences are all far less than their sampling errors. All such differences contribute
^

less than one percent to the estimated mean square errors of R. We conclude that

here is a trivial negative bias in the regression estimator. Any such bias decreases

faster than the sampling error decreases as sample size is increased.

Table 2-3 also illustrates that, with the regression methodology applied

to Test Population A, the estimated variances of i_ (line 6) are all reasonably dose to

the estimated true variances (line 5). The differences are all small relative to their

estimated standard errors. Again, similar results are seen in Table B-3 of

Appendix B for Test Populations B and C.

2.3 Evaluation of Computed Confidence Intervals

Another way to examine the validity of the regression methodology is

to determine, for example, the proportion of times in repeated sampling that the

computed nominal 95 percent or 90 percent (two-tailed) confidence intervals

include the true payment error rate, and the proportion of times that the true

payment error rates are above or below the specified nominal confidence bounds.
Such results are shown in Table 2-4.
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Table _ 3. Evaluation of regression estimator based on computations for 1000 independent samples
drawn from Test Population A

Sample size (n and n')

I 2 3 4
2400 1200 880 350

Statistic m 360 360 260 160

1. True overpayment error rate in test population .0730 .0730 .0730 .0730

2. Average of estimated overpayment error rates

from 100__ples _ = E _/lOOO> .0731 .o724 .o727 .o729

3. Difference (Line 1 - Line 2) -.0001 .0006 .0003 .0001

4. Estimated standard error of difference

(standard deviation of _k from 1000 samples) .00025 .00027 .00033 .00048

A

5. Estimated true variance of R based on
A

variance of R from 1000 samples

- [z(-m2/lOOO](xlo4) .62s
A

6. Average of estimated variance_._ of R from
each of 1000 samples

2 2

av(s_k) = [_.S ^ /1000] (xl04) .645 .799 1.100 2.19k Rk

7. Difference (Line 5 - Line 6) -.017 -.095 -.027 .10

8. Estimated standard error of difference (Line 77' .031 .109 .053 .113

9. Standard error of esiima2d _ of {_

[T.(s2Rk- av(4k))2 /1000] 1/2 (xlO 4) .22 .23 .39 .87

2 !

'Computat from Odiff -

with _ assigned the value 3.3. ENentially the _me results would have been obi3uned for [_assigned values from 3

to 4, which s_m r_sonabk from Rgum C-1 in App_ C. i:_ e_3rultes of [_vLried betw_n 2.8 and 3.2.
The value 3.3 was tlkam Is In Ipproxi_ution before the _ mltmatw _ ivailable, amd was lo close that it
wis not worth recomputi_.
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Table 2-4. Proportion of observed samples in which value being estimated was above, below, or
covered by specified nominal confidence bounds, for Test Populations A, B, and C

Sample sizes
Test

Nominal c_tfiden_ bound Population 24001360 1200/360 880/260 350/160

Below .025 point A .011 .006 .010 .013
B .011 .012 .008 .017
C .0(B .011 .009 .007

Average .008 .010 .009 .012

Below .05 point A .024 .028 .028 .03I
B .032 .030 .033 .036
C .014 .021 .020 .1_8

Average .023 .026 .027 .032

Above .95 point A .084 .097 .100 .102
B .093 .072 .093 .096
C .093 .103 .113 .120

Average .090 .091 .102 .106

Above .975 point A .053 .069 .066 .075
B .067 .042 .055 .062
C .060 .080 .084 .087

Average .060 .060 .068 .075

Between .0B and .95 point3 A _92 _ .872 .867
B .875 .898 .874 _68
C .893 .876 .867 .852

Average .887 .883 .871 .862

Between .g25 and .975 points A .936 .935 .924 .912
B .922 .946 .937 .921
C .937 .909 .907 .906

Average .932 .930 .923 .913

'Based on 1000independ_mt replicate umpire for tach sample _0m for tach tat populattam.

2-9



Cha_ter 2. Statistical Validit_ o_ AFDC-QC Nletkodolo_

The nominal 95 percent confidence intervals (and other confidence

intervals) as now computed for AFDC-QC make use of normal distribution theory,

i.e., assume that the distribution of the estimated payment error rate and its esti-

mated standard error are distributed approximately a_ the_ would be for an esti-

mated mean based on simple random samples of ab_at 30 or more observations

drawn from a normal distribution. Thus, the 95 percent confidence intervals are

computed for the overpayment error rate, _, by computing _ + 1.96s_, where s_ is

the _,stimate from the sample of the standard errc:_'-of _. For large enough samples

drawn from the AFDC povulation of overpayment errors, the probability that such a

confidence interval will cover the true ' ue will be reasonably dose to the nominal

95 ?rcent. We refer to this as the nominal probability. If the overpayment errors

were normally distributed, then, on the average, approximately 95 percent of such

confidence intervals would include the value being estimated, and in about 2-

1/2 percent of the samples the lower bound would be below the value being esti-

mated, and in about 2-1/2 percent of the samples the upper bound would be above.

In AFDC-QC, as illustrated in Table 2-5 for Test Population A, the

distribution of overpayment errors is a very skewed rather than a normal distribu-

tion Also, AFDC-QC uses a double sample and a re_ression estimator. To help

evaluate the usefulness of the computed confidence intervals under these circum-

stanc __, we have examine: how close the observed probabilities are to the nominal

proc abilities. We have done this by :aking repeated independent samples from each

of the three test populations described in Section Z1 and more fully in Appendix A.

From Table 2-4, it is seen that for each test population and, on the

average over the three test populations, the fractions for which the true value was

below the nominal 95 percent two-tailed confidence intervals is considerably less

than the 2-1/2 percent that would be expected iz' the samples were drawn from

normal distributions. Conversely, R was above the computed confidence intervals

in a considerably higher fraction than the nominal 2-1/2 percent. More specifically,

on the average for the three test populations, for each sample size the value being

estimated falls below the lower nominal 95 percent confidence bound for only about

1 percent of the samples, and in about 6 to 7 percent of the cases it falls above the

upper nominal confidence bound. The differences between these percentages and

-- the 2-1/2 percent nominal percentage cannot be explained by sampling variability.
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Table 2-4 also shows that for the largest sample size (n=2400, n'-360)

the coverage of the computed (two-tailed) 95 percent nominal confidence intervals

for the test populations falls short but conforms approximately to expectations.

More specifically, on the average for the three test populations, 93.2 percent of this

particular set of 3000 repeated samples (1000 for each test population), the 95 percent

nominal confidence intervals include the value being estimated. Such estimates

are, of course, subject to sampling errors. For the next sample size (n=1200, n'=360),

the observed average proportion of the 95 percent nominal confidence intervals that

include the value being estimated is similar but slightly lower, being about

93 percent. For the two smaller sample sizes (n=880, n'-260 and n--350, n'=160) the

proportions are about 92 percent and 91 percent, respectively. While these are

statistically significant departures from expectation for normal distributions, the

results are nevertheless dose enough that the computed confidence intervals can be

interpreted as providing useful measures of the precision of estimated error rates,

with the observed probabilities being somewhat less than but reasonably dose to

expectation. They tend to be closer to the nominal probabilities for the larger sample

sizes. However, from Table 2-4 it is seen that for the lower tails (below the 2-1/2

percent and 5 percent nominal bounds), or for the upper tails (above the 95 percent

and 97-1/2 percent nominal bounds), the probabilities do not tend to be closer to the

nominal probabilities for the larger samples. We presume this is because the

subsampling ratio n'/n is lower for the larger sample sizes, and especially for the

largest sample size used in the analyses.

As seen from Figure 2-2, for the sample sizes in use, the distributions of

the estimated overpayment error rates appear to be reasonably dose to normal,

although still moderately skewed. As discussed in Appendix C, the departure from

expected proportions in each of the two tails of the confidence intervals arises

because the distributions of payment errors are considerably skewed, resulting in a

positive correlation of the estimated standard deviations with the estimated

overpayment error rates, and especially because of the wide variability in the

estimated standard deviations. As a result, the computed upper and lower nominal

95 percent confidence bounds are both somewhat low.
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Figure 2-2. Distribution of estimated payment error rate (based on 10(X)samples from Population A)
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2.4 An Improved Procedure for Computing Confidence Bounds

The results summarized in Section 2.3 above are for confidence

intervals as _i_ey are now computed. ¥'e have explored several alternatives for

computing confidence intervals and des-ribe here an alternative method that

involves the use of "Jackknife repUcates. ''-_ The greater the number of Jackknife

replicates used, the greater is th_ precision of the variance estimates, but also the

greater the computation costs. Often, in practice, a compromise choice is made and

from 30 to 60 replicates are frequently used.

One way that K Jackknife replicates can be formed, after selection of the

state and Federal samples for a state, is by first dividing the state sample into K

random subsets of equal or nearly equal size (each subset would be a stratified

random subsample if the original sample was stratified). A Jackknife replicate is

then formed by dropping one of the random subsets from the total sample and

retaining in the replicate all of the remaining cases. A total of K overlapping repli-

cate samples is formed by repeating this for each '--f the K subset. The Federal find-

ings are used for the cases in a replicate that are r_._mbers of the Federal subsample.

The regression estimate of the overpayment error rate is made

separately for each replicate as well as for the total sample. Then an estimate of the

variance of the overpayment error rate for the whole sample is obtained by

computing

R k

where Ak is the estimated overpayment error rate for the k-th Jackknife replicate,
^

and R is the estimate for the whole sample.

2The t,:_., "Jackknife" was sugg_tecl by John Tully, a leading statistician, who noted that the method
might be used to estimate vm-hmc_ of complex statistics. He noted that the use of J·ckknife
replicates provides · simple and Ipproximate method for making variance estimates from samples
even for complex estimatonl such amthe double samp_ regreNion _tor. He observed that the
procedurewas · simplebut often effectivetool somethin$like manS· j_ddmife am· genend-p_
tool.
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Another way to form Jackknife replicates starts by defining 2K subsets

of the state sample and arranging them into K pairs. The pairs would be random

divisions of first-stage sampling units, within strata if the original sample is

stratified, or stratified samples within groups of strata of about equal aggregate size.

A Jackknife replicate th en uses the data in aU pairs except' one.' In that pair, one of

the subsets chosen randomly is doubled and the other is omitted. This gives K

replicates. Again, the regression estimate is made for each of the replicates. The

estimate of the variance is then given by

^

where R k is the estimated overpayment error rate for the k-th replicate.

With either of the above approaches, confidence bounds can be
A

computed as R :t: t sA . With 30 or more replicates, the ordinarily used values of t are

t=1.96 for a 95 percent confidence interval and t=1.645 for a 90 percent confidence

interval. (If the samples were drawn from normal distributions, these would be

appropriate values for t.)

However, in order to reduce the effect of skewness in the distribution

of estimated payment error rates, we describe a modification of the above procedure.

The modification is to transform the overpayment error rates for each of the K

Jackknife replicates and for the total sample by a logarithmic transformation. Such a
transformation reduces the skewness of the distribution. If we denote

z k = log

z = logl_

then,

2

il the first described method of forming replicates is used, and
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K
2Sz -- E (zk-

if the second method is used.

The lower and upper 95 percent confidence bounds for z are

z L = z - 1.96s z and z U = z + !.96s z.

^ ^

The lower and upper confidence bounds for R are then RL = antilog zL
A

and RU = antilog zU.

We have made some tests of this procedure for computing confidence

bounds, using 400 repeated independent samples from Population A, for each of

four sample sizes used earlier, and for an additional 1500 independent replicates for

the largest sample size (n=2400, n'=360) and for an additional 2000 replicates for the

smallest sample size (n=350, n'=160). The results are summarized in Table 2-6. (See

also Appendix C.)

Table 2-6. Proportion of samples in which the true error rate is above, below, or covered by specified
nominal confidence intervals, based on logarithmic transformation of Jackknife replicate
estimates, Population A

Sample size, n/n'

All sample
24OO1 1200/ 880/ 3501 sizes

360 360 2_60_ 160 combined

Number of independent replicates 1900 400 400 2400 5100

Proportion of samtr6e_

Below .025 point .017 .032 .028 .023 .022

Below .05 point .035 .048 .068 .049 .045

Between .05 and .95 poin_ .890 .890 .867 .889 .888

Above .95 point .075 .062 .065 .062 .067

Above .975 point .045 .035 .(MO .031 .035
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These proportions are considerably closer to the nominal percentages

than those observed in Table 2-4 for the confidence intervals as currently computed.

Those below the lower 2-1/2 and 5 percent lower confidence bounds, respectively,
are reasonably close although they still average somewhat less than the nominal 2-

1/2 percent and 5 percent;, those above the upper bounds are moderately greater than

the nominal 2-1/2 percent and 5 percent. However, the differences, although statis-

tically significant, are small enough to be of relatively minor concern. These results

are very encouraging, although some further work is desirable, empirically based on

transformations other than the logarithmic transformation, which may reduce the

skewness further. Additional details appear in Chapter 3 and in Appendix C.

2.5 Some Further Considerations for FJfimating Sampling Error

Current practice in AFDC-QC is to estimate sampling errors (standard

errors) of estimated overpayment error rates for a state using only the sample data

for the current evaluation period for that state. This is consistent with general

practice. However, as indicated earlier, such estimates of sampling errors are subject

to large sampling errors, very much larger for a given sample size than in many

common sampling situations. As illustrations, Table 2-7 shows estimates of the

coefficients of variation of the estimated sampling errors made by current

procedures from samples of various sizes drawn from Test Populations A, B, and C.

Each coefficient of variation is estimated from 1000 samples drawn independently

for each sample size and test population.

2.
The estimated coefficient of variation of s_ is

Fl000 2 -- _n

cv =
stt

1000

with s2 = _ s2 / 1000 and i indicating the i-th replicate.
R I Ri
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2

Table 2-7. Approximate coefficients of variation of si_ and s_ from 1{130samples drawn from Test

Populations A, B, and C for alternate sample sizes,* compared with samples drawn from

' normal distn'butions

Sample

n =2400 n-=1200 n=880 n=350
n' -- 360 n' - 360 n'=260 n'=160

A

cv
Population A .18 .14 .18 .20
Population B .20 .16 .18 .24
Population C .27 .22 .26 .30

^ 2

CV(s )
Population A 34 .29 .36 .40
Population B .40 .32 .37 .46
Population C .55 .46 .54 .63

For a mean of a simple random sample
of n' drawn from a normal distribution

^

CV (s _) .037 .037 .044 .056

C_ ( s 2 ) .075 .075 .068 .112
l

*The 1000samples for each sample _ from each test population wa_ drawn ind_md4mtly (a simple random
sample of n drawn from tim test population, and a simple random submmple of n' from the sample of n). The

2
coefficients of variation of _ and 0_tfor · given population and sample _ are computed from the same 1000
_amples.
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Similarly, the estimated coefficient of variation of s_ is

- :

1000

= sA / lOOOR · Ri1

The exceedingly skewed distributions of overpayment errors in

combination with the use of double sampling and the regression estimator result in

these very large sampling errors of estimated variances and standard errors as

compared with, for example, the sampling errors of estimates of the variance and

standard errors of means based on simple random samples of size n' drawn from a

normal distribution2 (which are also shown in Table 2-7). The large coefficients of

variation of the estimated variances and standard errors not only result in relatively

large sampling errors for the estimated overpayment error rates, but also cause

differences between exact confidence limits (limits that would conform exactly to the

nominal probabilities) and the confidence limits as currently computed. As seen

earlier (Table 2-4), for the confidence limits as currently computed, the observed

coverage probabilities in repeated samples from the test populations differ

somewhat from the nominal 95 and 90 percent probabilities, and differ more widely

for the upper and lower tails of the confidence intervals considered separately.

3See Hansen, M., Hurwitz, W., and Madow, W., Sample $urvf'y M_hoda and Theory, Vol. 1, (John
Wiley & Sons, New York, 1953), pp. 133-148, where theory is given, with illustrations for simple
random sampling. The theory and illus_tions given there do not cover double sampling with
regression estimation, for which the impact of skewed distributions is increased. We note, also, that
technir_ally it is not the skewness of a distribution but, rather, its high kurtosis which causes the very

large variance of estimated variances. The kurtosis is measured by [5 at (fourth moment about

mean)/o4. However, in practice, highly skewed distributions tend to have high kurtosis, and the
greater the skewness, the greater the kurtosis. This is strikingly demonstrated in the illustrations in
the reference cited. Consequently, we prefer to refer to high skewness in characte_'izing such
distributions, which is readily seen by the eye, rather than high kurtosis, which is noL
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A particularly serious problem that results from the large coeffidents of

variation of sR is that estimates of the sample size needed to achieve a given level of

predsion for a state can be subject to wide-ranging error. For example, in a state in

which the joint distribution of state and Federal determinations of overpayment

error rates corresponds approximately to Test Population C, and with a state sample

size of 350 and a Federal subsample size of 160, the coeffident of variation of the
2

estimated variance, s&, would be about 63 percent (and of s_ about 30 percent).

We e .-nine what might result when the estimated variance for a state

is subject to such a _arge coefficient of variation and is used to determine the sample

size needed to achieve a given level of precision. Supl>oee that an estimate is made

for a state of the sample size needed to achieve an estimate of R subject to a standard

error of .015. For illustration, we assume that the distribution of overpayment

errors in the state is like that of Population C. From the known characteristics of

Population C, we compute that if we retain the ratio of sample sizes n'/n -- 160/350,

a state sample size of n,_.0 and a Federal subsample size of n-192 would yield such

a standard error. However, if one estimated the sample size needed on the basis of
2

s_ estimated from a sample of n'-160 and n--350 (approximately the average annual

sample size in use in a number of the smaller states) and if the ratio of

n'/n = 160/350 were retained, one would have roughly 1 chance in 20 that the

estimates of the Federal and state sample sizes needed would be either as low as

n'--38 and n--83 or lower or as high as n',,508 and n-,llll or higher. Such a range is

far too wide to provide a useful guide for det_,,dning needed sample sizes.

Even for states with large QC sample sizes, the range would be wide.

For example, for samples of n'--360 and n_2400 drawn from a state distribution like

that of Test Population C, if this ratio of n' to n is retained, there is about 1 chance in

20 that the estimates of needed sample sizes would be as low as n'--38 and n=255 or

lower, or as high as n'_305 and n--2036 or higher? Of course, the ratio n'/n might

*rhe

SR2,, (4/T2)[1 - 02(1-n'/n)]-.043 computedfor PopulationC (seeAppendix A) and assuminga fixed
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not be retained for such different sample sizes, but the effect of the wide ranging

sampling variability would remain. We note that the variance of the estimated

variance is somewhat larger for Test Population C, which we have used for

illustration, than for the other two test populations.

2.5.1 Pooled Variance Estimates

To reduce the wide sampling variability of the estimated variance of

the estimate of R, some consideration has been given by AFDC staff to the use of a

pooled estimate of variance in computing the estimated standard error. We regard

this as a useful procedure and have developed and evaluated an approach to

accomplish this.

We have explored some alternatives that are described in Appendix E.

A pooled variance estimation procedure that appears to provide acceptable variance

estimates is one in which the states are first ordered on the basis of preliminary

pooled unit variance estimates for a prior year or years. We define the preliminary

estimated unit variance for state k for this purpose as

2
2 Sxk--{1 }= - 0-0_2

tk

where the symbols are as defined in Chapter 1, with the subscript k added to identify
state k.

2
ratio for n'/n ,, 1601350. In practice SR is unknown and must be estimated from the sample. The

2 2

estimate of S R is n's_ as given by Equation (3) in Chapter 1. The observed (not the nominal

2

bounds assuming a normal distn'l_n) 2-1/2 percent and 97-1/2 percent confidence bounds of s A in

1000 independent replicate samples of n',,160 and n_350, drawn from Population C, and also for

n,,360 and n,,2400 were used to obtain these results.
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For this purpose, a u: iorm value of f=.2 is used for each of the

51 states. A simple mean of such estimated unit variances for the state for two prior. (

years is then computed. The list 'of states Ordered on these average pr 'ehminary unit

variances is then divided into several relatively homogeneous groups (in

Appendix E, we have used 5 groups with 10 5r' 11 states in each group). For the

preliminary unit variance estimates, no use is made of the variance estimates or

other sample data for the currer._ year.

-2 2 Tk'The pooled estimates Sxk, t'k' and r k of Sxk, and Pk' respectively, are

made for state k in a group of m states as follows (with state i different from state k):

m-1 m-1

-2 (2n_ s2 n'.
I !

m-1 m-I

- Z /6.;. Z.;)
I I

m-1 m-1

I I

and -2 -2
Syk is defined the same as s xk, but for the _. variable,

n_
! _ 2

,_,,= Z (%-,,) / (n;- l)

n_
l

,,,,- Z,(%-_,)(Yu'i,) / "'-

_i = _ tij In[.
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The symbol xij denotes the Federal determination of the overpayment error for the

j-th case in the Federal subsample in state i, Yij the corresponding state

determination of overpayment error, tij the total payment to case j in state i, and n' i

the size of the Federal subsample for the year in state i.

Note that each of the above pooled estimates is a simple weighted

average of the respective state values, with weights equal to the Federal subsample

sizes, except that state k, the state for which the pooled unit estimate is being made,

is given double weight.

The pooled unit variance estimate for state k is then

= -' (,-t,)}sk (Sxt /[_) {1-rk

where fk - n'k/nk is the fraction that the Federal subsample is of the state sample in
state lc.

The pooled estimate of the variance of fik is then

-2 -2

sl,` = sk / ·

This pooled estimate will considerably improve the unit variance

estimate for state k, provided that the true and unknown unit variance in each of

the other states in the group is not too different from S2k,the true (unknown) unit

variance for state k. The improvement results because the pooled estimates are

made from a much larger sample of cases (about 8 to 14 times as large for an average

state) as is s2. Of course, the pooled estimate is, in fact, a biased estimate of S2, the

bias depending on how much the expected values of the true state variances and

correlations differ from state to state in the group. The analyses and evaluations in

Appendix E indicate that very substantial gains result from the use of such a pooled

variance estimate for purposes of providing a general measure of precision for a
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state. We show in Section 2.5.2 that the pooled variance estimate is not appropriate

for use in computing lower confidence bounds, but that the direct state variance
estimates are.

We note that this particular pooled unit Variance estimator involves

very little computational burden. It simply makes use of unit variances and

covariances (or correlations) already estimated for purposes of computing direct
variance estimates for each state.

It is shown in Appendix E that the simple pooled variance estimates

evaluated there have moderately higher correlations across states with the true state

variances being estimated than do the direct variance es_mates, state by state. At the

same time, the_ have very much smaller variances, by factors of about 6 to 14.

The simple pooled variance described here differs from the one

described and evaluated in Appendix E because the one described here obtains

weighted averages in which the weight for the specified state is doubled in

computing the various terms. From the analyses in Appendix E, we tentatively

conclude that this presumably will result in a small increase in the correlation with

the true values being estimated, and a small increase in the variance of the

composite estimate. The differences should be modest, but some evaluation of this

presumption would be desirable.

In summary, because of its much smaller variances, and its moderately

higher correlation with the true values being estimated as compared to the direct

variance estimates, we condude that the pooled variance estimator has substantial

advantage in providing general precision measures, and in arriving at the expected

precision of specified sample sizes. However, it is less useful for computing a lower
confidence bound than the direct variance estimate for a state.
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2.5.2 Implications for the Choice of Variance Estimators

The results just presented, indicating substantial gains from the use of

a pooled variance estimator for a state, might appear to lead to the conclusion that

the pooled variance estimator would be superior for all purposes. However, this

may not be the case. While the pooled variance estimator achieves substantial gains

for most purposes, there remain applications where direct variance estimation,

state-by-state, has advantages. We summarize some relevant results in Table 2-8.

The results presented in Table 2-8 are for four different methods of

computing confidence intervals. For the "Regular" variance estimator, the

confidence bounds are obtained by computing _+ ts_ where s_ is the usual direct

estimate of the standard error of t_ from the sample for the current year. For the

"Jackknife-L", the variance is computed from logarithms of Jackknife replicate
estimates, and the confidence bounds are obtained from the inverse transformation

of logarithmic confidence bounds, as discussed in Section 2.4 and in Appendix C.

"Known ° I' variance estimator, the variance is not estimated from theFor the

sample. Instead, the confidence interval is computed as i_± to_,, where the

parameters of Population A are used in computing o_ (where o_ ,, S2R/n' and S2 is

given in Foomote 4 in Section 2.5). Of course, the parameters for computing oR are

known for our test population, but would not be known in practice. The results for

the unknown true variance are presented to help evaluate the pooled variance

estimator. For the pooled variance estimator, the confidence bounds are computed

as for the "Regular," except that the pooled estimate of the variance of _ is used,

obtained by procedures discussed in Section 2.5.1, and evaluated in Appendix E.

Table 2-8 shows, in the fourth, fifth, and sixth columns, the estimated

mean, standard error, and coefficient of variation (C'V) of the lengths of each type of

confidence interval. The next two columns show the estimated probability that the

true population overpayment error rate is, respectively, to the left and to the right of

the computed confidence intervals. The last three columns show the estimated
mean, standard error, and coefficient of variation of the lower bounds of the
confidence intervals.
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Table 2-8. Properties of alternative procedures/or computing of confidence intervals for R, for Population A (see text for description) ._

Lenl_th Estimated )robability Lower bound

Standard Standard n:
Confidence Mean error C.V. Mean error C.V. :te_

,eve, ' ,ou
2400/360 Regu_ 90% 0.0268 0.0053 .20 0.023 0.090 0.0596 0.00653 .1I

95% 0.0319 0.0064 .20 0.009 0.068 0.0571 0.03634 .11

Jackknife - L 90_ 0.0270 0.00.54 .20 0.031 0.075 0.0608 0.00660 .11
95% 0.0322 0.0065 .20 0.017 0.048 0.0587 0.03641 .11

2
Known o_ 90% 0.0267 0.0000 .00 0.055 0.039 0.0597 0.00798 .13

_o 95% 0.0318 0.0000 .00 0.027 0.020 0.0571 0.00798 .14
O_

'Pooled" 90% 0.0267 0.0022 .08 lq A lqA 0.0597 0.00790 .13 ·
95% 0.0318 0.0026 .08 NA NA 0.0571 0.00780 .14

II

350/160 Regular 90% 0.0499 0.0105 .21 0.021 0.091 0.0480 0.01153 .24
95% 0.0595 0.0126 .21 0.006 0.065 0.043_ 0.01106 .26

JKidmife - L 90% 0.0511 0.0111 .22 0.042 0.061 0.0518 0.01169 .22
95% 0.0614 0.0134 .22 0.019 0.040 0.0486 0.01021 .21

2

Known o_ 90% 0.0491 0.0000 .00 0.055 0.1)42 0.0484 0.01488 .31
95% 0.0584 0.0000 .00 0.028 0.018 0.0437 0.01488 .34

'Pooled' 90% 0.0491 0.0042 .09 NA NA 0.0484 0.01460 .30
95% 0.0584 0.0051 .09 NA NA 0.0437 0.01430 .29
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The first six rows for each sample size in Table 2-8 were obtained by

drawing 1000 independent samples from Test Population A. The same 1000

replicate samples were used for computing results for the Regular, Jackknife, and
2

known o_ estimators, for sample size n--2400, n'=360, and another independent set

of 1000 replicate samples was used to obtain the corresponding measures for sample
size n=350, n'=160.

In the last two rows for each sample size labeled "Pooled", we provide

approximate estimates of what would have been obtained had we been able to

simulate a pooled variance estimation procedure for a set of states similar to

Population A. These results were obtained as explained in Section 2.5.3.

We now examine the implications of the alternative variance
estimators for various uses.

For computing confidence bounds after the sample results are

available, it appears from Table 2-8, and from Appendix C (as we explain below), that

Jackknife-L (i.e., the logarithmic transformation of Jackknife replicate estimates) has

advantages over the other alternatives considered, even though the estimated

standard error of the length of the confidence interval is about two and a half times

greater for this alternative than for the "pooled" variance estimator. Also, the

standard error of the lower confidence bound is slightly larger for the Jackknife-L

than for the Regular. However, the standard error of the lower confidence bound

based on the "pooled" variance estimate is about 20 to 40 percent larger than for

lower bounds based on the Regular or Jackknife-L variance estimators. The low

standard error of the lower confidence bounds based on both the Regular and
A

Jackknife-L variance estimators arises because of the relatively high correlation of R

and its estimated standard error (see Appendix C for fuller discussion).

For the "pooled" estimator, the probabilities associated with the tails,

that is, beyond the ends of the confidence intervals, are not available. However, the

tails for the "known 4" confidence intervals, which use the population parameters

instead of sample estimates of o_, give estimates of those probabilities that are quite
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good for the tails. Consequently, because the variances of the estimated standard

error for the "pooled" are much smaller than for the "Regular," we assume the tails

for the "pooled" might be reasonably close to those for which the known ol is used.

We conclude that, in spite of the apparent advantages of the pooled

variance estimator for most purposes, the substantially smaller standard error of the

lower bound obtained from either the regular procedure or Jackknife-L appears to be

sufficiently important as to lead to the choice of one of these procedures for

computing the lower bound. Another reason for adopting one of these procedures

in computing a lower confidence bound is that each depends only on the estimates

from the sample for the current year. One does not have to justify bringing in other

data that might be challenged as not completely relevant. The Jackknife-L is

preferable to the Regular because the frequencies in the "tails" are considerably

closer to the nominal probabilities than are those for the Regular. In summary, we

conclude that the Jackknife logarithmic procedure is preferable for computing lower

confidence bounds that are to be used for such purposes as the determination of

disallowances if they are to be based on lower confidence bounds. In Section 2.4 and

Appendix C, we show that it also yields reasonably good results for the upper

confidence bounds. The "regular" or current procedure for computing lower

confidence bounds may provide acceptable results for less rigorous uses. s

The situation is entirely different with regard to estimates of sampling

errors for other purposes. At the beginning of Section 2.5.1, we showed great

variability of the "Regular" procedure in making estimates of the sample size

needed to achieve a given level of sampling error. The range of variability in

estimating needed sample sizes will be roughly one-sixth as much or less for the

pooled variance estimator as for the direct or for the logarithmic transformation of

the Jackknife variance estimator. Similarly, advance estimates of expected sampling

errors based on results for prior years will be greatly reduced with the pooled

5You have asked for an estimate of the added cost of computing lower confidence bounds by the
Jackknife-L procedure as com_ with the regular procedure. This cost depends on the computer

equipment ava/lable and on how the job is prognmuned. A very rough generous estimate breed on the
computing equipment we lmv_ used for cru_ng the JAckknife replicates m_d for computing the

and contutence limits for the test populations is no more than $4,1100for the _g,
which is · one-I/me cost for Ill states and y_rs, and not more than about$200for computer time for
each state computation.
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variance estimator. These advantages are very substantial. Indeed, it appears

essential to use a pooled or composite variance estimator in advance variance

estimation and in planning needed sample sizes.

Our condusion is that both approaches have important, but different,
uses.

2.5.3 Note on Computation of Characteristics of Confidence Intervals Using
the Pooled Variance Estimator

The results presented in Table 2-8 for the "Pooled" variance estimator

came only in part from the simulations and were estimated as follows.

The lengths of the confidence intervals for the pooled estimator, g,

were assumed to be approximately equal to those for "known a_" since the mean of

the pooled estimates of the standard error of 1_ should be close to the known oil.
2

The a_ for the pooled estimate was assumed to be equal to one-sixth of the og for the

regular estimator. This is greater than the average value of the ratios of variance of

the pooled estimator (with assumed zero bias) to the variance of the regular
estimator observed in Appendix E. The mean of the lower bounds, gb, for the

2
pooled estimator was assumed equal to the gb for known o1_ since the intervals

would be of approximately equal average length. The estimated standard error of

the pooled lower bound, og b, follows from the fact that the computed lower
^

confidence bound for the pooled estimator is gb = R- tsp. Consequently, the
variance of _b is

2 ^ ^
ogb = Var(l_) + t2Var(s_,)-2_R,s R qVar(R)Var(s_,) .

The I:)P,,s_tis the correlation of 1_and s_,and was assumed to be equal to '_i7_.
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This is a rough approximation based on the correlation of x and x+y,

where y is the sum of a variable y for a simple random sample of n from a specified

population, and x is the sum of a variable x for an independent simple random

sample of m, where m/(m+n) equals approximately 1/10. The value 1/10 is chosen

because the sample for a particular state in a group may constitute roughly one-

tenth of the sample for the entire group. Fortunately, for the approximate

relationships that should hold in this case, the agb is not sensitive to any of the

terms but the first one, so that the approximations for Ogb should be reasonab!_, good.

2.6 Conclusions on the Validity of the Regression Methodology

From the above analyses, supplemented by the fuller analyses

presented in later sections and in the appendices, we conclude:

· The regression methodology provides unbiased or at most
trivially biased point esi-lmates of the overpayment error rates
for the AFDC_ samples in use.

· The sampling errors estimated from the samples also provide
nearly unbiased estimates of the sampling errors of the
estimated overpayment error rates. However, they are subject to
large sampling errors, much too large to be useful for
determining needed sample sizes to yield specified magnitudes
of sampling errors.

· A pooled variance estimation procedure is provided that greatly
improves estimates of variances, and thus of estimates of needed
sample sizes to achieve specified precision levels.

· The confidence intervals as now being computed yield results
that, although imperfect, nevertheless provide useful guides to
the precision of the point estimates of the overpayment error
rates.

· A modified methodology is provided that will yield improved
confidence intervals, with closer agreement to the nominal
coverage probabilities, especially in the coverage of the tails.
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· The point estimates are not affected by imperfections in the
confidence intervals as now computed. They provide estimates
of the overpayment error rates that are valid within the ranges
of error indicated approximately by the computed confidence
limits.
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CHAPTER 3. CONSIDERATIONS IN CHOICE OF LOWER CONFIDENCE BOUND

VERSUS POINT KSTIMATE IN DETERMINING DISALLOWANCES

3.1 Introduction

In this chapter we examine various aspects of the second question we

were asked to consider (see Section 1.1), as follows:

· What are the considerations and constraints involved

in the choice of a lower confidence bound versus a
point estimate in determining disallowances?

Disallowances are currenfiy computed and assessed annually for states

with estimated overpayment error rates in excess of allowed tolerances. As

explained in Chapter 1, the allowed tolerances are specified in legislation. They vary

from state to state for years prior to 1984, and are set at 3 percent for 1984 and

thereafter. The disallowance for a state is 1_ = (R - R0)A, provided R is greater than

R0, where _ is the QC regression estimate of R (the true overpayment error rate for

the year), R0 is the corresponding tolerance or target rate (the terms "tolerance" and

"target rate" are used interchangeably), and A is the amount of the Federal payment

to the state for the year. Under certain circumstances, the disallowance can be

suspended or waived by the Secretary of Health and Human Services.

The assessment of disallowances has led to challenges and suits by

some of the states, and some have proposed that, because the estimated error rates

are subject to sampling errors, a lower confidence bound of R should be substituted
^

for R in computing the disallowance. This alternative has also been considered by

the Congress. Consequently, it is appropriate to examine and compare the statistical

implications of these and other alternatives.

There are important precedents for the use of either the point estimate

or a lower confidence bound in various applications of sampling. The choice
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should be guided by the purposes to be accomplished by the assessment of

disallowances and is primarily a policy decision, rather than a statistical one, and

depends on the goals tx, be served, as discussed in points (8) through (13) in

Section 1.2. However, it has important statistical implications that we will examine

in this chapter. We note again, _ere, that in Practice the point estimate is ordinarily

and appropriately used where two parties to a funds transf r or payment are

involved, and the amount of the payment is determined by a sample estimate.

Such applications of samples and the point estimate generally call for samples large

enough to yield reasonably pr.: =ise estimates. Use of a lower confidence bound

would result in a disadvantage to one party to the advantage of the other. A lower

confidence bound is more likely to be appropriate if the purpose of a sample esti-

mate is to prove carelessness or fraud, such as in auditing, and the consequence may

be an assessment of a penalty. In AFDC, the Tax Equity a- _:scal Responsibility Act

(TEFRA) of 1982 has been interpreted as reqr, a'ing use of point estimate.

When samples are large enough, the difference between the two

approaches is reduced, and ultimately, for large enough amples, the difference

becomes relatively small. However, the differences are re_ rely large for the sizes

of annual AFDC samples in use. Since large transfers c.: rods are involved, an

understanding of the statistical implications of the alter- yes is desirable. We

consider this in Section 3.2. We refer to the use of the poir,: _timate in computing

annual disallowances as Rule A, and to the use of the lower confidence bound as

Rule C. Rule B is a variant of Rule A - the annual disallowance is based on the

point estimate except that the disallowance is waived if the nominal 95 percent

lower confidence bound of the error rate is below the tolerance. Rule B will, of

course, result in lower disallowances, on the average, than Rule A, because they are

waivec when the estimated error rate is above, but within likely sampling error

range, of the target.

Later (in Section 3.7), we describe still another rule, Rule D. This rule

increases the effective sample size for computing disallowances by accumulating the

annual disallowances over successive years. The lower confidence bound of the

accumulated disallowances is used for _mputing cash disallowances to be assessed

until the sampling error of the total accumulated disallowance is suffidently small.
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The accumulated disallowance based on the point estimates is then used for final
settlement.

3.2 Use of Point Estimate Versus Lower Confidence Bound in Computing
Annual Disallowances

Table 3-1 illustrates the consequences of using Rules A, B, and C for

computing disallowances for alternative values of the excess of the overpayment

error rate over the tolerance (column 1), the assumed standard error of the

overpayment error rate (column 2), and the size of the Federal payment (column 4).

The correct disallowances (computed using the unknown true error rate) for each

case are shown in column 5, and the average over all possible samples of

disallowances computed with Rules A, B, and C are shown in columns 6, 7, and 8.

The coefficients of variation of the disallowances computed with Rule A are shown

in column 9. The figures in the table are approximations based on the assumptions

stated in the Notes for Table 3--1. The figures in columns 9 through 12 are of

principal interest, and apply for any level of the Federal payment to states that have

(approximately) one of the seven assumed excess of error rates over tolerance

shown in column 1 and one of the two levels of sampling error shown in column 2.

While the figures in columns 9 through 12 of Table 3-1 are

approximations, and are not those for any specific states, they are approximately

representative of the situation in fiscal year 1984 for many states. For all large states,

the sizes of the Federal QC samples are roughly the same, and the state QC samples

vary from about 1200 to 2400. The .006 standard error of i_ assumed in Table 3-1 is

roughly representative of the average sampling error in 1984 for these states

(although the sampling error tends to be somewhat smaller for states with the larger

state samples, and somewhat larger for the others). The sampling error of .012

shown in the bottom deck of Table 3-1 is roughly illustrative of a number of

medium-sized and smaller states (states with state samples of about 500 to 800).

Column 6 of Table 3-1 illustrates that on the average (over all possible

samples) disallowances computed by Rule A are closely equal to the correct
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Table 3-1. Some illustrative approximate average results over repeated samples for annual disallowances computed by Rules A, B, and C'

Average of actual disallowances Ratio of average actual

overpayment of Federal disallowance CV of actual

error rate over Standard R-Po payment A D_R-Ro)A DA Ds Dc disallowances for ..al

target (R-R o) error of R o_ ($000) ($000) ($0OO) ($000) ($000) Rule A (O_A/b A) fiA/D E)B/D Dc/D _
(1) (2) (3) (4) (s) (6) (7) (8) (9) (10) (11) (12)

r-.

.08 .006 13.3 500,000 40,000 40,000 39,150 35,065 .075 1.00 .98 .88 l

.05 .006 8.3 500,000 25,000 25,000 24,450 20,065 .12 1.00 .98 .80

.03 .006 5.0 500,000 15,000 15,000 14,700 10,065 .20 1.00 .98 .67

.02 .006 3.3 500,000 10,000 10,000 9,700 5,092 .30 1.00 .97 .51 lo, .oo6 1.7 soo_ s,ooo 5,050 3_0 1_ .57 1.01 .72 .22 ,..oo6 , _ ,_ _.,oo_o ., Lo_ L,o _ o_
o oo6 oo _ o ,_oo ,_o _ ,,6 - - - I_

Il,Lo
_., .08 .006 13.3 100,080 8,000 8,000 7,830 7,013 .075 1.00 .98 .88 i'_

·05 .006 8.3 108,000 5,000 5,000 4,890 4,013 .12 1.00 .98 .80

·03 .006 5.0 100,000 3,000 3,000 2,940 2,013 .20 1.00 .98 .67
·02 .006 3.3 100,080 2,000 2,000 1,940 1,018 .30 1.00 .97 .51 i'
.01 .006 1.7 100,000 1,000 1,010 720 217 .57 1.01 .72 .22
.003 .006 .5 100,000 300 420 110 24 1.07 1.40 .37 .08 _'

.0 .006 0.0 100,fl00 0 240 30 6 1.46 .o _

.08 .012 6.7 15,000 1,200 1,200 1,175 904 .15 1.00 .98 .75
·05 .012 4.2 15,080 750 750 734 454 .24 1.00 .98 .61
.03 .012 2.5 15,000 450 450 417 168 .40 1.00 .93 .37
.02 .012 1.7 15,000 300 303 214 66 .57 1.01 .71 .22
.01 .012 .8 15,000 150 164 57 16 .88 1.09 .38 .11
.003 .012 .25 15,000 45 96 14 4 1.24 2.13 .31 .09
.0 .012 0.0 15,000 0 72 6 2 1.46 _ o_

'See Notes for Table3-1 for definitions.



Notes for Table 3-1

The rules are defined as foUows:

A A A

Rule A: DA -- (R - R0)A if positive; otherwise DA = 0.

A A ^ A

Rule B: DB - 01- R0A if R - 1._s_ > R0; otherwise DS - 0.

A A ^

Rule C.; DC - (R- 1.645_ - R0)A ii positive; otherwise DC - 0.

-- A

The D A ia the average of DA, etc.

A

For each rule, s_ ia the estin_te of the standard error of R and R0 ia the target error rate. The computations shown in the table depend upon the

following assumptions for each model.

A A

For Rule A, the computations assume that R ia normally distributed and that R is an unbiased estimate of the true error rate lt.

For Rules Band C..,the computations assume that the joint distribution of Rand s_ is normal and that they are both unbiased estimates. It is assumed
A

that the correlation of R and s_ is .7 (which is approxfnmately the average correlation observed in simulations for Test Populations A, B, and C (see
2

Appendix C, Table C-l), and that the variance of m_ia {I}--Da_/4n'. We have taken l_4, n'_J60 when o_ -- .006, and n'-160 when o_ =.012. The

is an appmxhnate average value obtained for Test Populations A, B, and C from the assumed relationship

2 4
.

2

and o2 - n'a_ were each obtained from 1000 r_)]icated independent samples (see Appendix C).
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disallowances unless (R-R0)/_ is small, say le than about 1.5. It also shows

relatively how much disallowances would be overestimated, on the average, when

(R - R0)/o _ is small. It shows, for example, that if R - R0 is .01 or greater, and if _ is

approximately .006, the computed di_all0wance under Rule A will, on the average,

be equal or very nearly equal to the correct amov- On the other hand, for a state

with c_h= .006, and an excess of tae overpaymer -ror rate over the target of only

about .003, the average annual disallowance wou._ be 40 percent above the correct

disallowance (column 10), and for a state with _ =.012, the average ,nnual
disallowance would be more than twice the correct disallowance.

Rule B is the same as Rule A except that no disallowance is assessed

unless there is strong evidence that the true error rate is above the rget. More

specifically, with Rule B, the disallowance is

{ Ro)i ill- ts. >REL R

" o, oth

with t = 1.645 if a nominal :; percent point (the lower bound of the nominal

90 percent confidence interval) is :o be used. Alternatively, a lower confidence

bound would be computed using the log-Jackknife-repUcate procedure described in

Section Z4, which yields a probability associated with the lower confic_:nce bound

that is considerably closer to the nominal probability.

It is seen from Table 3-1 (column 11) that the use of Rule B avoids the

overassessment of disallowances that results, on the average, from Rule A when the

overpayment error rate is dose to the tolerance. Instead, Rule B very slightly

underassesses the disallowances, on the _verage, when (R-R0)/_ is large and, as

expected, underassesses them considerably when the sampling error of 1_is large

relative to the ex _ces_sof the overpayment error rate over the target.

We have also evaluated the application of Rule B by using the

simulated samples drawn from the Test Populations A, B, and C, and using the
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^

criterion (R- 1.645s_) > 0 rather than the suggested log-Jackknife-replicate transfor-

mation. The results are presented in Table 3-2. We conclude from Table 3-2 that for

the three test populations the application of Rule B, using sample estimates of R and

a_, gives quite satisfactory results, i.e., the DB/A in each case is close to R - R0, except

for the smallest sample size. For the smallest sample size for Test Population C,

especially, the ratio of average computed to correct disallowance (last column) is

sufficiently small to result in underestimation of disallowances by about 10 percent.

The ratios in the last column of Table 3-2 are reasonably dose to and confirm the

corresponding approximate ratios in column 11 of Table 3-1, for comparable values

of (R- R0)/o _. Of course, the results presented in Table 3-2 are averages from 1000

independent replicate samples and are subject to some sampling variability.

' The coefficients of variation (CV) of the 1_A for the illustrative samples

are shown in column 9 of Table 3-1. It is seen that the CV increases rapidly as the

excess of the overpayment error rate over the tolerance decreases.

For Rule A, the magnitude of the sampling errors relative to the

disallowances (illustrated by the "CV of actual disallowances" shown in column 9 of

Table 3-1) has been the basis for a concern expressed by some states that the amount

of the disallowance may vary widely due to sampling error. This concern has led

some of the states to propose the adoption of Rule C for computing disallowances,

i.e., that disallowances be computed by using a lower confidence bound instead of

the point estimate. The consequences of doing this for a one-tailed 95 percent

confidence bound (i.e., a lower 90 percent two-tailed confidence bound) are
illustrated in columns 8 and 12 of Table 3-1. If such a lower confidence bound were

adopted, the disallowance for a state would rarely exceed the correct value, and then

only by a relatively small amount. Also, as seen in Table 3-1, the average of such

disallowances would be below, and often far below, the correct disallowance.
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In Section 3.7 we describe an alternative procedure, Rule D, for

computing and assessing disallowances that may have advantages over assessing an

annual disallowance solely on either the point estirrtate or a lower confidence

bound. Before doing this, however, we review some of the implications of using a

lower confidence bound rather than the point estimate in computing disallowances.

These issues include choice of a probability to associate with a lower confidence

bound, improved procedures for computing lower confidence bounds, the

comparative precision of the lower confidence bounds and the point estimate, a

procedure to avoid a concern that poor-quality work on QC in a state could work to

the disadvantage of the Federal government by lowering the lower confidence

bound, and some limited discussion of optimum sample size considerations.

3.3 Some Implications and Issues Concerning Use of the Lower Confidence
Bound

We comment here on a few points that are relevant if the lower

confidence bound is to play a role in the computation of disallowances, whether
based on Rule B or C discussed above, or on Rule D described later (Section 3.7).

3.3.1 Choice of Nominal Confidence Level

The term "nominal confidence level" refers to the desired probability

that a confidence interval include the true value that is being estimated. The actual

probability may differ from the nominal, although, with appropriate sample design

and sufficient sample size, the actual and nominal probabilities may be reasonably

close together. For this discussion, we assume they are equivalent. The issue to be

considered is at what level the probability associated with a confidence interval, or

with an upper or lower confidence bound, is to be specified.

We assume that a 90 percent confidence interval is defined in such a

way that a 5 percent probability is associated with each tail, that is, the lower

confidence bound is such that the probability is about 5 percent that it exceeds the

value being estimated (which we refer to as the true error rate), and the upper
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confidence bound is such that the probability is about 5 percent that it is below the

true error rate. Similarly, for a 95 percent confidence interval, the probabilities are

about 2-1/2 percent that the lower bound exceeds and are also about 2-1/2 percent

that the upper bound is below the true error rate. The higher the specified

probability for inclusion of the true value within the confidence interval, the lower

is the probability associated with each tail. However, a choice must be made of the

confidence level to be used; this is a policy decision.

We note that while practice does and should vary, depending on the

circumstances and policy judgments made, in much statistical practice 95 percent

confidence intervals are displayed and used as measures of precision. Also, the use

of a 95 percent confidence level has been the common practice in computing two-

tailed confidence intervals to provide measures of precision in AFDC. While there

is no necessary reason for adopting the same probability level for computing a lower

one-tailed confidence bound, it seems reasonable and is common practice to do so.

In a number of analyses, we have displayed both 90 and 95 percent two-tailed

confidence intervals, and corresponding 95 percent (or 5 percent) and 97-1/2 percent

(or 2-1/2 percent) lower (and upper) confidence bounds. We have adopted a

95 percent lower confidence bound more generally for illustration ,or a 95 percent

upper confidence bound in some instances) because it seems to represent the most

common practice and is consistent in probability level with the level in use in

AFDC for measuring precision. However, to the extent that lower confidence

bounds have a role in computing disallowances, the adoption of a confidence level

can have a substantial impact on the resulting magnitude of the disallowance, and

consequently the choice of an appropriate probability level should be a matter for

policy detera_nation.

3.3.2 Improved Procedures for Computing Confidence Bounds

Another issue concerns the way in which the confidence interval, and

therefore its lower bound, are computed. The present procedure in AFDC in

computing a lower confidence bound, L, is

^

L = R-ts i
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using the formulas given by Equations (1) and (3) in Chapter 1, respectively, forA

estimating R and s_, and using t = 1.96 for a 95 percent confidence interval and for a

97-1/2 (or 2-1/2) percent lower confidence bound. Alternatively, we have suggested

above, for consideration, the use of t = 1.645 for a 95 (or 5 percent) percent lower

bound. As we have shown earlier (Section 2.3), with the highly skewed distribution

of overpayment errors, the probability that the lower bound is greater than the true

error rate is much less than the nominal 2-1/2 percent. We have also shown that

the results are similar for the lower bound of a 90 percent confidence interval (i.e.,

for a 95 percent lower confidence bound). In Section 2.4, we have suggested the use

of a log-Jackknife replicate method of computing confidence intervals which, on the

basis of the analyses we have completed, provides probabilities considerably doser to

the nominal levels. As noted before, the results are encouraging, although further

work on the problem is desirable, particularly in the search for even more useful
transformations.

We also note that the computation of confidence intervals using the

log-Jackknife-replicate method involves more computing than if computed by the

simpler procedure, but with present computer speeds and costs, the difference seems

to be unimportant in relation to the potential impact on disallowances if based on a
lower confidence bound (see footnote in Section 2.5.2).

3.3.3 Comparative Precision of Lower Confidence Bound and Point Estimate

In Section 2.5.2 of this report and in Section D.1 of Appendix D we

explain why the lower confidence bound of the overpayment error rate has

considerably greater precision than the point estimate, contrary to the usual

situation. We illustrate the comparisons for three test populations. The principal

relevance to this discussion is that possible questions concerning the precision of the

lower confidence bound do not mitigate against its use in computing disallowances.
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3.3.4 Controlling Impact of Sample Size and of Poor-Quality QC Work on
Lower Confidence Bound

Another problem with the use of the lower confidence bound in

computing disallowances is that it can be lowered by decreasing the sample size or by

lowering the qu, :,ity of the QC reviews done by the state. The first of these effects

can be controlled by insistence on minimum sizes for the state sample and the

-ederal subsample. Some discussion of the implications of alternative sample sizes

vpears in this s absection and in Append_ D, and also in Sections 3.4 and 3.5.

It is easier to control sample size than the quality of QC work. The

presence of poor quality work can reasonably be suspected by an unusually low

correlation between the state and Federal findings for the cases in the Federal

subsam ,e. An unusually low correlation, or continued observation of a

moderately low correlation (say below .8 or .85) may call for more intensive

monitoring of the state's QC operation. The distributions of correlations due to

sampling, and the distribution of estimated correlations by states, are given in

Appendix D. A study of such distributions, along with updating of such analyses

from, time to time, can provide insight into correlations that may be lower than can

be expected from sampling variability alone.

The impact of low correlations on lower confidence bounds of

overpaym t error rates can be reduced substantially by adopting a "minimum

correlation variance estimator." This is accomplished whenever the estimated

correlation in the fo,mula for the variance (See Chapter 1, Equation (3)) is below a

specified minimum value, say .8, by replacing the correlation in the fo,mula by the

specified minimum value. This decreases the estimated sampling error in such

instances, thus increasing the computed lower bound. Such low correlations may

occur because of poor-quality QC work, or because of sampling variability.

Whichever is the cause, the adoption of the minimum correlation variance

estimator provides a reasonable adjustment without having any effect on the point
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estimate. The selection and use of such a minimum value is discussed in

Appendix D. l

3.4 Some General Considerations on Optimum Sample Size

We note first, and strongly emphasize, that, except for a few

introductory remarks, this discussion of optimum QC sample size assumes that the

only role of the QC sample is that of computing disallowances, whereas the

principal reason for initiating the QC sample and a principal reason for its

continued use is to provide information on the frequency and magnitude of errors

and their sources, in order to guide improvement and control of the administration

of AFDC. Effectively serving these purposes is an exceedingly important role of

AFDC-QC. It is obvious that the payoff through reductions in misspent funds can be

very great indeed if overpayment error rates are substantially reduced through such

efforts. We note, for example, that the reductions in error rates in recent years (e.g.,

1980 through 1984) have been substantial, involving reductions of many millions of

dollars in improper overpayment of AFDC benefits.

Presumably, an important part of these reductions has resulted directly

and indirectly from QC efforts in the states. Nevertheless, the optimum sample

sizes needed for guiding improvements in the design and administration of AFDC

are not easily determined. We do not here attempt to make that determination in

an objective way, but we do emphasize that the sample, for this purpose, should be

large enough to faciUtate reasonably precise analyses by population subgroups.

These should include important subclasses of recipients, so that the sample would

provide separate estimates for those working and not working, those with or

without other income sources, and other subgroups, and also for major geographic

subdivisions. The latter may help in comparing administrative effectiveness within

different operating units within the state units. These types of analyses are

IFrom Appendix D,Table D-2, it is seen that the observed correlalions for states have been increasing.
The 30th penmnttle of the etimates of corm_ttons by states _ from .76in 1981 to .8?in 1984.
From these it seems that, until additiorml evidm_ce is available, the choice of a minimum r of _0 to

would be quite reasonable. Presume, the lower values of the estimtted amela_m by states in
the table reflect to a considentble degree the cort_quenc_ of rumpling yin'lability (see Figures D-2A,
B, and C).
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important and necessary, but it is not easy to specify the sample size needed for such

analyses. These analy_ _ are to be done primarily with the state samples which are,

of course, considerably larger than the Federal subsamples. For analyses by various

subclasses, it may be useful to accumulate samples over two or three years, and also

to plot control charts for subc_.asses based on quarterly or more frequent QC results.

The role of t_ Federal subsamples in ff._s regard is simply to monitor the state QC

efforts so that the state samples will be reasonably effective in identifying sources of

errors by type.

One of the important considerations concerning the sample sizes that

are needed to provide information for corrective action (and also for computing

disallowances) is that when a state welfare system is "under control," that is, it has

reduced its overpayment error rate in total and in the major jurisdictions or

subclasses to an acceptably low level, perhaps to or below the current three percent

tolerance, there may be little to gain from additional efforts at corrective action (and

nothing to gain from disallowances). Consequently, it seems reasonable for such a

state to reduce the QC program to a monitoring role, primarily to provide assurance

that the overpayment error rate does not rise substantially again. This could be

done with relatively small sizes of state and Federal samples (for example, perhaps

300 to 600 for the state sample and 150 for the Federal subsample).

We mention one -_ther consideration with regard to sample size: any

effort to optimize sample size through a cost-benefit approach must take account of

the total expenditures involved. The exception is the case mentioned in the

preceding paragraph, where the administration of AFDC is demonstrably under

good control.

From a cost-benefit point of view, it may be worth using only a

relatively small QC sample in the sm;dIer states. Cost-benefit considerations call for

higher precision and greater detail for large states. Large samples can provide

analyses at shorter time intervals, or by major administrative areas, or for

population subgroups, and may greatly facilitate identifying problems and taking

corrective action. In New York, for example, in fmcal year 1984 the cost of AFDC was

$957 million, while in Wyoming it was about $6 million, or about 6/10 of one

percent of the New York cost. Delaying or failing to take effective corrective action
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in Wyoming could not noticeably impact total erroneous expenditures in the AFDC

program, whereas delay or ineffective action could be enormously costly in New

York (and in each of a number of other large states). It would be totally cost-

ineffective to call for equal sample sizes or equal precision in these two states - too

costly to take a large sample in Wyoming, and large losses would be risked if a small

sample were used in New York, at least until the error rate is acceptably low.

We think the need for larger samples in the larger states is reasonably

obvious from a cost-benefit point of view without further comment and

justification. The analysis in Section 3.5 of optimum sample size for determining

disallowances using a lower confidence bound provides a rather striking illustration

of this point.

3.5 Optimum Sample Size for Computing Disallowances

We now turn to consideration of optimum sample size when the sole

purpose of QC is assumed to be the computation of disallowances, and the goal is to

minimize the overall cost to the Federal government of overpayment errors in the

AFDC program, taking joint account of the cost to the Federal government of QC
and of the returns from disallowances.

When the point estimate is used to compute disallowances (Rule A) it

is not feasible to determine objectively an optimum sample size based on expected

(or average) results. This is because, whatever the sample size, the sampling errors

of the estimates of the overpayment error rates are both positive and negative, and

when the estimated error rate is used in the computation of the disallowance, the

long-run average effect of the sampling error in the estimation of disallowance is

close to zero for high error rates and is a decreasing function of the sample size. If

the true error rate is dose to the target rate, the average of the disallowances is

positive (as discussed earlier), and incr,_,_ingly so, as the sample size is decreased.

Consequently, it is no longer true that there is an approximately equal chance of

positive and negative errors. However, it is still true that the Federal government

gains more, on the average, as the sample size is decreased, since the average

_ expected disallowance is larger. (See Appendix F.)
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Thus, from a simplistic point of view, ii the point estimate is used, the

optimum sample size is to make the state sample and the Federal subsample as

small as possible (like a sample of 2), and still make it possible to make an estimate.

Of course, this is ridiculously small; neither the Federal government nor the state

would be w-jlling to deal with such a ridiculously small sample. It just means chat

we do not have a basis for obtaining an optimum sample size based jointly on cost

and expected or average return from disallowance.

One might make some assumptions about the cost of errors in the

point estimate that result irt much too large a disallowance in some years, and much

too small in others, and possibly arrive at an optimum based on the costs and

disadvantages of such variability. We have not taken this approach here, because it

does not appear very promising, at least at the present stage of this analysis. We

conclude that the determination of optimum sample size for computing

disallowances by Rule A is a judgment decision, not effectively guided by a

mathematical solution, at least for the present.

The situation would be quite different if the lower confidence bound

were to be used in computing disallowances. In this case, from the Federal point of

view, the larger the samples for a state, the smaller the sampling error, and

therefore the higher the average disallowance. But to achieve a larger sample costs

additional Federal funds, both for the Federal subsample and for the state sample.

Under these circumstances, it is possible to determine the sample size that

maximizes the Federal return. This is done in Appendix G where details are

presented. We summarize some results here.

In this analysis it is assumed that the Federal costs for QC include half

of the cost of the state QC sample, and the full cost of the Federal QC sample. We

used, for determining unit costs, the costs and caseloads quoted in a memorandum

from OFA outlining a meeting on September 4, 1984, with the Ways and Means

Staff regarding the AFDC Quality Control System and Error Rate Disallowances. 2

2Memorandum to Debbie Cha_ from Barbara levering, Depammmt of Health and Human
Services, Office of Family Assistance, Social Security Administration, dated August 31, 1984,
September4 Meetl'ngmith Ways and Measw Staff oN Ab2)C Q_ali_y _1 System and ErrorRate
Disallowances and attached outline on Brief_g PolntJ for Ways awl Mea_ Staff.
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The resulting assumed unit costs were $130 Federal cost (1/2 total unit cost) of the

state sample per case, and $330 per case for the Federal subsample. We also assumed

a target error rate of 3 percent, as called for in 1984 and afterwards by present

legislation. Various levels of total Federal payments were assumed that are

illustrative of payment levels in the various states. We also assumed that the

Federal subsample size was 15 percent of the state sample size, as it is in some of the

larger states. The computations could readily be carried through for other

subsampling fractions, and would yield similar results. We also assumed three

levels of the standard deviation of the payment errors, that the correlation of state

and Federal findings was .9, and that the correlation of i_ and s_ was .8.3 Given the

above assumptions, we obtained the summary results displayed in Table 3-3.

Table 3-3. Approximate opl/mum Federal sample sizes (n') for computing annual disallowances based
on a lower confidence bound (Rule C), for alternative levels of total Federal payment, and
of ex_t_e.__qof overpayment error rate over the target rate

Ex___ of paym_t error rate over
Size of Federal Standard

payment deviation of
($1,000,000) payment errors .01 .02 .03 .04 .06

20 30 .... 84 84 84
50 .... 117 117 117
70 .... 140 147 147

50 30 -- 154 154 154 154
50 -- 215 217 217 217
70 -- 239 271 271 271

300 30 510 510 510 510 510
50 673 716 716 716 716
70 545 800+ 800+ 800+ 800+

500 30 716 716 716 716 716
50 8OO+ 8OO+ 8OO+ 8OO+ 8OO+
70 800+ 800+ 800+ 800+ 800+

3Elsewhere we have Lqsumed .7 for this correlalton (see, for emmple, Appendix E). This J Lq,sumption
here was based on early results. We have not reg_ded it as worthwhile to recompute assuming a
correlation of .7.
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We note that theop_mum Federal sample size becomes zero (denoted

by "-" in the table) as the exces: of the overpayment error rate over the target gets

small. This means that, in such instances, the amount recovered in disallowance is

equal to or less than the Federal cost of QC sampling. On the other hand, the

optimum sample sizes increase and b.=_ome considerably larger than the present

Federal subsample sizes as the excess o: he overpayment error rates over the target

increases, and as the total Federal payment becomes large. (Note that an entry of

800+ in the table signifies that the optimum Federal sample size is greater than 800.

Our computation did not extend beyond that size.) We emphasize, again, tha: '2_is

optimization is for separate computation of disallowances each year, usir, d the lower

confidence bound in the computations (Rule C), and that the optima are computed

only to maximize net return from disallowances to the F_,_cleralgovernment.

From the point of view of a state (instead of the Federal government),

the effect of jointly minimizing a state's cost of conducti_ 5 the QC operation and its

losses from disallowances is totally different. Obwously, if a lov, confidence

bound is used to compute disallowances, the optimum size of a state sample is the

smallest that it is permitted to use, for this would increase the sampling error and
therefore lower the lower confidence bound and the disallowance. It would

simultaneously reduce the cost of QC.

3.6 The Impact in FY 1981 of Three Dts,_ owance Rules - Rules A, B, and C

For fiscal year 1981, disallowances were assessed against 27 states and

Puerto Rico (see Table 3-4). Waivers were graated in six of those cases. The

disallowances assessed were computed by Rule A, that is,

^ ^

D - CR- NO) A, if positive,

where R 0 and A vary from state to state. (For the states of Arizona and Texas, a

somewhat different and more complex computation was used, but the difference is

not relevant to this discussion.)
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Table 3-4 presents the assessed disallowances for Rule A. It also

presents, for comparison, what they would have been if computed by Rules B or C

(as described in Section 3.2). Rule B computes the disallowances as in Rule A, except

that if the 95 percent lower confidence bound is less than the target level, the
^

disallowance is waived. The lower confidence bound is computed as R-1.645s_
^

where R and s_ are computed by the current procedures (Equations (1) and (3) in

Chapter 1 except for states that use a stratified sampling estimator).

Rule C bases the disallowance on the lower bound alone, as has been

suggested by some. That is, the disallowance is computed as the excess of the lower

bound over the target rate, applied to the Federal payment:

^

D = (R- 1.645s_ - R0) A, if positive.

The totals for all 27 states are shown for each rule, as well as the totals

reduced by the amounts for the states for which the disallowance was waived. Thus,

after waivers, the total disallowance is 17 percent less for Rule B than for Rule A,

and is 58 percent less for Rule C than for Rule A. The larger aggregate loss for

Rule C occurs because sampling errors are large enough that the 95 percent lower

confidence bounds are considerably below the point estimates.

3.7 An Alternative Rule for Computing Disallowance - Rule D

We describe here another rule, designated Rule D, which combines

certain attractive characteristics of Rules A and C, but mitigates certain unattractive

characteristics from the points of view of the Federal government and of the state.

Disallowances as now computed by Rule A are subject to relatively

large sampling errors in many states, even with the larger annual samples in use in

the QC program in some states. These relatively large sampling errors can lead to

substantially overstated or understated annual disallowances in a given year.
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Table 3-4. Disallowances based on alternative rules, FY 1981

Disallowance

State Federal expenditure Rule A Rule B RUleC

AL 55,257,339 46,527 0 0
AZ 18,204,168 209,475* 293,014' 1,642*
CA 1,270,296,772 35,066,542 35,066,542 17,449,396
CO 47,081,958 1,898,203 1,898,203 1,104,828
CT 102,601,922 313,038 0 0
FL 121,842,954 3,467,04 1 3,467,041 2,408,721
HI 46,619,415 1,211,639 1,211,639 283,859
ID 14,481,785 691,187 691,187 243,773
IN 83,266,989 112,744 0 0
KS 47,251A92 1,902,865 1,902,865 1,174,489

MD 113,146,541 1,325,172' 0 0
ME 40,439,640 167,744 0 0
MN 134,920,297 571,253 0 0
NE 27,006,307 279,947 0 0
NJ 270,515,844 1,279,810' 0 0

NM 32,394,291 2,553,545 2,553,.545 1,800,804
NY 755,115,221 6,269,722 0 0
OH 333,931,792 3,930,043 0 0
OK 58,315,715 1,506,394 1,5(38,394 526,570
SC 56,158,502 1,003,946" 1,003,946' 456,559'
SD 11,866,284 12,804 0 0
TN 59,079,920 1,754,496 1,754,496 1,093,902
TX 87,575296 1,112,295 1,396,127 273,375
UT 34,319,580 299,747* 0 0
VT 26,751,544 225,194' 0 0

W A 118,607,888 4,161,714 4,161,714 1,750,039
WY 4,235,182 412,782 412,782 324,958

Totals 3,971,284,738 71,787,869 57,321,495 28,892,915
Total,

after waivers 67,444525 56,024,535 28,434,713

'Denotesthat the disallowancewu waived.

RuleA: Thecurrent rule, baaed on the point estimate.
Rule B: Based on exce_ of point estimate ov_ the target error rate, but only Lfthe 9S percent lower confidence

bound is above the tm_t error rate.
Rule C: Based on the _ of the 95 percent iowe_ confidence bound ov_ the target e_ot rate.

Note: A somewhat diffenmt computation of the disallowance wu done for the mare AZ and TX than would
result from a simple application of Rule A. The figumm for these states in the column headed 'Rule A"
reflect the disallowanceasauemed rather than the disallowance computed by Rule A. On the other
hand, the figures in the column headed 'Rule 13'are computedby RuleB, which for these statesgives
the samedisallowanceaaobtainedby RuleA.
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The relative magnitude of these sampling errors is illustrated by the

coefficients of variation shown in column 9 of Table 3-1. The limits of 95 percent

confidence intervals would vary from sample to sample, but, on the average, would

correspond to about two times the coefficients of variation shown in that table. For

example, the standard error of 1_ of .006 shown in column 2 is approximately

illustrative of the standard errors in the states with the larger QC samples (a state

sample of about 2400 and a Federal subsample of about 360). Column 9 shows that

for such a large state, with an error rate of 5 percent (i.e., R - R0 = .02, with a target

level of R0 = .030, and a sampling error of .006) the coefficient of variation of the

estimated disallowance is .30. Consequently, for such a state, the bounds of the

95 percent nominal confidence intervals would average between 60 percent abov e

and 60 percent below the correct disallowance. About 5 percent of the time, the

value being estimated will be either below or above the confidence interval. For a

smaller state with a sampling error of .012, this range would be approximately

doubled. These are relatively wide ranges due to sampling error. As seen from the

table, they would be much larger for states with the same sampling errors, but with

overpayment error rates doser to the 3 percent target, and of course would be

considerably smaller for states with overpayment error rates considerably above the

illustrated rate of 5 percent.

From the point of view of the states, the problem of the large

overestimates of disallowances that will occur in some years would be avoided by

use of the lower confidence bound (i.e., Rule C) instead of the point estimate.

However, as illustrated in column 12 of Table 3-1, and also in Table 3-4, with present

annual sample sizes this would result in large losses to the Federal government by

consistently and substantially understating the disallowances that would be assessed

if the true payment error rates were known.

Another problem with Rule A is that disallowances are assessed only

when the estimated error rate is above the target. Thus, because of sampling

variation, a state may be assessed a disallowance when in fact the payment error rate

is equal to or below the target rate. Moreover, since negative disallowances are not

permi_ed by Rule A, such disallowances would not be compensated for over time.

Consequently, a state that is at or near the target rate, above or below, would on the

average be improperly assessed disallowances. A state whose error rate is
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moderately above the target rate would, on the average, be assessed a considerably

larger disallowance than it would be if the true error rate were known.

To eliminate or substantially reduce these problems, we have

developed and have simulated the application of Rule D for computing

disallowances. This rule accumulates the full disallowances across years, computed

by Rule A except that negative total disallowances are allowed to accumulate on the
books. It assesses an an;:mal cash disallowance on the basis of a lower confidence

bound of the accumulated total dj--allowance. The final accumulated settlement is

based on the accumulated disallowance based on the point estimates and is made

when the relative sampling error (the coefficient of variation) of the accumulated

total disallowance is acceptably small, say less than 10 to 15 percent. What is

acceptably small is a policy decision.

Convenient computation formulas are given in Appendix H. Over a

few years, the application of Rule D greatly increases the effective sample size and

greatly reduces the large annual fluctuations of disallowances due to sampling
errors. Prior to a final settlement date, at which time the accumulated disallowance

is based on the annual point estimates and a much larger sample, the Federal

government recovers somewhat less in cash but avoids considerably overassessing

some states each year.

We note that under this procedure, the lower confidence bound of the

accumulated disallowance estimate for a given year, say year i, may be less than the

lower confidence bound of the accumulated disallowance in the prior year, i-1. In

this event, the Federal government could pay the difference to the state. The total
accumulated disallowance would then remain the accumulation of the annual

disallowances. Alternatively, credit could be given against future disallowances.

The choice is a policy decision.

We note, also, that when the excess of the true error rate over the

tolerance becomes small, say, less than one percent, the coefficient of variation of

the accumulated disallowance remains large (above 10 or 15 percent) for many years,

and a settlement would be long delayed. This is as it should be, because the amount

of settlement in such an instance cannot be estimated acceptably from a sample of
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any reasonable size, and therefore even after the sample is accumulated over a

number of years. We also note, as will be seen later, that under Rule D, for states for

which the sample is large and the excess of the overpayment error rate over the

tolerance is also large, a cash settlement may be reached within two or three years or

even annually.

While the application of Rule D will result in considerable reduction

initially in the cash withholding by the Federal government, a temporary cash loss

may be acceptable for a few years in order to avoid substantially overassessing some

states in individual years. Interest charges (or payments) might be introduced for

the amounts carried on the books, in which event the disadvantage to the Federal

government would appear to be reduced or removed. On a relative basis, the

accumulated disallowance based on the lower confidence bound would approach,

over a number of years, the full disallowance based on the point estimate.

Table 3-5 illustrates the expected (average) consequences of applying

Rule D to a state with an annual sampling error of .006, and also of .012, for a fixed

annual Federal payment of $100 million. It shows, for varying levels of the true

error rate, the expected accumulated disallowances over a period of 1 to 16 years,

based on Rule D, compared with those for Rules A and C. Appendix H describes the

application of Rule D more fully, and it contains 16 illustrative examples of

disallowances computed by Rules D and A, for successive years. The tables display

random variations as they may occur in practice, for various values of the true

overpayment error rate, and of the standard error of the estimates.

It is seen from Table 3-5, and from Appendix H, that Rule D provides a

compromise approach between Rule C and Rule A. In the first year, with Rule D,

the cash disallowances are the same as for Rule C, although the balance of the full

Rule A disallowance is recorded as an obligation available for offset in subsequent

years.

While the accumulations are carried through 16 years in Table 3-5, they

could be cut off after the estimated coefficient of variation becomes acceptably small

and the accumulation process would begin again. The accumulated settlement
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Table 3-5. Expected accumulated disallowance compa_ '_for Rules A, C, and D

Accmnulated memmes

Ex, _ disallowance

Rule D
Federal Standard Cot :-at

payme_nt error dis- CV
A

R- R0 Year ($1 mil.) of R allowance Rule A Rule C Cash Book Total of total

.05 1 100 .0060 5.0 5.0 4.0 4.0 1.0 5.0 .120
2 200 .0042 10.0 10.0 8.0 8.6 1.4 10.0 .085
- 400 .0030 20.0 20.0 16.1 18.0 2.0 20.0 .060

800 .0021 40.0 40.0 32.1 37.2 2.8 40.0 .042
12 1,200 .0017 60.0 60.0 48.2 56.6 3.4 60.0 .035
16 1,600 .0015 80.0 80.0 64.2 76.1 3.9 80.0 .030

.05 1 100 .0120 5.0 5.0 3.0 3.0 2.0 5.0 .240
2 200 .0085 10.0 10.0 6.1 7.2 2.8 10.0 .170
4 400 .0060 20.0 20.0 12.1 16.1 3.9 20.0 .120

800 .0042 40.0 40.0 24.2 34.4 5.6 40.0 .085
12 1,200 .0035 60.0 60.0 36.3 53.2 6.8 60.0 .069
16 1,600 .0030 80.0 80.0 48.4 72.1 7.9 80.0 .060

.03 1 100 .0060 3.0 3.0 2.0 2.0 1.0 3.0 .200
2 200 .0042 6.0 6.0 4.0 4.6 1.4 6.0 .141
4 400 .0030 12.0 12.0 8.1 10.0 2.0 12.0 .100
8 800 .0021 24.0 24.0 16.1 21.2 2.8 24.0 .071

12 1,200 .0017 36.0 36.0 24.2 32.6 3.4 36.0 .058
16 1.600 .0015 48.0 48.0 32.2 44.1 3.9 48.0 .050

.03 1 100 .0120 3.0 3.0 1.1 1.1 1.9 3.0 .397
2 200 .0085 6.0 6.0 2.2 3.2 2.8 6.0 .283
4 400 ,0060 12.0 12.0 4.5 8.1 3.9 12.0 .200
8 800 .0042 24.0 24.0 9.0 18.4 5.6 24.0 .14l

12 1,200 .0035 36.0 36.0 13.5 29.2 6.8 36.0 .115
16 1,600 .0030 48.0 48.0 18.0 40.1 7.9 48.0 .100

.01 I 100 .0060 1.0 1.0 0.2 0.2 0.8 1.0 .568
2 200 .0042 2.0 2.0 0.4 0.7 1.3 2.0 .420
4 400 .0030 4.0 4.0 0.9 2.0 2.0 4.0 .300
8 800 .0021 8.0 8.1 1.7 5.2 2.8 8.0 .212

12 1,200 .0017 12.0 12.1 2.6 8.6 3.4 12.0 .173
16 1,600 .0015 16.0 16.2 3.5 12.1 3.9 16.0 .150

.01 I 100 .0120 1.0 1.1 0.1 0.1 1.0 1.1 .878
2 200 .0085 2.0 2.3 0.2 0.3 2.0 2.3 .652
4 400 .0060 4.0 4.6 0.4 0.9 3.3 4.2 .536
8 800 .0042 8.0 9.1 0.9 2.8 5.2 8.0 .420

12 1,200 .0035 12.0 13.7 1.3 5.3 6.7 12.0 .346
16 1,600 .0030 16.0 18.2 1.7 8.1 7.9 16.0 .300
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would then be based on the accumulated results of the annual point estimates, and

on a sample several times larger than the sample for a single year. The cut-off time

would be extended more or less indefinitely for states with overpayment error rates

near the target. Various modifications of Rule D could also be considered.

An important consequence of applying Rule D is that, prior to final
settlement, the accumulated cash disallowance and thus the cash disallowance

assessed in each individual year is determined from a confidence interval computed

from the much larger accumulated QC sample. At the time of final assessment of

the full disallowances the samples are much larger than the annual samples. Such

an approach substantially reduces the wide variability in annual disallowances that

occurs due to sampling variability under present procedures, especially for states

with error rates dose to the target or with small samples. This wide variability is

illustrated, in detail, in the column headed 'AFE)C" of Tables H-1 through H-16 in

Appendix H, giving the annual cash disallowance that would be assessed under the

present rule. (Note that negative values in this column would, under present rules,

result in a zero disallowance.)

Another consequence of Rule D is that it allows only a very low

probability of assessing any cash disallowances against a state that is, in fact, meeting

or near (above or below) the target payment error rate but which would often be

assessed disallowances under the present procedure, due to sampling variability.

We note that in the application of Rule D, there may be an unusually

large Federal withholding in the year of a final settlement. If desired, this

adjustment to the point estimate could be spread over two or three years to make a
smoother series of disallowances.

A question that arises is how to treat waivers in the application of

Rule D. Waivers occur when, for various reasons, all or a part of the disallowance

that would otherwise be assessed against a state for a particular year is waived. In

Table 3-4 above, full waivers for 1981 were granted for six states. No specific

question arose because all waivers were full waivers. With Rule D, as with the

other procedures, the disallowance after a full waiver would be zero. The added

accumulation for that year would then be zero. For a partial waiver, the nonwaived
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part of the disallowance would be accumulated. The computation of the estimated

stat !ard error would reflect appropriately whatever waiver was allowed.

In Table 3-9, we illustrate computati °n of disallowances for each state

by Rule D for the four fiscal years 1981 through 1984, the years for which

information is currently available. Since waiver_ are available only for 1981, we

have made the computations without waivers.

We note th_-._ because of some exceedingly high target rates for some

states for 1981 (and to some extent for 1982, also) the results presented in Table 3-9

provide a quite distorted picture from the application of Rule D. For example,

minois has a target ra_ ior 1981 of 12.7 percent. Its observed rate of 8.3 percent is still

a high error rate. If Rule D were to be applied to Illinois beginning in 1981, the state

would receive an initial book credit of 17.5 million dollars, to be credited against

future disallowances. It seems highly und- 4rable to initiate Rule D for such a state,

and more appropriate to initiate the rule tora state with a negative disallowance

only if the target for the state is below a specified level, for example, below 8 percent.

Of course, the setting of this s_r,ecific target level is a policy determination. If the

specified target level for 1981 were set at q percent, then, of the 17 states with 1981

target rates over 8 percent, only one (Maryland) with a 1981 target rate of more than

8 percent has a 1981 observed overpayment rate above its target rate.

In Table 3-6, we provide a summary of the aggregate results from the

application of Rule D for two levels of the allowable 1981 target rate (8 percent and

10 p, :eno for the initiation of Rule D, assuming that the application of Rule D

beg:ns in 1981. Excluded from these respective summaries are the 16 states with

1981 target levels above 8 percent for which the computed disallowances are

negative, and the 6 states with 1981 target levels above 10 percent for which the

computed disallowances are negative (see Table 3-9).
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Table 3-6. Summary of aggregate disallowances from application of Rule D to elisible states,* 1981-
1984 (thousands of dollars)

A.,mu_i Accumulated
(Rule A) (Rule D)

Annu_ Cumulated Cash Book Total
(000) (000) (000) (000) (000)

Allowable target rate in 1981
is 8 percent or less

Total 1981 70,837 70,837 28,901 34,542 63,443
1982 88,137 158,974 81,422 63,576 144,999
1983 119,836 278,810 179,908 79,407 259,315
1984 158,7S0 437,560 313,796 102,723 416,518

Allowable target rate in 1981
is 10percent or _Le__t

Total 1981 70,837 70,837 28,901 18,941 47,842
1982 88,518 159,355 81,422 41,268 122,691
1983 124,_o.5 284,110 179,908 60,421 240,329
1984 173,591 457,701 320,846 91,092 411,938

'Flisjble states are those that have 1981 tar1_ overpa_t rates that are less than the allowable target, or that

exceed the allowable _ but have a positive disaJlowan_ for 1981.
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Table 3-7 provides a summary of the additional disallowances that
would be assessed for those states that would reach a full settlement some time

during the four-year period for which data are available if an estimated 15 percent

coefficient of variation were the criterion for settlement on the basis of the point

estimate. Table 3-8 gives similar results if the criterion for a full settlement were an

estimated coefficient of variation of 10 percent.

The District of Columbia is not included in the summaries provided in

Tables 3-7 and 3-8 because its target rate was 16.3 percent in 1983 with a negative

computed disallowance. For D.C., Rule D would have been initiated in 1982 because

the disallowance was then positive, and presumably a complete settlement would

have been made for D.C. for each of the years 1982, 1983, and 1984 since its cv in each

of these years was less than 10 percent. The total settlement for the three years

would have been $9,743 thousand.

Table 3-7. States reaching full settlement by or be/ore 1984, if Rule D were initiated in 1981, and if a
15 percent estimated cv were adopted u the criterion

Full settlement at end of fiscal yea_ Added settlement

Percent of Federal payment
Amount

State Year c'v ($000) This year Cumulative

Arizona 1983 .14 93,5 2.4 1.2
Colorado 1984 .15 1,207 2.3 0.6
Florida 1984 .15 2,364 1.6 0.5
Michigan 1983 .15 9,961 1.8 0.6

(Mich.) 1984 .12 1,658 0_3 0.3
New Mexico 1982 .13 935 3.0 1_5

New York 1983 .15 18,177 2.1 0.7
S. Carolina 1983 .14 1,107 2.1 0.7

(S.C.) 1984 .11 100 0.2 0.2

Wyoming 1981 .13 88 2.1 2.1

Total 36,532
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Table 3-8. States reaching full settlement by or before 1984 if Rule D were initiated in 1981,and if a
10percent estimated cv were adopted as the criterion

Full settlement at end of fiscal ]rear Added settlement

Percent of Federal payment
Amount

State Year cv (SO(X)) This year Cumulative

Michigan 1984 .10 11,619 1.9 0.5
$. Carolina I984 .10 1,207 2.2 0.6

Total 12,826

In summary, assuming the 8 percent 1981 target level, the total cash
disallowance would be:

A mo un t Percent
($000) of total

Accumulated total cash, 1981 through 1984,
from Table 3-6 $ 313,796 73.6

Add cash from 10 complete settlements (Table 3-7) 36,,532 8.6

Add cash from complete settlements for D.C.
(not included in Table 3-6) 9,743 2.3

Total cash disallowances assessed over the

four years 360,071 84.5

Total accumulated on the book at the end of the

four years (102,723 from Table 3-6, less the
additional 36,532 from complete cash settlements) 66,191 15.5

Total accumulated disallowances in four years,
cash plus book 426,262 100.0

Due to possible minor differences from rounding, and especially

because waivers are not available and used in the results presented, and perhaps

because of other factors, Tables 3-6 through 3-9 may differ somewhat from the final

3-29



_t_ 3. Cas_derat/omsin CIw/cfo_LowerCom_hmcfBound VenmsPo/mtEst/ma_ /mDem./mia I D/sa/i_

Table 3-7 provides a summary of the additional disallowances that
would be assessed for those _tates that would reach a full settlement some time

during the four-year period for whica data are available if an estimated 15 percent

coefficient of variation were the criterion for set_ ement on the basis of the point

estimate. Table 3-8 gives similar results if the criterion for a full settlement were an

estimated coefficient of variation of 10 percent.

The District of Columbia is not included in the summaries provided in

Tables 3-7 and 3-8 because its target rate was 16.3 percent in 1983 with a negative

computed disallowance. For D.C., Rule D would have been initiated in 1982 because

the disallowance was then positive, and presumably a complete settlement would

have been made for D.C. for each of the years 1982, 1983, and 1984 since its cv in each

of these years was less than 10 percent. The total settlement for the three years
would have been $9,743 thousand.

Table 3-7. States reaching full settlement by or before 1984, if Rule D were initiated in 1981,and it a
15 percent estimated cv were adopted as the criterion

Full settlement at end of fiscal _m _ Added settlement

Percent of Federal payment
Amount

State Year cv ($000) This year Cumulative

Arizona 1983 .14 93,5 2.4 1.2
Colorado 1984 .15 1,207 2.3 0.6
Florida 1984 .15 2,364 1.6 0_5
Michigan 1983 .15 9,961 1.8 0.6

(Mich.) 1984 .12 1,658 0.3 0.3
NewMexico 1982 .13 935 3.0 1S
New York 1983 .15 18,177 2.1 0.7
S. Carolina 1983 .14 1,107 2.1 0.7

(S.C.) 1984 .11 100 0.2 0.2
Wyoming 1981 .13 88 2.1 2.1

Total 36,532
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Table 3-9. Application of Rule D to states

i i I ..L O ISTATE year FKI _ Tir0et R-hal · ®. AJ-_ud Cug'nuiJed A,nnuel VaJum i

(11 poldtlvl) C.41h BoQk F(KI Contrlb FI-hal a,iQma(D } Cash Book Total cv

AK 1961 17,183,771 .221241 016169 002625 -675,412 0 0 -675,412 17,163,771 0.1819 450,549 0 -675,412 -675,412 0.67

1662 18,140,020 .130421 0 12066 0 01671 -157,543 0 0 -157,543 33,303,701 0.1523 542,389 0 -832,054 -832,054 0.65

1983 15,010,0111 .040000 0 15496 0 02126 1,728,655 1,726,855 0 1,726,655 46,323,407 0.1531 829,404 0 893,701 693,701 0.70

1984 18,m70,392 .030000 0.06027 0.01388 714,516 2,441,171 466,522 225,904 66,893,708 0.1295 680,668 488,522 1,119,695 1,606,217 0.42

AL 1961 55,257,338 .070390 0.07724 0.00818 46,471 40.471 0 40,471 55,257,330 0.0772 450,900 0 40,471 46,471 :.1.O0

1982 51,180.010 .050200 0.05293 000082 -280,771 48,471 0 -289,771 106,447,348 0.01155 570,257 0 -223.300 -223,300 >1.00

1993 52,044,121 .040000 0.03150 0.00475 .430,211 46,471 0 .432,211 158,491,470 0.0544 821,535 0 .881,511 .661,511 0.94

1984 52,034.574 .030000 0.043453 0.00141 717,409 703.881 0 717,409 211,126,044 0.0517 703,053 0 55.908 55,698 :,.1.00

AR 1981 37,200,158 .074285 0045780 0.00647 -237,1108 0 0 .237,eee 37,208,159 0.0870 240,737 0 .237,eee -237,888 >1.00

1982 24,510,4m .057134 0.07027 0.00800 322,080 322,866 0 322,068 61,704,850 0.08118 310,873 0 05,283 65,283 >1.00

1963 24,898,313 .040000 0.048511 0.00721 212.860 836,824 0 212,856 86,660,971 0.0430 356,067 0 200,1311 206,130 >1.00

1984 20,755,157.0SQO00 0.031102 0.00603 230,610 70(I.440 0 230,616 115,418,121, 0.0560 410,402 0 520,755 528,755 0.78

K.Z 1981 11,204,1411.04H!481 0.08278 000873 203,088 203,069 1,SIH! :001,373 18,204,188 0.0028 177,127 1,898 201,373 293,069 0.60

1962 21,338,453 .053341 0.11603 0.01054 1,337,581 1,030,830 1.158,028 170,533 30,540,521 0.1007 286,265 1,150,724 470,006 1,630,630 0.10

1963 30,230,001 .040000 0 10030 001251 2,355,824 3.800,254 1,901.808 4(13,725 78.771,530 0.1005 560,155 3,061,822 034,831 3,906.254 0.14

1964 42.761,101 .030000 0.09658 0.01174 2,140,02tl 8.042,210 2,533,417 312,530 121.530,331 0.0991 750,158 5,505,110 1,247,170 6,842,260 0.11

CA 1961 1,270,2911.,772 .040000 OO6761 0.00843 35,072,184 35,072,094 17,457,244 17,t115,650 1,270,20(I,772 0.0470 10,708,1102 17,457,244 17,1115,1150 35,072,094 0.31

1982 1.3611,980,1122 .040000 0.05001 000700 27,353,46(I 112,4211,380 10,651,107 7,402,280 2,037,20(I,504 0.0837 15,200,451 37,400,441 26,017,918 82,425,300 0.24

1683 1,493,114,115(I ,040000 0.040041 0.00560 12,034,009 74,4111,250 8,502,920 3,531,089 4,130,461,4110 0.0580 17,355,507 45,011,361 20,5411,BO11 74,461,289 0.23

_.) 1084 1.51111,3411,351 .030000 0.05177 0.007945 34,534,710 1CHI,0941,028 27,777,602 6,7541,0mi 5,7111,787,1109 0.0563 21,483,104 73,$011,223 35,306,007 108,999,020 0.20

CO 1081 47,081 ,gS11 .042135 0.08245 0.01024 1,181,109 1,0110,100 1,105,023 7113,086 47,001,059 0.01125 482.119 1.105,023 793,0811 1,898,109 0.25

1982 45,213,3111 .041087 0.0(1003 0.00607 1,130,409 3,021,616 975,572 154,837 02,385,327 0.0744 5711,245 2,080,595 047,023 3,020.5111 O.19

1083 51,711,124J .040000 0.00223 0O0673 1,150,7111 4,170,278 080,0115 1011,775 144,131,4110 0.0700 1173,373 3,071,600 1,107,11911 4,179,270 0.111

1984 53,1120,8110 .030000 0.04911 0.00544 147.727 0,047,005 760,230 00,408 197,701,030 0.0438 733,857 3,830,811 1,207,1115 5,047,005 0,15

CT 1081 102.1101,O22 .070050 0.07400 0.00401 312,030 312,836 0 312,936 102.(101,022 0.0740 411,434 0 312,11311 312,8311 :,1.00

1982 100,097,773 .085475 0.041360 0.00002 253,1110 1,1110,855 0 1153,010 207,8110,11115 0.01107 1,033,415 0 1,11111,055 1,168,855 0.00

1083 108,701,080 .040000 0.04401 0.00422 438,1111 1,1102,787 0 435,811 315,405,775 0.0002 1,130,859 0 1,1102,707 1,602,787 0.71

1984 111,1131,4116 .0,q10000 0.03393 0.00455 438,822 2,042,800 1,090 437,024 420,346,240 0.0534 1,240,541 1,000 2,040,1180 2,042,808 0.81

DC 1981 44.3112.1t111 .11121010 0.13564 0.006411 -I.212,0711 0 0 -1,212,1176 44,362.601 0.13511 410,(171 0 -1.212.1170 -1,212.075 0.35

1082 45,215,1177 .t01400 0.17123 0.01202 3,013,002 3,013,862 857,076 2,358,206 07,570,511t 0.1632 895,034 657,670 1,143,330 1,801,0011 0.39

1063 40.030.540 .040000 0.13150 0,0131(! 3,11113,344 11,1177,228 3,371,000 291.384 127,815.217 0.1464 872,167 4.020,638 1.434,715 5,484,350 0.1(I

1084 37,300,III7 .030000 0.11219 0.01038 3,0115,780 0,742,086 2.930,739 136,021 164,0111.104 0.1387 954,246 6,960,375 1,51111,735 8,530,110 0.11

DE 1961 111,034,414 .120,185 0.11270 0.01705 -124,027 0 0 -124,027 16,034,4911 0.1128 273,366 Q -124,027 -124,027 01.00

1982 14,1511,437 .000248 0.11875 0.02287 545,128 545,128 0 S45,120 30,182,933 0.1156 423,760 0 421,101 421,101 >1.D0

1983 13,1117,7110 .040000 0.09371 0.01508 731.410 1.275,536 369,050 302.351 43,810,1193 0.1050 478,263 360.050 783,462 1,152,511 0.41

1964 13,705,238 .030000 0.07791 0.01637 880,451 1,930,080 576,954 03,406 57,595,931 0.1014 S27,020 946,013 1168,8411 1,812,082 0.20

FL 1981 121,042.054 .050708 0.07925 0.00528 3.488.8711 3.4811,675 2,408.397 1,0511,279 121,842,954 0.0703 643,331 2,408,387 1,05(I,278 3,466,117(I 019

1962 110,1132,382 .045300 0.06030 0.00543 1,782,842 5,240,318 1,336,074 445,868 241,475,338 O.0990 914,254 3,745,371 1.S03,947 5,249,318 0.17
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determinations if Rule D were to be applied. Nevertheless, they provide satisfactory

illustrations of the kinds of results that would occur from applying Rule D.

3.8 Summary

A primary purpose of the quality control program in AFDC is to

measure the error rates and to identify likely causes of high rams, in order to guide

corrective action. Another major purpose is the assessment of disallowances, based

on QC estimates of overpayment error rates, in order to recover Federal funds that

have been paid because of overpayment errors above target levels, as prescribed by

law. The assessment of disallowances may also be an important factor in

influencing states to improve their administration and procedures, and thus to

reduce their error rates. The disallowances are currently computed annually using

point estimates. A number of states have presented arguments for the use of lower

confidence bounds in the assessment of disallowances because of the impact of

sampling errors on the assessments. The statistical consequences of using the lower

confidence bound versus the point estimate have been examined, and some

alternative procedures for computing disallowance have been described. They make

use of the point es_mate, the lower confidence bound, or both, and one procedure

accumulates the computations of disallowances over time in order to reduce the

effect on the annual disallowance of large sampling errors. The statistical

implications of the four alternatives have been examined in detail and illustrated

with examples.
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Table 3-9. Application of Rule D to states (continued)

i ,,,,,,,,., ] ...o..,..,,..I RULED tSTATEYes;FedC,ofib'lb Tllrgel R-hit l.dl. ,,,,,,u. C,,,.,,'.,.d V.*,. i
(IfpOllllvl) _ Book FociC_)mnb R-hll s_Omi(D) Cash BQok Tolal cv

MA 1981 266.857.330 .110126 009260 0.00839 -7.073.353 0 0 -7.073.353 208.857.338 0.0926 2.237,255 0 -7,073,353 -7.073.353 0.32

1982 250.848,896 .070863 0.07382 000813 -1.490,783 0 0 -1,400,783 517.504.223 0.0834 2,714,736 0 -8,504,130 -8.564.136 0.32

1983 223.000.800 .040000 0.11434 0.01028 16.577.072 16,577.872 2.166.746 14,408,124 740.504.018 0.0927 3.553.184 2.168.748 6,844,088 6.013.736 0.44

1984 203,307,441 .030000 0.07767 0.00741 9,074,100 20,202,061 9.170.239 603,850 043,872.380 o.olos 3.859,537 11.338.087 0,340,036 1 7.697.025 0.22

MD 1081 113.146,041 .103_18 0.11553 0.00741 1.325,612 1,326,612 0 1,325,012 113.148.541 0.1165 936.416 0 1,325,512 1.325.512 0.83

1882 108.821,840 .071007 0.00218 0.00778 1.004,2MJ 2,418,011 480.558 813,741 218.608,381 0.0884 1,178.877 480.SS8 1,838,253 2.418.811 0.49

1083 112,258,780 .040000 0.05270 0.00424 1.425.001 3.848.472 !.273.565 102.098 331.925.149 0.0838 1.271.337 1.754.123 2,091,349 3.845.472 0.33

1984 114.551,324 .030000 0.054486 O.OOIK)O 3,052,783 9,998,204 2.766.739 280,084 446,476,473 0.0787 1.446,230 4.520.861 2,377,403 6.896.264 0.21

ME 1981 40,420,040 .074661 0.07881 0.00030 187,743 107,743 0 107,743 40,420.640 0.0788 375,806 0 167,743 167,743 >1.00

1082 41,341,o01 .067330 004005 000601 -877,170 107.743 0 -877,170 81,770,031 0.0897 448,407 0 -500,426 -500.428 0.88

1883 44,703,143 .040000 0048.40 000770 248,302 413,048 0 248,302 128.334,074 0.0540 s07,211 0 -284,126 -284,128 :,1.00

1904 48,037,178 .030000 0.04144 O.OOOSQ 588.o07 071,742 0 550,007 178,371,248 0.0810 732,700 0 204,672 294,572 :,.I.00

WI 1081 548.835,467 .074813 0.07264 000756 -1.014,070 0 0 -1,014,071 S48.835,087 0.0728 4.140,740 0 -1,014,076 -1.014.078 >1.00

1962 532,150,882 .007343 0.08238 0.00892 13.307,600 13,307,000 3.722.826 0,584,073 1,081.788,638 0.0778 5,210,013 3.722.826 0,570,605 12.203.422 0.42
1983 S86,088,3F40 .040000 000144 0.00846 29.118.584 42.427,084 27.729.659 1.31fi1,0_S 1.847.074.084 0.0823 4.055,020 31.452.485 0.080,521 41.413.000 0.15

1884 818,276,103 .030000 0.08011 0.00801 30.831,4_S 73,209,640 28,173,352 1,8U,104 2,243,100,407 0.0117 7,082,094 80.825.030 11,010,020 72.244,482 0.10

MN 1081 134.020,207 .040000 0.04423 0.00705 570,713 870,713 0 570,713 134,920.207 0.0442 1.072,618 0 570,713 570.713 )1.00
1082 127,748,141 .040000 0.03028 0.05709 -1.241,602 670,713 0 -1,241,802 202.080,430 0.0374 1,403,884 0 -87o.00o -07o.90o 91 r_

I_ 1983 140,178,501 .040000 002867 0.00388 -2.008,715 670,713 0 -2,002,718 402,941,030 0.0333 1,608,044 0 -2,670,605 -2.079,685 0.58.,,)
,6,') 1884 181,030.11117 .030000 0.02014 0.00314 -1,400,16_1 670,713 0 -1,480,103 503,972,028 0.0207 1,578,946 0 -4,181,187 -4,168,887 0.38

MO 1081 118,840,3(16 .0GIS 0.07065 0.00874 -1,140,799 0 0 -1,140,788 118.940.385 0.0709 727,504 0 -1,146,700 -1.148,760 0.80

1882 108,1137,011 .0d10332 0.04772 0.00S04J -1,330,070 0 0 -1,3341,078 222,777,308 0.0600 1,000,361 0 -2,402,004 -2,482,860 0.41

1083 113,032,030 .040000 0.03431 0.00382 -643.187 0 0 -043,157 335.810.235 0.0513 1.007.838 0 -2,120,023 -3.128.023 0.35

1084 120,007,560 .030000 0.03700 0.00824 850,054 850,854 0 850,1164 456,817,700 0.0475 1,265,193 0 -2,275,180 -2,275,160 O.S4J

M6 1981 48,171,200 .080413 0.06800 0.00800 -1.027,180 0 0 -1,027,155 48,171,209 0.0001 331,900 0 -1,027,155 -1.027.155 0.32

1082 42,745,100 .04L_207 0.04738 0.00737 -762,010 0 0 -70o,019 00,918,403 0.0689 457,805 0 -1,780,173 -1.780,173 0.26

1083 43,781,004 .040000 0.03401 0.00744 -222,040 0 0 -222,840 134,608,207 0.0511 561,700 0 -2,012,023 -2.012.023 0.28

1084 44,072,28O .0_0000 0.02027 0.00317 -434,831 0 0 -434,001 170,370,450 0.0434 579.276 0 -2,440,084 -2,448,064 0.24

MT 1881 12,010,470 .078326 0.04023 0.01078 -340,724 0 0 -340,724 12,010,670 0.0402 120,572 0 -349,724 -348.724 0.37

1882 12,303,1_S .050113 0.02547 0.00013 -410,800 0 0 -418,609 24,383,336 0.0372 171.845 0 -708,203 -766.203 0.22

1013 15.484,767 .040000 0.02454 0.00014 -230,230 0 0 -230,239 30,879,002 0.0323 222,863 0 -1,005,532 -1.005,532 0.22

1984 17,400,210 .030000 0.04010 0.01515 883,007 613,007 0 03,007 67,348.308 0.0435 348,1_7 0 -322,028 -322.828 91.00

14:; 1801 109,607,740 .0M082 0.05420 0.00410 -1,204,107 0 0 -1,204,107 100,807,740 0.0542 445,453 0 -1,204,107 -1,264.107 0.36

1082 00.970,814 .083031 0.03281 0.00337 -1.86o.847 0 0 -1,900,847 203.338.584 0.0440 552.468 0 -3,224,053 -3.224.953 0.17

1083 103,724,770 .040000 0.02884 0r00370 '1,365,010 0 0 '1,308,018 307,203,332 0.0382 678,058 0 '4,580,071 '4,580.971 0.15

1084 102,884,223 .030000 0.03485 0.00437 480,473 499,473 0 400,473 410.247.555 0.0374 813,818 0 -4.000.490 -4.090.408 0.20

ND 1981 9,854,300 .040050 0.03089 000884 -69.774 0 0 -89,774 9.854.308 0.0309 87,113 0 -89,774 -80,774 0.97
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Table 3-9, Application of Rule D to states (continued)

' I Ampul Sklla_t_ ] R_,eA_* [ RULE D J_TAII_ Year Fid C.,4_lWm TlltO(ll R.h41l I a A.r_uld C4mlullled Anntsa_Vile.Jcl I

(If positive) _ Book Fid Gae'ltM4b R-hal &lgma(O} _ Book Total cv

I 1983 138.782,474 .040000 0 04523 0 00353 725,728 S,975,048 523,472 202.255 380,237,810 0.04509 1,037,205 4.266,843 1,706,203 5,975.046 017

I 1984 144,902,803 .030000 0 05354 0 00888 3+412.421 9,387,467 2.754,905 657.510 525,200,473 0.0500 1,438.911 7,023,748 2.363.719 9,387467 0.15

{GA 1061 105,505,310 .005295 0.00517 0.00497 -12,133 0 0 -12.133 105.505,310 0.0052 524,301 0 -12.133 -12,133 >1.00

I 1982 113.975.476 .05[NI42 0.05143 0.00749 -138.130 0 0 -138.13(1 219.490,70(1 0.0500 9R_ 945 0 -150.271 -150,271 >1.00

I 1983 125,472,480 .040OQO 005725 0.00480 2,164,400 2.104,4OO 86,732 2,077,090 344,053,254 0.0577 1,171.870 86,732 1,927,387 2,014,129 0.58

I 1004 133,051,211 .0_0000 0.08177 0.00814 4,252,075 0.417,076 3,825,760 428.815 478,611,405 0.0600 1,431,193 3,912,492 2.354,312 8,268,804 0.23

I HI 1081 46,010.415 .0741918 0.10090 0.01210 1,211,605 1,211,835 293,740 927,130 48,818,415 0.1010 564,095 283,740 027.0341 1,211,665 0.47

I 1982 43,037,52tl .00741_ 0.01217 0.01410 1,084,158 !,285,(144 620,530 454.822 00,558,044 0.0019 840,481 913,265 1,382.5511 2,295,844 0.37

I 1883 43.207.010 .040000 0.0(1901 0.01250 1,253,457 3,545,281 989,503 2(13.835 133,7(14,024 0.0845 1,000,908 1,902,788 1,640,483 3,549.281 0.20

I 1984 41,400.140 .0_4&"J_-_-'_0041053 0.01231 1.512,420 5,011.701 1.311,255 201.105 175,1841,164 0.0102 1,123,198 3.214,044 1,547.05(1 5,061,701 0.22

! IA 1981 113,978,981 .0415241 0.04200 0.00440 -1,901.301 0 0 -1,001.331 63,970,881 0.042(1 380,511 0 -1,801,383 -1.901,380 0.18

I 1882 70,288,4211 .052020 0.04402 0.0OS31 -541,052 0 0 -541.052 154.24(!,310 0.0457 S25,122 0 -2,442,440 -2,442,440 0.21

I 1983 80,125,071 .0404)00 0.03430 0.00680 -458,713 0 0 -48(1.713 234,371,30(1 0.0408 (185,53(1 0 -2,009.153 -2,800,153 0.24

I 1984 87,001,137 .0_00OO 0.03(I,(12 0.00472 581,240 $91,249 0 501,240 322,173,32,3 0.0304 t01,066 0 -2.317,004 -2,317,004 0.35

iD 1961 14.481,715 .0421_ 0090(55 0.01878 891,143 1101.143 243,75(1 447,317 14,401,705 0.0807 271,841(1 243,75(1 447,317 691,143 0.38

1082 13.153,0711 .041482 0.05430 001187 186.1159 060,002 102.522 (10.337 27.834.6(14 0.0733 312.2114 346.2711 513.724 860,002 0.38

1983 14,024,312 .040000 0.02077 000975 -143,4(18 8(10,002 -190,554 47.015 41,859,17(1 0.0517 340,017 155,724 580.501, 718,534 0.4(1

1984 13,840,7711 .030000 0.09405 0.01924 600,543 1,769,54(I 748.588 150.8(15 55,505,955 0.0477 432,702 804,282 711.784 1,818.077 027

IL 1981 390,814.812 .127211 0.06254 000703 -17.491,161 0 0 -17,491.8(10 '180.014.(1(12 0.0125 2, Z48,1,_C 0 -17,401,188 -17,4,91,868 0.10

1082 401.104,833 .01_430 0.00243 0.00807 0 0 0 0 792.010,515 0.0125 4,550,322 0 -17,401.101 *17.491,888 0,20

19113 411.830.534 .040000 0.04181(1 0.00782 11,507,140 11,597.148 0 11,507,140 1,203,850.04(I 0.07711 5,582,03(1 0 -5,814,71'1, -5,894,721 0.95

1084 421.663,1'01 .030000 0.041497 0.004_7 14,752.1'07 28_'_(;._66 0 14,752,207 1,(125,703,1'51 0.0743 1.251,110 0 11,1157.411 (1,857,48(1 0.71

I IN 1981 83.241,0,911 .040000 0.04135 0.00525 112 410 t12.410 0 111',410 113,268.9(19 0.0414 437,152 O 112.410 112,410 >1.00

I 1082 78.402.(104 .040000 0.03(1541 0.004841 -112,800 112,410 0 -111'.100 1(!1.880.813 0.0400 570,806 0 -400 -490 ),1.00

I 1003 82.(152,314 .040000 004852 0.00474 704.1118 8111,008 0 704.188 244,322,117 0.04211 (190,841 0 703,709 703,700 0.88

I 1884 (11.1'85,467 .0__-'_-- 0.030413 0.00304 879.011 1,885,087 344,353 S34,731 335.50(1,4414 0.0420 752.1154 -_'' "'_3 1,238,441 1,582,787 0.40

I KS 1981 47,251,461' .048103 0.00117 0.00937 1,902,(170 1.002,07(1 1,174,358 71'1.311 47,251.402 0.0112 ,14(1 1,.. _ .,JO 721.311 1.902,67(1 0.23

I 1982 42,007,1_ .O40451' 0.02813 0OO(127 -525,015 1,002,(17(1 -647,330 !_'J',315 89,85(1,412 0.0_HIO bl7,102 527,020 150,013 1,377,(101 0.30

I 1083 47,001,114 .040000 O.05111 0.00825 S31,071 1',433,747 311,930 210,141 137,080,801 0.0043 (150,31(1 83(1,958 1.090.774 1,908,732 0.34

I 1884 43,057,10_ .0.110000 0.05468 0.000413 1,004,102 3.51'7,049 mq7,430 201,171' 181,618,100 0.0645 775,055 1,72(1,3o0 1,1'71.441 3,002,835 0.2(I

I KY 1981 90,(131.177 .011108 0.04074 0.00431 -3,134,141 0 0 -3,134.141 99,_.,8.177 0 04117 429,444 0 -3,134,14t -3,134,141 0.14

I 1982 13,321,411 .0410517 0.0357(1 000421 -2,068,571 0 0 -2.080,57(1 182,065,200 0.0434 554,514 0 -S,203,711 -5,203,711 0.11

I 1983 88,117,501 .040000 0.03420 0.003841 -499,4(11' 0 0 -400,4(11' 268,082,897 0.0404 850,087 0 -5,703,201 -5,703,201 0.11

I 1984 95,131,001 .O30000 004148 0.00409 1,090,202 1,080,202 0 1.080,1'02 3(142_ _'' _9(1 0.0,107 758.401 0 -4,(112.011 -4,(112,000 0.1(1

: LA 1961 89,712.8_76 J,_'01'5 0.00705 000000 -1.793,(113 0 0 -I,]63,113 _: _,900 0.0871 538,757 0 -1.703.113 -1,793,013 030

I 1982 85,012,(171' .0413512 0.0(!1(13 00083(! -159,884 0 0 -168,884 174,805,581 0.0(144 763,279 0 -1,153,t07 1.953,607 0.39

: 1963 80,125,07(1 .040000 0.05(175 000899 1,342,095 1,342,095 0 1,342,005 254,930,857 0.0620 946,720 0 -(111.511' -611.512 >100

: 1984 93,201.207 .O3(N)O0 0.05797 000597 2,805,344 3.947,439 186,973 2.41(I,371 348.221.864 0.04109 1.098,394 186,973 1.(10(1.0S0 1,993.831 0.55
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Table 3-9. Application of Rule D to states (continued)

STATE Year Fm:l C.,ofilf_ Tllr0oI R-hit s.& Annual Cumuiled Annual Vldulm [

(if poldtlvll) Cash Book Fo4 Contrtb R-hit sigma(D) Cash Book Total C¥

lO92 8,o21,3o3 .040000 o 01909 0.00547 .188,544 o o .19o,544 18,775,7Ol 0.0253 99,115o o -276,316 -276,316 0.36

1963 0.248,940 .040000 002071 00<9741 -178.412 0 0 -178.412 28.024.041 0.0238 121.108 0 -454,730 -454.730 0.27

1984 0,711,704 .030000 004967 0.01375 183,058 183.956 0 163.056 37,743,435 0.0207 190.347 0 -200,774 .290.774 0.62

NE 1981 27,006.307 .044331 005470 0.01241 200,028 280.028 0 280.028 27,000,307 0.0547 335.148 0 200,028 260.020 >1.00

1902 28,287,870 .04alSa 0.00504 0.01854 1,521,141 1,001,170 853,587 687,474 55,293,077 0.0758 675,090 853.807 047,503 1.801.170 0.32

1983 31,391.023 .OliO000 004070 0.00004 213,t51 2,014.321 104.394 108.757 88.685.000 0.0053 642.103 958.061 1.088,280 2.014.321 0.32

1064 32,100,8N .030000 0.041180 0.01252 1.253,300 3.287,821 1.062.711 too,see 118,854,708 0.04163 757,0453 2.020.771 1,240,840 3.267,821 0.23

NH 1081 18,882,118 .010858 0.04580 0.01241 -350.874 0 0 -380,574 18.822,118 0.0852 208,507 0 -350,874 -350.574 0.80

1982 14,671,771 .0413328 0.05850 0.01130 -08,024 0 0 -80,824 31.453.020 0.0825 268,470 0 -420,122 -420,192 0.83

1083 14.073,8641 .040000 004340 0.00722 47,050 47.250 0 47,250 45,527,547 0.051141 285,187 0 -372,340 -372,349 0.77

1084 12,883,437 .030000 007822 0.01813 H2,660 830,430 0 8412,880 50,410,084 0.0007 345.438 0 ll0,241 210,241 >1.00

NJ 1981 270,818,844 .075411 001021 0.00764 1.270,2118 1,270,289 0 1,270,280 270.515,044 0.0802 2,066,741 0 1,270,280 1.270,200 >1.00

1062 250,803,03S .057740 0.07341 0.00747 4.020,014 5,300,253 863.319 3,357,005 527,118,777 0.0780 2.818.808 663,310 4,838,034 5.300,283 0.53

1003 248,958,007 .040000 0.041364 000578 5.025,387 11,105,020 5.319.831 1_5,538 77(I.077.704 0.0728 3.162.500 5.983,150 5,202,470 11.185,620 0.28

1884 248,4411,714 .030000 00'5130 0.00640 5.220,018 10,413,836 4.821.607 100,400 1.021,524,848 0.0075 3,531,234 10.804.787 5,808,878 18.413,838 0.22

NM 1981 32,384,201 .046037 0.1231(I 0.01413 2.553,415 2.663,415 1.800.447 752,088 32.394,201 0.1230 457.731 1.800.447 k 782,088 2.553.415 0.18

1082 30,773,114 .042510 0.10524 0.01005 1.930,120 4,403,838 1.748,092 162,028 63.167,408 0.1140 586,387 3.546.530 034,907 4.483,630 0.13

1983 20,800,817 .040000 0.04J028 0.01031 604.864 6.088,300 476.445 1211,410 03,037,222 0.0073 640.453 4.024,084 1,003,415 5,068,300 0.13

1084 34.(111,013 .030000 0.05214 0.00797 1.010,?S0 8,000,150 018,827 80,024 127,723,236 0.0180 701,726 4.044,811 1,184,330 6,090,150 0.12

NV 1981 8,18Ei1,$57 .040000 0.02280 0.00874 -107,817 0 0 -107,817 (I,198,357 0.0228 41,703 0 -107,317 -107,817 0.39

1882 0,023,300 .040000 0.01255 0.00500 -105,363 0 0 -183,353 12,220,167 0.0170 54,830 0 -273,170 -273,170 0.20

1083 5,4,1,1,116 .040000 0.02801 0.00180 -71,134 0 0 -71,134 17,854,375 0.0205 72,701 0 -344,304 -344,304 0.21

1984 8.014,3o7 .030000 0.02011 0.00973 -43,723 0 0 -48,728 22,733,702 0.020(I 87,086 0 -301,020 -301,029 0.23

NY 1081 755,118,221 .071713 0.041002 0.00828 8.272,742 (I,272,742 0 8,272,742 755,116,221 0.0900 4,727,021 0 8,272,742 6.272.742 0.75

1902 036,003,482 .088154J 0.07951 0.00702 10.011,820 26.084.262 13.832.025 8,170,405 1.680.108.083 0.0700 7.588.]r40 13.632.025 12.452,237 26.084.282 0.29

1083 803,033,284 .040000 009381 0.00011 47.548,467 73,832.720 41.823,480 S,725.007 2,473,834,037 0.0848 11.049,008 55.455.486 18,177,243 73.832.720 0.15

1904 057,340,308 .030000 0.07114 0.00784 30,314,010 113,017,700 35,409,474 3,383,500 3,431,175,242 0.0310 13,412,008 00.054.060 22,0t2,748 113.017,708 0.12

OH 1981 333,031,7112 .873381 0.08088 0.00835 3.030,043 3.030.043 0 3,830,043 333.031.702 0.0887 2.788.330 0 3.930.043 3.930.043 0.71

1992 334,110,783 .0641448 0.07800 000821 5.985,1311 9.828,182 3.300.970 2,804.260 888.047,855 0.0824 3.011.436 3.300.870 8,434,312 0.825.102 0.40

1983 330,728,180 .040000 0.05(1011 000536 5.787,004 15,813,170 5.051,320 73(I.874 t,027,773,744 0.0732 4.350.202 8.442.190 7,170,886 15.613.176 0.28

1884 401,828,288 .030000 0.04J385 0.00475 13,801,8119 20,214,005 12,944,675 657,245 1,420,000,013 0.0706 4,758,803 21.386,704 7,823,231 20,214,995 0.16

OK 1081 58,318,718 .040000 0.00587 0.01023 1,508,828 1.500,828 527,270 081,357 58,315,716 0.0(859 500,570 527.270 081,357 1,500,628 0.40

1082 44,310,0141 .040000 0.03813 000804 -82,878 1,806.829 -195.777 112.001 102,034.581 0.0530 865,203 331,403 1,004,250 1.425,751 0.47

1083 40,139,8511 .040000 0.04051 000050 23.547 1,632.174 -155.172 178,725 148.804.43(I 0.0407 774,458 175.314 1,273,024 1.449.208 0.53

1084 40,398,48,1 .030000 0.03021 0.00407 10,374 1,542,546 -52,102 82,482 108,202,882 0.0440 812.441 123.208 1,330,48(I 1,459,672 0.55

OR 1981 81.874,104 .098113 006772 0.01097 .1.871.422 0 0 -1.871.422 81.574.104 0.0677 875.468 0 -1.271,422 -1.871,422 0.38

1092 52.881,730 .000058 0.07089 0.01088 88.400 06.409 0 86.400 114.455.834 0.0691 887.293 0 .1,725,013 -1.785,013 050

1983 52,044.417 ._ 0.05 _83 0100080 1.047,805 1.134,314 0 1,047.905 187.300.251 0.0602 1.029.773 0 -737,108 -737.108 >100
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Table 3-9. Applicitiofi olrRule D to states (continued)

[ Amuws.,m_ ]n,,. AOi,*_,._* I RUL,_ O ISTATE YMkr F'''_ C,QoIr166 Tdu*gel R 1'41 ' s · A,"_oi _ Annum Viduem I

(Il pollf_o) _ B(X_ Fed C,onldb R-hit llgml(O) _ eodL Totid cv

1084 667,6664.5663 .03OOO0 0.04661 7 000724 03a.276 2.0668.586 0 632.275 224,054.034 00410 1.1 11.157 0 105.16666 105.t660 )100

PA 1981 421.604,1667 .122100 0 rOe_e 0 _ 2 -13.374,327 0 0 .13.374.327 421.504.157 0.06606 2.3666.653 0 -13.374,327 -13.374.327 016

166662 420,207,729 .061005 0.C4037 000704 1.704.3666 1.706.388 O 1,714.388 6641.711,06666 0.066766 4,061,6660 0 -11,6677,9366 -11.577,0366 0.35

1083 410.840,2066 .040OOO 0.OOOOS 0.01004 21,210,41ND 23.016,877 10,730 21,2066,740 1.258.352,1661 0.C46666 5.854,0066 10,7366 66,030.810 9.841.050 0661

1064 4066,621,6608 .030000 0.080_2 0.001NS? 24.5668,71NI 47.804,6678 23.010,000 1.0066,709 1.6663.6674,0466 0.0103 66,800,6627 23.020.830 11,200,620 34,230._466 0.20

Ri 16681 43,270,044 .007730 0.042661 0012tS1 -1,524,370 0 0 -1.6624,370 43.270,544 0.0825 2.704.842 0 -1.624o3766 -1.524.378 >100

16682 40.3660.760 .004_?0 006884 0.0103m -4664,037 0 0 -4664,6637 03.6566.204 0.05660 2,737,0366 0 o2,006,015 -2.0066,010 61.00

16663 366,0266,072 .040000 0.041667 0.01134 007,4664 6607.4664 0 667,4664 122,66885,130 0.05066 2.772,602 0 -1,151,SS1 -1.161.051 :,1.00

18664 41,019,4N .0300OO 0.0_700 0.006671 260,216 1,149,66766 0 2116,216 163,001,SSS9 0.0649 2,7660,6603 0 -8882,3366 -0662,330 )1.00

SC 1661 066.t62,002 .04100166 0.07140 0.00_L,_ 1.004,170 1.004.170 4566,352 S47.116 50.168.502 0.0784 333,020 458.352 547,6610 1.004,170 0.33

19662 03,66663.01kl .06020066 0.0666682 000738 3.071.0H 3,070,788 1,788,2667 303,306 106,742,020 0.0835 517,402 2,224,8840 6681,1266 3,075,76666 017

1983 03,6676,391 .040OO0 007C46 O.O06O1 1.608,6617 4,731,66i2 1.400.408 266,508 1663.410,407 0.0784 872,7266 3.625.040 1.1CHI,6634 4.731.66662 0.14

10664 04,2711,41L_ .030000 0.07704 000633 2,66N.24Q 7,3641,6622 2,525,171 100,070 2166,203,612 0.0700 733,5066 8,150,2166 1,221,704 7,350,022 0.10

SD 1681 11,M.22 .048230 0046631 0014466 12,6616 I!,0166 0 12.016 11,W.204 0.0413 171.824 0 12,210 12,2166 )1.00

1002 11,309,641 .04_HI166 0.03705 000764 42,432 la',0166 0 -03,436 23.241ti,6620 0.04166 1662,6630 0 -S0,6623 -50,023 ).1.00

1t643 11,032,012 .040000 0.02119 0004M -2211,339 11.6616 0 -2266,2366 36.2466,897 0.03466 201,H7 0 -_70,9669 -276,259 0.73

lINI4 11,740,01KI .03OOOO 002105 O0O071 -tO,IH 12,6166 0 -10,132 44,0466,660O 0.CKI33 228,622 0 -207,013 -2667,562 0.766

TN 1011 06,078,0_0 .0SOeOO O0eBS0 0004L80 1,704,974 1,704,8874 1.083,800 140.66660 66.072,920 0.0885 401,743 t.003,6600 840,66866 1.754,6674 0.23
1962 51,010,171 .0,40000 0.0466131 0.006612 -$8.7662 1,704,6674 -210.6661 178.073 110,000,021 0.07041 66066,779 077,045 263,041 1,714,021 0.30

lINI3 60,em,4N .040000 0.04401 0.00442 _04,939 2,000,6602 1662,184 02,846 1666,720,000 0.H_O S00,0066 1,040,121 021,66266 1,06666,719 0.20

1004 63,04t,lL,1_ .0200Q0 0.042661 0.00003 747,3S3 L7S0,ISS 66266,432 117,070 224,070,921 0.0670 66366,7661 1,6640,911 1,047.4066 2,717,0(17 0.23

'TX 1981 17,675._)N .066120 0.07SO& 0007711 1,306,162 1,306,962 273,713 1,122,236 667,076,321, 0,0761 8662,212 273,713 1,122,236 1,395,662 0.466

10662 70,04S,41_1 .048680 0.04644 0.0066_1 2,6676,272 2,271,223 2.170,438 m66,6633 163,140,276 0.0780 6624,4454 2.450,102 1,021,072 3.6671,223 0.23

1963 Iki,I$3,12e .040000 0.01627 0.006623 2,770,0666 0,741,6618 2,1866,078 871,120 257,800,700 0.0764 1,272,103 4,6646.227 2,00L802 8,741,111 0.10

1844 IO2,440,406 .030000 0.W 0.05744 2,751,713 9,403,131 2.404,840 040,H3 300,247,282 0.0702 1,4663,012 7,0664,076 2,463,0665 66,403,831 0.166

UT 1081 34,210,060 .040000 0.04073 0.01181 221,6610 3066,(110 0 !t)e,6610 34,3166,000 0.0427 405,314 0 200,010 200,010 61.00

le82 3L704,314 .040000 0.04N1 0006679 324,6N 224,2066 0 3_!4,SH 667,073,039 0.0413 407,1664 0 924,300 824,2H 0.660

1043 67,107,712J .040000 0.00601 0.01_NS1 014,300 1,230,6066 113,001 800,3166 104.2661,204 0.0612 6683,6602 113,031 1,124,526 1,239,0041 0.6666

1054 30,123,701 .0_0000 0.06713 0.0016266 983,130 2,231,6630 050,38tl t11.727 140,2_6,403 0.0634 760,636 0660,3716 1,161,362 2,231.t30 0.34

VA 1061 e3,CHII,SJS .CHI14700 0.036066 OOO427 -6.604,724 0 0 -0,0066.724 00.042,020 0.03666 423.023 0 -6,0CHI,724 -S.500,724 0.066

10662 03,024,000 .0416737 0.04066 000477 -2,390,66666 0 0 -2,360,06666 102,002,6614 0.03662 66166,t72 0 -7.6672.300 -7,6672,300 0.08

16683 00.013.060 .040000 0.03767 0.000,45 -232,300 0 0 -232,3660 2066,012,406 0.0380 100,666666 0 -66,104,7466 -0,104,7466 010

10664 33,Na,012 .03_O00 0.03L4066 0.004660 424,301 424.301 0 424,301 301,66066,4766 0.0371 013.484 0 -7,980,445 -7,0660,440 0.12

VT 1081 20,701,644 .043153 0.00167 0.013366 229,1666 226,188 0 2266,1666 28.7661,044 0.00166 3566,203 0 225.186 225,181 >100

16662 96.1137.93Q .041677 0.04520 0.00769 63,610 3166,777 0 63,010 662,600,174 0.0414 413,435 0 310,777 318,777 >100

19663 20.020.997 .040000 0.078661 0.0166663 671,060 1,26666,037 2667,02 703,063 77,6610,041 0.05662 821,1660 287.0466 1,021,6671 1.2866,6637 0.40

1064 27,66011,_Hldl .020000 0.056634 001127 7663,121 2,073,704 052,424 121,442 1066.286,407 0.05663 66665,023 930,3111 1,143,313 2,073,704 0.34
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APPENDIX A

DESCRIPTION OF THE THREE TEST POPULATIONS

AND THE SAMPLING PROCEDURE USED IN SIMULATIONS

The test populations consist of the cases included in the Federal

subsamples for the year ending September 30, 1982, for three groups of states. The
states used were:

Population A: Illinois, New Jersey, Ohio, Pennsylvania

Population B: Maryland, Michigan, South Carolina, Texas

Population C: Arkansas, Colorado, Hawaii, Nebraska, Oregon,
West Virginia

For each test population, the states chosen provide a sample of approximately

1500 cases that could be used as a test population from which samples could be

drawn, with replacement, to study some of the characteristics of various sampling

and estimation procedures for AFDC

The following tables give some of the characteristics of each of the

three test populations. Tables A-1 through A-3 provide summary measures.

Tables A-lA through A-3C list the individual cases, by type.

From each population, simple random samples simulating state QC

samples of various specified sizes were drawn in the following way. For each test

population, the cases for which payment errors (ineligible, overpayment, or

underpayment) were found by the state QC or by the Federal review were termed

"error cases." Let P denote the proportion of error cases in the population, and let n

denote the specified size of the state sample.

The number of error cases to be induded in the state sample was

_ determined by a random draw from the binomial distribution whose parameters are

A-I



Table 3-9. Application of Rule D to states (continued)

STATE Yeast Fed C,onulb Tlrlel R-hat I & .l%_u/ CAtlmJlmled Annual Vldue4 ]

(11 po$1ttve) Car_ Book Fed C.4_lelb R-hit Blgma(D) Ca_ Book Tolal cv

WA 1081 118.607.111 ,081243 009333 001236 4.161.5H 4.161.595 1.750.036 2,411.859 118.607,866 0.0933 1.485.993 1.7,50,036 2.411,550 4,161,50R 0.38

1962 119.737,418 .049122 006430 0 00685 1.826.053 5,999.549 1.475.174 381.780 238.345.303 0.0788 1.679.841 3.225.209 2.783.339 5,068.548 0,28

1983 130.713.014 .040000 004775 0 00580 1,013.581 7.002,117 736.664 276.t15 369.126,317 0(N579 1,648.039 3,962.093 3,040.024 7,002,117 0.26

1064 14 7,030.025 .030000 0.04113 0.00529 1.630.484 9.039.671 1.380.985 266.489 S16.1S9,240 0.04802 2.003.338 5.343,076 3,295.493 8.636,571 0.23

WI 1911 221.111,880 .007093 0.0823,8 0100714 -1,040,217 0 0 -1.040,117 221.161,580 0.0824 1,579,236 0 -1.040.217 -1,040,217 91.00

1962 235.838,352 .04,1641 0.04S470 0,00948 294,583 284,503 0 294,893 457.020,912 0.0733 2.197.613 0 -745,954 -745.654 )1.00

1683 276.001,t61 .040000 0.05070 0.009412 2.968,114 :1,280,877 0 2,94141,114 732,6112,063 0.6848 2,856,515 0 2,220,480 2.220.460 >1.00

1984 299,207,008 .020000 004002 0.00712 10,871.940 18.032J11 7.050,687 3,920,873 1,028.840,148 0.0452 3,550.983 7.050.667 S,II41,:134 12,892,001 0.28

WV 1981 41,060,0111 .0118410_1 0.07_1411 0.01314 -823,959 0 0 -923,068 41,0418,818 0.07341 539.842 0 -023,058 -823.955 0.80

1982 39,290,421i .044401 0.00246 0.00701 891,184 801,1114 0 801,104 79,364.045 0.0779 618,847 0 87,R30 67,239 91.00

1983 39.40,4,471 .040000 0029t0 0.00414 -392,338 001.104 0 -392,S39 117.828.817 0.0422 662,381 0 -325,091 -325,099 91.00

1984 52,953,9S0,0_QOOQ 0.049041 0.0003,11 057,400 1,040,506 0 IHST.40Q 170.782.076 0.0570 742._05 0 03_,301 632,301 >1.00

WY 1961 4.2SS,10_) .04000Q 0.13747 001201 412.1103 412,1103 324.951 07,852 4,235,182 0.1375 53,406 324.951 117,952 412,603 0.13

1002 4.317.708 .040000 0.04771 0.01253 33.290 448,083 -3.911 37.201 8,552,888 0.0022 78,020 321,040 128,05:1 446,003 0.17

1983 5.590,716 .040000 0078941 0.01884 200,114 182,270 139.250 60,030 14,143.003 0.0001 116,711 460,289 191,800 652,278 0.10

1984 O,OdNI, 7S4 .O_OOO0 0.05580 0.01434 155.324 807,803 107.753 47.671 20,213.337 0.0770 145,628 568.042 238,660 807,803 0.18

Total 1981 72.162.950 72.182.950 26,900,797 -10,008,_103 9,215,414

1982 94.967.54HI 107,130.818 82,560,881 0,305,222 88.665.904

1963 161.898,733 349,027.249 188.240.317 76.204.000 203,445,307

1084 230.009,200 670,828,640 388.130,579 123,432,707 401.563,365

*Computed by simple application of Rule A. For states AZ and TX, these differ from the disallowances actually assessed (see
Table 3-4), and for other slates differ slishtly from those shown in Table 3-4 because of variations In treatment of rounding errors.
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Table A-1. Statistics for Population A

Type of case Number Percent

Total cases 1,478 100.00

Cases in which both the Federal and state findings were that there was
no payment error 1,266 85.66

Cases in which payment errors were found either by the state QC or the
Federalreview 212 14.34

Cases which the state found ineligible. Table A-lA lists these cases,
showing the monthly payment and the Federal finding for each case.
In this table, underpayments are shown as zero (as they are minted in
the analyses). 62 4.19

Cases in which the state found no error or only underpayment error, and
for which the Federal review found an overpayment. Table A-2A lists
these cases, showing the monthly payment and the Federal finding. 49 3.32

Other cases in which the state found an overpayment error.
TableA-3A lists these cases,showingthemonthlypayment, the
state finding, and the Federal finding. 101 6.83

State Federal

Statistic finding finding

Average monthly payment 296.22 --
Variance of monthly payment 64,892.93 --
Standard deviation of monthly payment 254.74 --
Coefficient of variation of payments 0.86 --
Average monthly overpayment 17.19 21.62
Variance of overp-yments 3,762.48 4,970.75
Standard deviation of overlmym_ts 61.34 70.50
Coefficient of v_m_n of overpayments 3.57 3.26
Skewness/ob 3.80
Kurtosis (_t4/o4) n/a 17.70
Percent of cases with overpayments 11.03 12.65

Correlation of state and Federal Endings of overpayment errors .828

Regression coefficient for the _on of the Federal findings of
overpaymentto thestatefinding .952

Overpayment error rate .0730
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P and n. That number of error cases was then drawn as a simple random sample,

with replacement, from the set of error cases in the test population.

For the balance of the state sample, no error cases were involved.

Consequently, the balance of the sample was drawn as a simple random sample of

payments from the r_ormal distribution whose mean and variance are those of the

payments for the set of non-error cases of the population.

A Federal subsample of n' was drawn from each state sample. Let Ps

denote the proporti:._n of error cases in the state sample that was selected. The

number of error cases to be included in the Federal subsample was determined by a
random draw from the binomial di.,_tribution whose parameters are Ps and n'. That

number :4 error cases in the state sample was then selected for the Federal

subsampie as a simple random sample, without replacement.

Subsamples of the non-error cases in the state sample did not have to

be drawn, since estimates of the average overpayment per case, or of its variance, do

not depend on the payment values of the non-error cases in the Federal subsample.

Except as otherwise sp_cified, the statistics given in this report are based

on repeated simple random samples from the test populations. Listings of the

various results for each repetition of the sampling are available. Other sampling

and estimation procedures can be applied if desired.
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Table A-3. Statistics for Population C

. - ...... Type of case .......................... Nunt_ Percent _ __

Total cases __h._-_ 2 1,525 100.00 _. · 7 - *a

Cases in which both the Federal and state findings were that there was
nopaymenterror 1,317 86.36

Cases in which payment errors were found either by the state QC or the
Federalreview 208 13.64

Cases which the state found ineligible. Table A-lC lists these cases,
showing the monthly payment and the Federal finding for each case.
In this table underpayrnents are shown as zero (as they are treated in
the analyses). 68 4.46

Cases in which the state found no error or only underpayment error, and
for which the Federal review found an overpayment. Table A-2C lists
these cases, showing the monthly payment and the Federal finding. 54 3.54

Other cases in which the state found an overpayment error.
Table A-3C lists these cases, showing the monthly payment, the
state finding, and the Federal finding. 86 5.64

State Federal

Statistic finding finding

Average monthly payment 254.66 --
Variance of monthly payment 37,495.06 --
Standard deviation of monthly payment 193.64 --
Coefficient of variation of payments 0.76 --
Average monthly overpayment 13.66 16.87
Variance of overpayments 3,312.03 4,365.03
Standard dewalaon of overpayments 57.55 66.07
Coeffioent of variation of overpayments 4.21 3.92
Skewness (g3/o3) n/a 4.50

Kurtosis (_4/crt) n/a 24.70

Percent of cases with overpa_ts 10.10 11.21

Correlation of state and Federal findings of overpayment errors .809

_qion coefficient for the regret_ __on of the Federal findings of
overpayment to the state finding .928

Overpayment error rate .0662
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Table A-2. Statistics for Population B

'Type of case Number Percent

Total cases 1,480 100.00

Cases in which both th_ Federal and state findings were that there was
no payment error 1,260 85.14

Cases in which payment errors were found either by the state QC or the
Federal review 220 14.86

Cases which th,. state found ineligible. Table A-lB lists these cases,
:_wing the monthly payment and the Federal finding for each case.

In this tableunderpaymentsareshown aszero(m they are treated in
the analyses). 76 6.14

Cases in which the state found no error or only underpayment error, and
for which the Federal review found an overpayment. Table A-2B lists
these cases, showing the monthly payment and the Federal finding. 43 2.91

Other cases in which the state found an overpayment error.
Table A-3B lists these cues, showing the monthly payment, the
state finding, and the Federal finding. 101 6.82

State Federal

Statistic finding finding

A .,-agemonthly payment 210.06 --
Vananc_ of monthly payment 14,633.67 --
Standard deviation of monthly payment 120.97 --
Coefficient of variation of payments 0.58 --
Average monthly overpayment 15.04 16.69
Variance of overpayments 3,175.10 3,487.75
Standard deviation of overpa_ts 56.35 59.06
Coefficient of variation of overpayments 3.75 3.54
S_ (_3/o3) n/a 4.90

Kurtosis (g4/o4) n/a 32.10
Percent of caseswith overpa_m 11.96 13.11

Correlation of state and Fedend findings of overl_t errors .940

Reg:ression_t for the _n of the Fedend rmdinp of
overpayment to the state finding .985

Overpayment error rate .0795
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Table A-lA. Cases in Population A that state found ineligible, with Federal finding

............... Amountovm, paid ..... : - -?:-- Amount .....ovm'pam "'-"---'_"'_ ..,:' '

State Federal State Federal -' -
1

129 129 270 270
250 250 318 318
153 153 302 302
_'.q 368 302 302
306 368 25O 25O
250 2.50 12.5 :2.5
250 25O 434 434
302 302 319 0
348 348 273 273
273 273 273 273
360 360 273 273
137 137 360 360
273 273 263 263
360 360 216 216
360 360 216 216
360 360 216 216
273 273 216 0
36O 360 216 216
350 350 216 216
273 273 111 111
216 216 263 263
216 216 131 131
216 216 395 395
216 216 321 321
111 111 273 273
216 216 321 321
263 263 172 172
216 216 265 265
262 262 387 387
318 318 172 172
381 381 360 360

Totalcases 62
Cases wath Federal zero 2
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Table A-lB. Cases in Population B that state found ineligible, with Federal finding

State Federal _ -_ .....State'_ FederalS''_ :'_

118 118 240 240
55 55 606 606

118 118 259 259
141 141 225 225
112 112 84 0

12 12 409 409
141 141 395 395
164 164 273 273
23 23 434 434

141 141 413 413
85 85 206 206

153 153 491 491
141 141 327 327
118 118 102 102
164 164 133 133
102 102 172 172
102 102 163 163
102 102 97 97
102 102 204 204
48 48 141 141

133 133 118 118
163 163 118 118
102 102 14 14
163 163 85 85
133 133 23
72 72 118 118

102 102 23 23
211 211 85 85
211 211 230 230
270 270 295 295
247 247 67 67
326 326 355 355
326 326 270 270
134 134 211 211
211 211 211 211
211 211 247 247
211 211 326 326
295 295 326 326

Number of cases 7'6
Cases with Federal zero I
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Table A-lC. Cases in Population C that state found ineligible, with Federal finding

*a

140 140 98 98
122 122 116 116
122 122 186 186
89 89 140 140

247 247 5° 59
247 247 8c 86
283 283 415 415
247 247 247 247
63 0 999 222
,50 .50 224 224 _-

168 168 390 390
185 185 365 365
523 523 420 420
175 175 420 420
375 375 45 45
468 468 560 560
72 72 240 240

155 155 560 560
86 86 231 231

286 286 409 409
547 547 58 58
4_ 480 206 206

286 0 206 206
286 286 206 206
134 134 206 206
164 164 249 249
54 54 164 164
86 86 122 122

164 164 179 179
164 164 10 10
164 164 142 142
164 164 122 122
164 164 100 100
164 164 140 140

Totalcases 68
Cases with Federal zero 2
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Table A-ZA. Ca.__esin Population A for which the state found no error or only underpayment

Federal Federal

[ payment Ineli · Overpayment Payment Ineligible Overpayment

302 302 221 0
240 12 236 0
236 236 250 250
360 87 302 302
195 68 357 0
360 132 236 0
414 414 334 165
234 0 477 477
174 0 413 413
324 324 324 100
216 105 263 245
263 263 216 216
90 0 131 0

327 189 263 47
216 101 327 64
216 216 327 327
224 0 263 263
216 0 48 0
175 175 438 5'7
113 0 194 0
381 63 404 153
381 381 337 211
438 57 214 140
265 0 223 0
321 0

Total cases 49

Federal finding:
No overpayment cases 16
Ineligible cases 15
Other overpayment cases 18
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Table A-2B. Cases in Population B for which the state found no error or only underpayment

Federal Federal

-Payment-"; --Inelisible_ Over_.._t' m_,_i.e: _ .,,,.Ove_,..,Yin_t"* ' :: ' ? : i - " ' ') ....

4 e

118 11 314 : : 0 _'
118 50 395 35
141 23 450 0
23 0 249 0
107 0 318 0
133 133 306 0
133 133 223 0
102 102 182 0

72 72 314 0
44 0 383 0

193 31 204 32
113 0 236 44
94 0 133 133

326 284 106 0
270 270 118 10
422 422 118 118
225 0 118 0
502 0 118 118

29 0 131 131
205 0 326 28
305 0 27O 270
386 56

Total cases 43

Federal Finding:
No overpayment cases 21
Ineligible cases 11
Other overpayment cases 11
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Table A-2C. Cases in Population C for which the state found no error or only underpayment

Federal Federal

Paym_.t._. Ineligible _ymen.t ..... ,Payment _ Ineligible, Overpayment

,-- 83 48 ' S9 0
247 0 116 116
130 0 264 0
76 0 62 0

434 0 856 856
375 37'3 56 0
297 0 448 448
57 0 210 210

28O 10 35O 35O
140 0 286 286
190 79 436 39
150 0 257 200
355 355 286 177
323 0 239 140
286 0 177 117
150 150 134 134
286 286 176 0
253 0 164 17
204 0 136 82
361 278 176 30
286 286 134 0
339 199 122 33
547 67 100 0
69 0 51 51
98 0 20 0
65 0 100 100

161 0 173 0

m

Total cases 54

Federal finding:.
No overpayment _ 26
Ineligible cases 14
Other ov_rl_yment cases 14
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Tab_A_A. Casesm Population A forwhichthestaufounde!_t*obbutovm'paym_t

!
Federal Federali

S_te State

Payment overpayment in_Lstbb Ovm,_; 'ymim._.t_,!fPl_l 'ivflmylmem._._, lm/i_le ,Ov_ymEm

250 '" 98 ' ............ 326 _ ? '"""-2g_ """ 287 _
302 52 52 _ 478 _ 40 _ 40 · _:_
250 170 170 381 63 63
250 170 1_0 536 '8 536
302 62 62 395 _1 51
225 192 192 264 89 89
225 72 72 714 200 200

80 9 9 368 _8 58
649 424 424 309 ' 52
153 73 73 250 24
302 52 52 250 1 170
237 65 65 242 40 40
250 30 30 368 66 66
502 60 60 302 222 222
236 56 56 700 51 51
468 54 54 302 52 52
360 87 87 284 80 80
246 136 0 378 54 54
360 87 0 414 54 54
188 166 1_ 414 54 54
414 54 54 522 54 54
522 54 54 360 90 90
273 136 136 311 65 15
273 136 136 414 54 0
273 136 136 246 136 136
273 136 136 180 41 41
360 87 0 263 47 0
360 91 91 216 99 216
414 141 141 127 63 63
414 141 141 263 37 37
263 47 47 206 131 131
262 64 64 200 64 64
164 14 14 216 105 105
263 51 51 263 47 47
475 148 14S 327 64 64

1105 104. 104 167 18 18
263 152 152 341 84 84
263 47 47 424 43 43
327 64 64 384 63 63
381 301 301 481 43 43
302 47 47 335 73 73
536 98 98 253 12 0
286 55 55 385 63 63
438 120 120 438 194 194
451 144 119 94 43 43
381 63 63 327 73 73
318 129 129 74 34 34
441 13 13 262 90 90
436 57 57 224 220 220
234 46 0 84 22 22
318 86 44

101 cases, of which 7 showed no Federal overpayment
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Table A-3B. Cases in Population B for which the state found eligible but overpayment

Federal Federal

State, Sram

139 63 _ : .__ i" . 0 .. i 318-- ., 11 __'' _ ' 11 _' _
*_ 121 43 121 ..... 568 76 76

I18 47 47 354 106 106
164 14 37 106 87 87
110 12 12 327 68 68
183 53 62 568 76 76
102 28 28 418 76 76
184 21 21 406 59 59
163 129 129 506 18 56
193 127 127 253 9 9
270 177 112 421 13 11
685 42 42 276 23 0
211 79 73 241 52 241
270 111 117 451 51 51
270 59 70 372 31 31
211 91 91 190 51 51
270 50 41 439 112 112
326 266 266 305 21 0
270 141 141 297 33 33
270 59 59 607 74 74
211 91 91 543 238 171
222 56 60 102 30 30
553 31 31 223 30 30
404 20 20 102 17 17
306 105 105 163 17 17
640 17 17 72 18 18
348 206 206 133 32 32
421 73 73 218 14 14
601 316 316 82 34 23
360 75 75 164 120 120
206 116 116 141 46 46
511 13 13 164 16 16
487 73 0 118 70 70
405 162 162 115 63 63
548 74 48 118 63 63
395 67 68 164. 31 31
530 97 97 118 30 30
478 50 50 164 108 108
511 83 83 81 23 23
203 83 83 141 23 23
576 19 19 69 32 32
460 320 320 164 62 62
620 595 595 85 32 32
641 208 208 510 56 56
305 75 75 131 5 9
403 32 32 295 252 252
296 67 67 295 65 65
274 85 85 230 90 90
458 28 28 270 59 70
327 193 193 326 266 266
292 67 67

101 cases, of which 4 showed no Federal overpayment
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Table A-3C. Cases in Population C for which tim state found eligible but overpayment

Federal Federal

State State

122 105 105 .- _ $9 49 49
450 137 137 '_' 140 39 0
308 152 152 253 63 63
247 227 227 253 83 83
183 94 94 247 62 62
247 158 158 379 61 61
91 6 6 379 55 0

38 _ 78 78 379 105 105
2 67 67 543 47 47
2. I' 17 298 59 66
189 28 28 359 84 84
313 66 66 468 120 120
247 6 6 531 63 63
546 15 15 474 19 19 '
546 396 396 336 112 112
546 15 15 222 81 81
52' 468 0 373 53 53
127 39 39 350 106 106
254 17 17 390 93 93
546 78 78 410 78 44
334 77 77 122 63 63
420 70 70 448 25 25
490 210 210 118 22 0
420 80 0 350 70 350
350 70 70 174 10 0
164 18 0 286 200 200
203 9 0 339 48 48
30I 8 8 403 33 33
323 15 15 376 30 30
763 55 55 266 18 18
286 200 200 222 19 19
329 53 53 212 52 52
281 75 75 134 116 116
134 44 44 134 44 44 .
164 43 43 98 66 66
164 18 18 206 30 30
90 64 64 90 17 90

215 39 39 206 42 42
164 30 30 76 10 10
206 42 42 142 32 32
206 148 lax 100 49 49
206 148 148 100 17 17
164 25 0 72 10 10

86 cases, of which 9 showed no Federal overpayment

A-14



APPENDIX B

!-: EVALUATION OF THE REGRESSION AND DIFFERENCE ESTIMATORS ' _'

ii

_ 'i

Classical regression analysis assumes a linearrelationship between the

dependent and the independent variables, and that the dependent variable is (at

least approximately) normally distributed for each value of the independent

variable. As noted earlier in this report (Section 2.2), the requirements of classical

regression analysis are reasonably well satisfied in the application of the regression

estimator when one considers the fact that the "independent" variable is the Federal

subsample mean of the error per case as determined by the state review and the

"dependent" variable is the mean error per case as determined by the Federal re-

review for the cases in the same subsample. Relationships between these means

were illustrated in Section 2.2 (Figure 2-1) by scatter diagrams for 1000 samples

drawn from Test Population A for each of four sample sizes. We include here

similar scatter diagrams for the other two test populations which we have examined

(Figures B-1 and B-2).

We emphasize that the linearity is not required for the regression

estimator to be consistent (i.e., unbiased in large enough samples). However, the

close approximation to linearity that is illustrated in the figures leads to negligible

bias even for the smallest sizes of Federal subsamples. A little algebra brings out

how the bias decreases with sample sizes, and becomes negligible for large enough

samples.

The regression estimator of the mean error per case is

._" = _.' +b'(._-_') .

Then, conditional on the state sample S, the expected value of _' is

E(s "ls)= +E
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Figure B-I. Mean findings of dollar err-' r per case in 1000 independent samples for each of four sample
sizes, Population B
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Figure B-2. Mean findings of dollar error per case in 1000 independent samples for each of four sample
sizes, Population C
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and therefore over all possible state samples,

Thus, the bias of _' as an es_in_ate of X is

EF IS}

We note that

E {b'(_ -_') {S} = -Cov(b',_'{S)

= Pb'_'iS O'o',Sal, Is

Since each of these standard deviations is of order 1/h'm-and the correlation

coefficient is no greater than 1 in absolute value, the bias is of order no greater than

1/n'. Thus, We bias decreases with increases in the size of the Federal subsample

and is negligible for sufficiently large samples.

Also, since the bias of _" (and of _,) is of the order _ and the standard error
n' #

1

is of the order q_r, the ratio of the bias to the standard error dec:eases with

increasing sample size and is negligible for large enough samples.

We have also examined the distribution of the residuals, d i = Z' i - (a + b Y'i),

for the lines of regression shown in Figure 2-1 in Chapter 2, and in Figures B-1 and

B-2 above. The coefficients a and b of the regression line are computed from the

known population parameters. Summary measures for the distributions of the 1000

residuals are given in Table B-4 for each of the four sample sizes for the three test

populations. The summary measures in the table are defined as follows:

Mean _ - Z di/lO00
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Standard deviation 0 = [Z (d i- d)2/1000]1/2

SkewneSs , :_ _-, 1000 _' /°a';m_}"'"=_a'?:_;: .. ,-!

Y_ (d i - 2)4

Kurtosis 1000 / o4

It is seen from the measures of skewness and kurtosis that the

distributions show some moderate departure from normal, but are reasonably close
to the values for a normal distribution of 0 for skewness and 3 for kurtosis.

B.1 Comparison of the Regression and Difference Estimators

We initially had some concern that the approximations that are

involved in the regression estimator and the estimator of its variance may not be

totally satisfactory because of the relatively small sizes of the Federal subsamples.

The so-called difference estimator, on the other hand, provides unbiased estimates

for any sample size and an unbiased estimate of its variance is available. We have,

therefore, on occasion, considered the use of the difference estimator to replace the

regression estimator. To compare these alternative estimators in the context of the

AFDC quality control program, we have simulated sampling from Population A,

described in Appendix A.

^

The regression estimator R is defined by

A

R = {_' + b(_'- _')} /

and the difference estimator R is defined by

P, = {_' + k(_- _')} /

where
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_' = _xi/n' is the average overpayment in the Federal subsample whose size

is n', the average being computed over all cases in the _.-__"'_i:;_subsample, regardless of whether there was an overpayment, as
determined by the Federal review;, _' -'_'_-' ''_ °a

f,-

= Zyi/n is the average overpayment in the state QC sample whose size is
n, as determined by the state review,

_' = Zyi/n' is the average overpayment in the Federal sample, as
determined by the state QC review;

b = Z(xi -_')(Yi - Y')/Y-(Yi- _)2

is a:' estimate of the regression coefficient, as estimated from the
Fea_ral subsample;

k is a constant which, if it were equal to the true value of the
regression coefficient, would minimize the variance of the
difference estimator;

xi, Yi denote respectively the Federal md state determination o: -,e
overpayment for case i;

is the average AFDC payment per case in the state QC sample.

From Population A, 1000 samples were drawn using simple random

sampling (see Appendix A) for various sample sizes to s:mulate state QC samples,

and from each sample a simple random subsample was drawn to simulate a Federal

subsample. For each sample, the regression estimate and three difterence estimates

using three values of the constant k were computed, as well as t_e appropriate
^

estimates of their variances. The standard error of the regression estimate R is

estimated by

s_ = s x {(1 - r2(1-n'/n))/n'} 1/2 /
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and the standard error of the difference estimate R for a given value of k is

estimated by

x,'. /.'; .v }· {0--/

where
2

sx = Z(xi-_)2/(n'-I )

is the unit variance of overpayments as determined by the Federal
review for the cases in the Federal subsample, and

s_ = _'-(yt-_')2/(n'-l)

is the unit variance of overpayments as determined by the state QC
review for the cases in the Federal subsample.

Results of the simulation comparing the estimators are shown in
Tables B-1 and B-2.

The true value of the overpayment error rate in Population A is .0730.

Table B-1 shows that the average value of _, estimated from the 1000 independent

samples is very dose to the true value for each of the three sample sizes. This

indicates, as discussed more fully below, that the bias, if any, of the regression

estimator is trivial for this population, even for the small sample sizes considered.

The fact that the average values of the difference estimates R differ slightly from the

true value is due to sampling variation, for the difference estimator can be shown to
be unbiased.

Table B-2 shows, for each of the four estimators and for each of the

three sample sizes, the variance (i.e, the square of the standard error) of the

estimated payment error rate, the average of the estimated variances given by the

formulas above, and the standard deviation of the estimated variances. We note

that the variances, estimated by 1000 repetitions of the sampling procedure, differ

very little among the four estimators, for each of the sample sizes. The average of
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the variance estimates also appears to differ little among the four estimators of the

payment error rate. The fact that the average of the variance estimates is slightly

smaller than the estimate of the true variance is attributable to sampling variation, ....

since the variance estimator for,the ' _'" ' '::' ' 'difference estima_._tor o/_tlm payment error rate"'l . -, · · '-'., _ <_:,!:_'_,'*

can be shown to be unbiased. For each size of sample, the four estimates of the ..

payment error rate and of its variance were made from the same sample and hence

are expected to be similar. The reasonable interpretation of these results is that the

bias of the estimator of the variance of the regression estimate is trivial.

We note also that the standard deviation of the estimated variance

increases with a decrease in the sample size, approximately as predicted by statistical

theory.

B.2 Validity of the Regression Estimator

Examination of Table 13-3 indicates that while the average value of the

estimated payment error rate is very dose to the population value, in 11 of the

12 independent estimates the average value is somewhat less than the true payment

error rate for the population. The largest of the individual differences is 2.3 times its

estimated standard error. These results suggest a small downward bias of the

regression es_mator. However, the indicated biases are all so small that they

contribute trivially (less than 1 percent) to the mean square error, and are so small

that they can be neglected. There is no such indication of a bias in the estimates of

the standard error of the estimated payment error rate.

We emphasize that the absence of appreciable bias in the regression
estimator or in the estimator of its variance does not suffice to ensure that the

estimator of the payment error rate is satisfactory. The variability of the estimated

variance is quite large, as can be seen from the simulation results presented in

Table B-3. Hence, much of the variation of the standard error between years for a

given state, and much of the variation between states in a given year, may be due

simply to sampling error.
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Various sample sizes have been used in this appendix and elsewhere

in this report. One set of sample sizes, in particular,

n -- 1200 '. 180 ''_
n = 500 n'_ 80 _ _ :.

-- n_'=:" 300 :_ _* n'- _'50'''_' -* " '

was used in initial analyses. The largest of these sample sizes was intended to

approximate the six-month sample sizes in use in the larger states. The smaller

sample sizes were chosen to evaluate results with small Federal sample sizes even

smaller than those in use. Later, in order to approximate more nearly many of the

annual sample sizes currently in use in AFDC, additional sample sizes were used in

the simulations, as foUows:

n = 2400 n'= 360
n = 1200 n'= 360
n = 880 n'= 260
n = 350 n'= 160

These sample sizes were generally used in the more recent analyses.

Similarly, Population A was the only test population that was defined

initially. Many of the earlier simulations used only that test population. Later, Test

Populations B and C were defined, in order to examine the stability of the

conclusions for various populations. Generally, the conclusions were found to be

very similar for the test populations, and consequently, some of the analyses were

limited to one or two test populations.

However, many of the simulations and analyses were carried through

for all three test populations. For example, Tables C-ZA through C-2C in

Appendix C show a number of comparable simulation results for all three test

populations. From those tables, we summarize in Table B-3 the regression estimates

of the overpayment error rate for each of four sample sizes for each of the three test

populations, and their estimated standard errors, and comparisons can be made

with the true overpayment error rates that are being estimated.
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A

Table B-1. Average values of the estimated payment error rate R and its estimated standard deviation

basedon 1000_ent _np_ _ r_ A. bye_,_ and_ g_e _ ":_i_,/'_ _-

Estimator R deviation R deviation R deviation

Regression 0.0727 0.0118 0.0727 0.0176 0.07'2_3 0.0228

Difference
k:l 0.0728 0.0117 0.0728 0.0173 0.0725 0.0222
k=.9 0.0728 0.0118 0.0727 0.0173 0.0726 0.C}Z23
k=.8 0.0728 0.0120 0.0726 0.0176 0.0727 0.0228
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Table B-2. Variance of the estimated payment error rate and the average of estimates, by estimator and
sample size (based on 1000 independent samples from Population A)

!' ' .. Sample size ....... Sample gum Sample size '_
n--1200, n'--180 n_00, n'_80 n_300, n'_0

!

Standard Standard Standard

Average deviation Average deviation Average deviation
variance of variance of variance of

Estimator Variance estimate variance Variance estimate variance Variance estimate variance

Regression 1.39E-04 1.30E-04 .6300E-04 3.10E-04 2.90E-04 2.06E-04 5.20E-04 4.70E-04 4.26E-04

Difference

k,,1 137E-04 1.31E-04 .6400E-04 2.99E-04 2.94E-04 2.08E-04 4.93E-04 4.79E-04 4.33E-04
k,,.9 1.39E-04 1.31E-04 .6300E-04 2.99E-04 2.94E-04 2.07E-04 4.97E-04 4.79E-04 430E-04
k=3 1.44E-04 1.35E-04 .6300E-04 3.10E-04 3.03E-04 2.07E_ 5.20E-04 4.94E-04 4.30E-04

Average 1.40E-04 1.32E-04 .6300E-04 3.05E-04 2.95E-04 2.07E-04 5.08E-04 4.81E-04 4.30E-04
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Table B-3. Some summary statistics from 1000 s/mulations for Populations A, B, and C

Sample size Test population ..

n n' A B C

R .07297 .07945 .06623

24:.q0 360

_[ ........ _ -_ ......... -:--':': .07893 i .ol_srz, '.,i,:g7, ...,:- -

8 t ................ _ .00792 ' .00736 .00872 '

_'lt .00791 .00713 .00861

s.c. (i'_) .00004 .00004 .00007
s.c. (si) .00138 .00139 .00227

1200 36C

_,, .07245 .07906 .06601

6_. .00027 .00026 .00030

_t .oo839 .oo8o7 .oo937
i'_ .00884 .00895 .00966

s.c. (i't) .00004 .00004 .00007

s.c. (_lt) .00126 .00139 .00214

88O 26O

.07271 .07882 .06564

8 _. .00033 .00031 .00035

i_ .01036 .00973 .01091

Sll .01033 .01040 .01116

,.,. (70 .00006 .oooo6 .oooo9
s.t (_) .00182 .00190 .00289

35O 160

.07290 .07930 .06607

_i .00048 .00049 .00051

C_tt O1513 .OX560 .01624

il .01451 .01544 .01552

s · ('i'll) .00009 .00011 .00015

sc. (_]{) .00292 .00363 .00471

i n.,u.,,,d.,,..,_._..,_ .._ s'_ _,,, ...,,,..i _,.,_,._ ..,_.__
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Table B-4. Summary measures for distribution of residuals, for regression of x' on y'

.... Simple size ' '_,2

2400/360 1200/360 880/260 350/160

Population A
Mean 0.000 0.000 0.000 0.000
Standarddeviation 2.044 2.043 2.491 3.052
Skewness 0.383 0_353 0.485 0.538
Kurtosis 3_398 3.084 3.045 3.432

Population B
Mean 0.000 0.000 0.000 0.000
Standard deviation 1.029 1.008 1.173 1.532
_q 0.776 0.823 0.885 1.122
Kurtosis 3.681 3.872 3.900 4.444

Population C
Mean 0.000 0.000 0.000 0.000
Standarddeviation 1.988 1.970 2_.81 3.061

0.480 0.572 0.636 0.845
Kurtosis 3.090 3.631 3.648 4.092
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-" _" ' - ' COlVIPLrI'ATION OF CONFIOI_C!_ INTERVALS · '
%

Confidence intervals for the payment error rate are produced in the

current AFDC quality control program in the following way. An estimate of the

standard error of the estimated payment error rate is computed by the formula

given for s_ in Section 1.1 of Chapter 1 (Equation (3)) and also in Appendix B. The

lower and upper bounds of the nominal confidence interval at a given confidence

level are defined by 1_± t s_, where, for example, t=1.96 for the 95 percent confidence

level and t=1.645 for the 90 percent confidence level. These values of the
A

coefficient t are appropriate if R were a mean estimated from a simple random

sample from a normal distribution, and s_ its estimated standard error. This is a

commonly used procedure. Such confidence intervals are referred to as nominal

confidence intervals for the specified level of confidence (say 95 percent) because the

actual probabilities may not conform to the specified level of confidence.

A

Suppose that the samples were large enough that R and sl_ were

approximately normally distributed and also large enough that the coefficient of

variation of s_ was small (say less than .02). For a nominal confidence level of

95 percent, these conditions are sufficient for the actual probability to be dose to

2.5 percent that the lower bound of the interval is greater than the value being

estimated, 2.5 percent that the upper bound is less than the value being estimated,

and 95 percent that the value being estimated is between the bounds. Similar

statements hold for the 90 percent confidence interval. (See the attached Technical

Note for Appendix C.)

For the QC samples in use in AFDC, the distribution of l_ appears to be

reasonably dose to normal, although still slightly skewed to the right and somewhat

more skewed for the smaller sample sizes (see Figure 2-2 in Section 2.3 of the

report). The distribution of s_ is also skewed but still reasonably approaching
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normality (see Figure C-I). Moreover, and particularly relevant, is that the

coefficient of variation of s_ is quite large, being several times larger than it would
A

be if the estimate R were the sample mean of a.normally distributed variable based` _ :. _ T_on a sample of size n', and s_ were. the associated estimate of its standard err°r._ _i_

Also, _ and si are positively correlated. The results are not sensitive to that

correlation (which remains constant with increasing sample size), but are highly

sensitive to the coefficient of variation of si_ (which decreases with increasing

sample size).

Estimated values of the coefficient of variation Vs_ and of the

correlation _ of R and s_ for the regression estimator, for various sample sizes,

drawn from Test Populations A, B, and C, are given in Table C-1. '-

Table C-I. Correlation of R and Sl_, coefficients of variation of s[i and of _, estimated from
1000independent samples of Test Populations A, B, and C, for various sample sizes

Sample sizes Population A Population B Population C

2400 360 .15 .75 .18 48 .66 .20 59 .68 .27 106
1200 360 .30 .75 .14 29 .62 .16 38 .66 .22 71
880 260 ..30 .76 .18 35 .61 .18 3,5 .68 .26 71
350 160 .46 .79 .20 27 .67 .24 38 .71 .30 59

1200 180 .15 .77 .25 46 .64 .27 54 NA NA NA
5(l) 80 .16 .76 .37 45 .67 .39 50 NA NA NA
300 50 .17 .,"8 .48 47 .60 ..50 51 NA NA NA

NA - not avafiable.

These are estimated from 1000 independent samples for each population and for

each sample size. As expected, for a given population, and with some sampling

variability, the correlations are essentially constant over the various sample sizes,

whereas the coefficients of variation of s_ decrease approximately as the square root

of the Federal subsample size n' increases.
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Note 1: Table C-1 also shows for each illustrative test population and

sample size some values labeled _. These values provide another
, indicator of how much larger the variance of the variance estimates are '_

than would be expected in estimating a mean from a simple random
_ sample drawn from a normal population. Thus, for a simple random -. '

sample of n' drawn with replacement (from any distribution of a
variable X), the relvariance of the sample estimate of the variance of
the mean is approximately I

2
_2

'- 8-1,& .
..,

where 02 is the variance of the distribution,

2 )2s = Z(xi-x /(n'-1)n'
X

is the estimated variance of the sample mean, _, for a simple random
sample of n' (drawn from any distribution), and

= _'.(xi-2)4/n04.

For a normal distribution, [3has the value 3, but may have considerably
larger (or smaller) values for various non-normal distributions. Also,

in general, the relvariance of s_- is approximately one-fourth of the
22 2

relvariance of s. If we substitute _ for [3 and 4o = o 2 in the above
X _ S

X

equation we obtain

IHansen, M.H., Hurwitz, W.N., and Madow, W.G. (1953),Sample Survey Methods and Theory, Vol. I,
Chapter 10, (New York: John Wiley & Sons). Theory for samples drawn with replacement provides a
simple approximation for samples drawn without replacement provided the sampling fraction is
small.
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= 4n'V2s+l.

in obtaining rough approximatiOi_s to the variance of State estimates of :,; :_

For AFDC-QC, a consequence of the _'rge coefficient of variation of s_

and of the positive correlation of l_ and s_ is that the probability of the left tail (i.e.,

the probability that the lower confidence bound is above the value being estimated)

is considerably less than the nominal probability; the probability of the right tail is

considerably greater than the nominal probability. The technical note attached to

this Appendix shows the expected frequency below, above, and covered by 95 percent
A

and 90 percent nominal confidence intervals for the case in which both R and s_ are

normally distributed and are positively correlated, for various values of the

coefficient of variation of s_ and of the correlation of the two variables.

Figures C-2A to C-2D are scatter diagrams showing the relationship
A

between the values of R and s_ for the 1000 sample-' clrawn at each of four sample

sizes for Population A. That the correla: on between the v c-iables is positive is

clear. It is also quite dear that me joint distribution is reasonably close to normal.

The ellipses in the diagram are such as to enclose a specified proportion of the

p, !nts if the joint distribution were exactly normal. The inner ellipse would

include 50 percent, the next would include 90 percent, the third would include

95 percent, and the outer ellipse would include 99 percent of the points. For the 1000

actual samples, the results were as follows:

Sample size

Contour 2400/360 1200/360 800/260 350/160

.50 491 506 495 508

.90 901 9O2 9O4 898

.95 957 95O 951 950

.99 990 993 992 983
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Thus, the observed frequencies approximate, reasonably closely, the proportions

that are expected for the bivariate normal distribution. However, the moderate

skewe ofthemar dis  tio ca and is meachcue,there
more points in the right hand tail Of the marginal distn'bution than in the left hand
tail. ..

Tables C-2A, C-2B, and C-2C, which are based on 1000 independent

samples drawn for Populations A, B, and C, respectively, show summary statistics of

the current AFDC sample design. They also show some summary measures for

specific confidence bounds and for the coverage of nominal confidence intervals

based on the same 1000 samples.

The panel headed "CONFIDENCE BOUNDS" gives, for example, the
^ A

value of R such that 2.5 percent of the estimates R fall below it. This value was

estimated from the 1000 independent samples drawn from the specified population,

using the state and Federal sample sizes specified in the column headings of the

table. The 5 percent, 95 percent, and 97.5 percent points were similarly estimated

from the same samples.

The next panel, headed "NOMINAL CONFIDENCE BOUNDS," gives

the estimated means and variances of the bounds, the bounds being computed by

the current AFDC procedure. The line labeled "Coverage" gives the estimated

probability that the specified tail covers the true value, R. For example, for

Population A with the sample size 2400/360, the probability that the nominal

2.5 percent point is greater than R is estimated to be 1.1 percent rather than the

nominal 2.5 percent. Similarly, the probability that the nominal 97.5 percent point

is less than R is estimated to be 5.3 percent rather than the nominal 2.5 percent.

Consequently, the coverage of the corresponding 95 percent confidence interval is

estimated to be 93.6 percent (i.e., 100 - 1.1 - 5.3) rather than the nominal 95 percent.

The panel of the tables that is headed "NOMINAL CONFIDENCE

BOUNDS, MINIMUM rho" gives the results of a procedure we have considered (see

Chapter 3 of this report and Appendix D) to reduce the effect of unusually Iow
A

values of the estimated correlation, p, between the state and Federal findings for the
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V

same case. This may happen because of sampling variation. It could also happen if

a state, inadvertently or not, does a poor job of evaluation in its QC operation. The

procedure consmts or repmong me esumatea correlanon ry.. a constant Value :. ,:_,_;? t
whenever the estunatea corremuon _s less man that constant value. The constant

value used in these computations was .8. The tables show that this has only a

minor or negligible effect on the coverage properties of the resulting confidence
intervals.

Table C-3 summarizes the coverage of the nominal 95 percent and

90 percent confidence intervals for the three populations and various sample sizes.

These results are reasonably dose to expectations for samples large
^

enough that both R and s_ are normally distributed, as shown in the Technical

Note. They also conform to the general statement made above about the effect of

the coefficient of variation of s_ and the correlation of R and s_. As seen from

Table C-3, the coverage of the 95 percent and 90 percent confidence intervals is

generally somewhat less than the nominal confidence coefficient, but reasonably

close, especially for the larger sample sizes. They may reasonably be regarded as

providing acceptable approximations to the nominal probabilities of 95 percent and
^

90 percent, and therefore can serve as useful measures of the precision of R as an
estimate of tL

We note from Table C-3 that, for the variance estimator that imposes a

minimum value of p, the coverage probabilities are essentially the same as for the

variance estimator that uses the estimated p, although slightly farther from the

nominal probabilities.

One way of circumventing or reducing the effect of the skewness of the

distribution of R is to compute confidence intervals on a transformation of _ whose

distribution is more nearly symmetrical. If a transformation of _ say u=f(_), is

normally distributed, and if an unbiased or consistent esHmate of the standard error

of u is available, one might have confidence bounds for the expected value of u

whose probabilities are more nearly the nominal confidence levels. Those bounds

could then be transformed by the inverse transformation, say g(u), to yield
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confidence bounds for R with probabilities corresponding to the nominal confidence

levels. We therefore simulated sampling from the test populations using the

natural logarithm transformation f(_--ln 1_. .....

The procedm'e used wu the following: a sample simulating a simple .. _

random state sample of specified size n was drawn (with replacement) from the test

population. A subsample simulating a Federal subsample of size n' was then drawn

(without replacement) from the state sample. Each element of the state sample was

assigned at random to exactly one of 90 "replicate sets." The 90 replicate sets were

subdivided at random into 45 pairs of sets, each giving rise to a Jackknife replicate

estimate of tL The Jackknife replicate estimate corresponding to a given pair is an

estimate that uses the data in the state and Federal samples, but replaces a random

one of the replicate sets in the given pair by the other replicate set of the same pair.

/%

Let R(j) denote the estimated payment error rate based on the i-th

Jackknife replicate, for i=1,2,...,45. The Jackknife estimate of the variance of R is

given by

2 A

sa __zi(R i

The estimate based on the full sample and each Jackknife replicate estimate was

then subjected to the logarithmic transformation:

^
R* = lnR

R(j) = InR(D.

The Jackknife estimator of the variance of R* is then

2

SR, = _j (R_j)- R') 2 .
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The confidence interval for the mathematical expectation of R* at a specified

confidence level is computed as R*+ kSR., where the multiplier k is appropriate to

the confidence level for a normal distribution. · Deno.tg_vm_,_.,, l,:,_
_ - .... ,-4 ._..:_' _%:_tc_'_'___.._ .... :: _. _, _. _. ..X. _a..-,_.'

L2 = R*+ks R.

and let

IF

=
t-

i

=

Then L 1 and L2 are taken to be the lower and upper bounds,

respectively, of the confidence interval for the payment error rate, R.

For each of the four sample sizes the procedure was repeated 400 times.

Table C-4 shows the estimated coverage probabilities of the intervals corresponding

to the nominal 2.5 percent point, 5 percent point, 95 percent point, and 97.5 percent

point, as well as the estimated coverage probability corresponding to the nominal

90 percent confidence interval. It also shows, for comparison, the coverage of

confidence intervals computed by the conventional procedure described at the

beginning of this Appendix.

Later, in order to obtain additional information on the validity of the

logarithmic transformation, the procedure was repeated an additional 1500 times for

Population A using the sample sizes n=2400, n'=360, and an additional 2000 times

using the sample sizes n=350, n'=160. The co_,bined results of the two sets of

simulations are summarized in Table 2-6 of Section 2.4 of the report.
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Table C-2A. Population A: Summary statistics

.- STATISTIC 2400/360 _'_ _'200/360 8a0/260 3_0/160 ..... :_

Iq.m _ ' _'_ .....- -' -- :' ii,.' 0.073057 0.072445 0.0727085 0.072901 /,
Vrimce orR' :, _: : ".- _:-'_"_'_ 627gC--QS 7.044E-43S'''_:'-1.073E-04....'2d_gOi-04 "
rlem estJmatodye-Imco ol' la' : :'_- 15.441e1-05 7.gOgE-O_--T. 1.IOQE'04 2. 193E'04
Vrimce of estimstodrs-irate or R' 4.g3_-I0 5.456E-10 1.53gE-Og 7_-0g
Fle_ esLIrr_f.KI sUmdrd error of IT 0.00_ O.O08_IS 0.010327 0.014513
Vrill_Ci of'I!f. Jmltld lLIXIIrd _ of i_ 1.916E-06 1.600E-06 3.31IE-06 8,542E-06

CONFIOENCEBOUNDS
2.5X point 0.058890 O.O_HIgO 0.052032 0.0:;_32
5.0_1point 0.060931 o.osaogo 0.055404 0.048894

gs.0z point 0.0e_)44 0.0871m7 0.090412 o.oge58g
g7.5_1point o.oee5ig o.ogo33g O.Og46gI 0.105241

NOHINALCONfiOEN_B(XJNDS
2.5X point I_ 0.0_7_ 0.0_1 I0 0.052467 O.O_,_,_","_

Vm'imce 3.804E.-06 4.623E--06 6.4871E--06 1.26_
Coverage 0.011 0.006 0.010 0.013

_.OXpoint _ 0.0G0048 o.o_/agG 0.0_"720 0.049027
Variance 4.102E-0S 4.g2gE.-OS 6.gg'7$-OS IJa3E-04
Covqrego 0.024 0.0211 0.028 0.031

9_.0_ point _ 0 0_6067 O.O_7(XX) 0.0_9697 0.096775
Vrlmce 9 493E-O_ 1.002_-04 1.62_...04 3.659E-04
Coverage 0.0_1 0.097 O.1O0 O.!02

g'7._ poW. _ 0.(308_8 o.o_r/_2 0.092_ I 0.101347
Vm-imc3t ! .023E-04 I .OGgE.-04 1.75IE-04 3.g73E-04

0.0_3 O.O_g 0.066 0.07_

NO"IINALCONF_ _. _r'_
2.5_ point I_ 0.0_ 0.0_ 0.052092 0.044_

Vrimc, e 4.037[-0_ 4.744E.-_ 6.767E-0_ 1_ IE-04
0.013 0.0_ 0.014 0.016

5,0_t POint _ 0.060364 0.058130 0.(_)6077 0.049442
Varlanc_ 4_T22_--0_ 5.04_-_ 7.2_-____-.OG 1.403E-04
Co_ 0 0,30 0.030 0.0,32 0.0,34

g_.O_lpmnt _ 0.0_ I 0.0_762 0.0_ I O.Og_
Vfr_mco 9.018E-CG 9.7741E-05 I .S63E_ 3,Sg_E-04
Cover_ 0.084 O.Og8 0.100 0.107

g'7,5_ I)olnt rINn 0.0e8182 o,oegs03 0.002s26 O.lOQeS2
Vrlmc_ 9.63_E-'0_ I .o3a_-o4 1.673E-04 3.a93E-04
Ce,m-_. 0.053 0.060 0.067 0.07_

Note: Based on 1000 trials, for the regression estimate.
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Table C-2B. Population B: Summary statistics

sr^nsnc 2,eo/_ ,200/_ .oreo _/160

,.. · _'_ _'aa44g!'_' _'o.07em:" '"_o.oem._'._r_,?_o.o_,.o.o_rm''....._'__'--:" Ir_
Vrimmo mri_ ..... _:. _.._: 5.41S_)5 631gE_)5 g.47QE_)5 2.4_ '
PlmmmstJml_ml_m_eof_ ,.,. :. :_.._%.. _27aE_ 021_ I.I1gE_)4 . 231a_ ..
Vrimcoofostiawbdvw'Jmcoo4rlF 4_-I0 G.a,4oE-,O 1.710E-09' ,.,._llE...oa r
leto estlmltod s_ er'Pop of' R' 0.007130 0.00a953 0.010402 0.015442

rimce of -_ota<ls_ error olr ia' I.g,45E-06 I .g44E-06 3.61gE-06 1.321E--05

CONFIDENCE_ JiDS

2.5% point 0.064g04 O.O_k.T_126 O.OGO,74 0.0506E_
5.0_ _mt 0.066957 0.065943 0.062379 :054757

9_.OX point 0.0_ 0.0940,3 0.097331 0.106,00
97.5111poinL 0.01J_1766 0.0ge04g 0.10025, 0.1,4,20

NOHINALCCiNFIOENaE_ "
2._X Ix)mt r'lHn O.06494g 0.06 I_07 o.o_a42a o.o4go33

Vr_mce 3.5436E..-05 4.662E-05 6.6.._3E-05 ! .4821E-04
Co'.',w'lgl 0.011 0.0 ! 2 0.0_ 0.017

5.0_ point r*lean 0.06719_ 0._7 0.06170_ 0.0_._97
Vm_ce 3.711 E--Q5 4.a6oE--OS 6.ag_...05 , .566E-04

_ 0.032 0.030 0.033 0.036

9_ O_ point _ O.OgO_ 0.0937a3 0.095926 o. 104702
Vmnmce B.1671E-05 9 230E-..<_ 1.400E-04 4.016[-04

Caret age 0.093 0.072 0.093 0.0<}6

g7._ point Prom 0._ 0.0<_604 0.099203 0.109_66
Vrimce 8.B i_..-05 9.86gE-,05 1.50gE-,04 4.400E-.04

0.067 0.042 0.055 0.062

fKr'!INAL C_ BOLN)S. III"U'I _
2.51 point I'lmm 0.064957 0.06,5 I$ 0.05846, O.04glog

Vlrt.nco 3 _04E-O_ 4.66_-0_ 6.ek_E-O_ 1.4_6E-04
0.011 0.012 O.OOg 0.017

.50_l _omt I"lNn 0067202 0,06_ 0.061735 0.0fo_961
VI'tm 3.711E"O_ 4.06._E--0_ 6.g22E_ 1.570E-04

Cever.g. 0 032 0.030 0.033 0.036

9'5.0_ point _ 0.0g0647 0.093776 0._ O.1_
Vri race O.162[-0_ 9.22 IE-O_ 1.3'g_E_ 4.(X)_E--04

Coverage 0.093 0.072 O.Og3 0.096

97.511_ I"lem 0.09'2_1 O.OgE_5 0.099170 0.109490
V_ a.ao_E4_ 9_5a_ , .503E-04 4..5a_-o4
Cw.rlel 0.067 0.042 0.055 0.062

Note Based on 1000 trials, for the regression estimate.
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Table C-2C. Population C: Summary statistics

_ $TAI'ISTlC 24KX)/'J60 1200/360 oao/2eo ..... 3_O/leO
...... n..oa623o----__- :-_..... :_?_

rlem IT .... .:: :_;,:-_: 0.06_917 ,,_ ,' 0.066014 0.06,_643 0.066066 ::::_
Vrimce orR' ................................ 7J[K]SE-05.... 8.71nX-4_ I.IglE-04 2JL17E-04 -.
flem esUmat,ed vlrtmce of R' _- 7.g64E.,Q5 9.TOOE...Q5 1.331E,-04 2.631E-04
V,,-ienceolr fiLimeted v,rimce of R' 1.94_.-0g 2.005E-Og 5.184E.-Og 2.738E.-4)e
HeartesUmat,ed$_ _ or R' 0.000616 0.0096_ 0.011163 0.01_!7
Varianceor ntimated sLexll_ M-roeor I_ 5.147E-06 4.561E-06 8.37_-06 2.221E-05

CONFIDENCEBOUNDS
2.5X point 0.04cJ6_ 0.04785'7 0.04,45'24 0.0375Ig
5.0l point. 0.052507 0.050076 0.047661 0.041242

9_.OZpoint 0.061174 0.062178 O.O_S_S 0.094551
g7.SXpoint 0.064358 0.085426 0.0_18494 0.101151

NOrlINALCONFII_ BOUNDS
2.:5Xpoint Mere 0.049031 0.0470_ 0.0437_4 0.03_d5_

Var,.nc. 4._0E-05 5.44_E-05 6._-0_ 1.373E-04
Covlrlge O.(X)3 0.011 O.OOg 0.007

5.0Z point rllm 0.0_1741_ 0.0_012g 0.04728! 0.040_41
Variance 4,_d3E-05 $.745E-_ 7218E-4_ 1.462E-04
Corm'age 0.014 0.021 0.020 0.0216

<)5.071point rlem O.O_OOgO 0.06 !ege 0.0040_ 0.091591
garimce I ._5g_-04 1.42_-04 2.11_E-04 5.015E-04
Cover_gt 0.093 0.10;5 0.I I_ 0.120

g7_ pokd. rtem 0.062t_04 0.004940 O.OB7'J:22 0.096479
Vrimce 1_071E-04 1.562E-04 2.I41E-04 5/_eE-04
Cevw-.g. 0.060 0.080 0.064 0.067

NOr_NALCONF_3ENCEB43LN)S. rllilJrl the
2 511_mt _ 0._ 0.04774g 0.04464 0.0_6712

Vr mr.e 4.40IE--O_ 5.574E'"O'J 5.906E-0_ 1._7E-O,'I
Ca,4rm_ 0.010 0.011 0.0! I 0.00g

5 0F po,nt _ 0.0_2473 0.0506_ 0.048022 0.04142_
Vm-lmca 4.8 !OE-O_ 5.g24E--O_ 7.407E-05 i .472[-04

Cav_r,ge 0.02g 0.028 0.026 0.030

g_.OXpo_r_ Meen 0.079361 0.06134_ 0.063264 0.0g0703
V,rlmcJ 122_-04 ! .3,T6E-O,4 ! .g'_7T_ 4.74_E-04
Covarm_ O.Og8 0.104 0.116 0.124

g7_l _ I'lNn O.Oelg36 0.084278 0.086638 0.095,120
V.rt mc_ 1._2gE-04 1.4431E-04 2. !40_-04 S260E-04
CmaeeW 0 062 0064 0.088 O.OgO

Note: Based on 1000 trials, for the regression estimate.
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Table C-3. Estimated coverage of 95 percent and 90 percent nominal confidence intervals for three test

populations, based on alternative regression estimators using the estimated P and a
'minimump of

?/m.aim_a _,, :' '7 !_..L _?::r

'_...... I, Popula6on A ' '_'? :' _ Population B Population C""'_' '
*m

State Federal Estimated tvfiniRaan Estimated _ Estimated' Mhdm_ r

n n' p p p p p p

95 percent nominal
confidence interval

2400 360 0.936 0.934 0.922 0.922 0.937 0.928
1200 _60 0.935 0.932 0.946 0.946 0.909 0.905
800 O 0.924 0.919 0.937 0.936 0.907 0.901
350 _cio 0.912 0.909 0.921 0.921 0.906 0.901

90 percent nominal
confidence interval!

2400 360 0.892 0.886 0.875 '875 0.893 0.873
12{}0 360 0.8?'5 0.872 0.898 ,,,898 0.876 0.868
800 260 0.872 0.868 0.874 0.874 0.867 0.858
350 160 0.86? 0.859 0.868 0.868 0_52 0.846

Note: Ba_d on 1000 indep_-_dent replicate samples from each population for each sample size. The same

rephcate was us_ with the estunated p and the minimum p.
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Table C-4. Coverage of confidence intervals by logarithmic Jackknife, Population A

- Conventional inl_-w_ _thmic mms_m of intervals
. %C._

Sample
._ size Point Trial ml Trial#2 Trial mS Trial #4 Avura_ Dial #1 rrtnl #2 rrial mS Trial #4 &verage '.

2400/360 <.025 .02 .00 .00 .01 .0075 .02 .00 .02 .01 .0125
<.05 .03 .00 .02 .01 .0150 .04 .01 .05 .04 .0350

Between .84 .91 .88 .92 .8875 _8 .92 .85 .90 .8875
>.95 .13 .09 .10 .07 .0975 .(38 .07 .10 .06 .0775
>.975 .06 .06 .07 .05 .0600 .04 .03 .05 .02 .0350

1200/360 <.025 .02 .02 .01 .01 .0150 .04 1)2 .04 .03 .0325
<.05 .05 .03 .04 _3 .0375 .07 .03 .05 .04 .0475
Between .87 .89 .88 .90 _ .87 .90 _8 .91 .8900
>.95 .08 .08 .08 .07 .0775 .06 .07 .07 .05 .0625
>.975 .06 .05 .06 .03 .05_ .05 .02 .04 .03 .0350

880/260 <.025 .01 .00 .01 .03 .0125 .01 .00 .03 .07 .0275
<.05 .01 .00 .04 .09 .0350 .04 1)5 .08 .10 .0675
Between .87 .93 .91 .84 .8875 .85 .90 .87 .85 .8675
>.95 .12 .07 .05 .07 .0775 .11 .05 .05 .05 .0650
>.975 .11 .05 .0S .06 .0675 .06 1)4 .04 .02 .0400

350/160 <.025 .00 .01 .01 .01 .0075 .02 .01 .04 .04 .0275
<.05 .02 .02 .04 .04 .0300 .04 .03 .06 .08 .0525
Between .90 .85 .86 ,B,5 .8650 .91 .87 .89 .85 .8800

>.95 .08 .13 .10 .11 .1050 .05 .10 .05 .07 .0675
>.975 .05 .10 1)6 138 .0725 .01 .04 .02 .03 .0250

Note: Each trial used 100 vt.petition, i, and mol repetition used 45 mplicams.
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Figure C-I. Distribution of estimated standard error
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Figure C-2A. Scatterplot for Population A - sample size 1
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Figure C-2B. Scatterplot for Population A - sample size 2
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Figure C-2C. Scatterplot for Population A - sample size 3
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Figure C-2D..Scatlerpiot tor Population A - sample size 4
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TECHNICAL NOTE FOR APPENDIX C:

A Note on Confidence Intervals

: ._-.':. '_i_ _-:'d_v_-_m:m._ ,___:_-_'_ .__ t_. _'_._,._::_,_L.:-_'_ ._

H a simple random sample of sizen:is drawn from a normal :-"_

alstribution, the mean of the population may be estimated by

x = Zxi/n

and the variance of x by

2

s_ = l:(x i- x)2/(n-1) n.
x

If X denotes the population mean, the statistic (x-X)/s: has the Student t

distribution so that a confidence interval with confidence coefficient a is given by

± t(a)s:

where t(oO is taken from the Student t distribution or from the normal distribution

if n is large (say n>30).

Even when the conditions given above are not satisfied, the confidence

interval is often estimated in the same way, on the assumption that since the

distribution of x is approximately normal for a large sample, the procedure ensures

that the probability that the interval will cover the population mean X is

approximately ct. It is often assumed that the probability that X is below (or above)

the interval is approximately (1-c_)/2. The fact, however, is that for samples drawn

from skewed distributions the statistics x and Sx are correlated and consequently the

probability that X is below the interval is not necessarily equal to the probability that

is above the interval. Actually, in sampling from skewed distributions, the joint

distribution of x and s_ may approach normality reasonably closely for samples of

moderate size, but _ and s_ remain correlated, and the correlation remains about
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the same as sample size increases. Also, the variance of s x may be much greater

than if sampling from a normal distribution. We evaluate the probabilities

associated with 90 percent and 95 percent nominal confidence intervals for this _, : .:. '

i.e., x and s_ are jointly normally distributed b_ correlated '-and with various
possible values Of ': ' _ _t .?r-_. a_r_,_m_, ,_t_ _. _: :the coefficient ot correlation depending on the skewness of the i

distribution from which the sample was drawn. ---

Suppose that a variable u has the normal distribution with mean g and

va-iance 0 2, and that a variable s _'as a normal distribution with mean o and

var:ance _2 and that the correlation of u and s is p. Let k be a constant and define

the upper and lower bounds of a confidence interval by
r

= u+_.

The variable _ is normally distributed, with

E(O = _+ko

Var(_) = Var(u) + k2Var(s) + 21(Cov(u,s)

= d +k2,2±2k0o

= V 2, say.

We wish to evaluate

Prob (__qa) = (VN]'_ '1 ('la exp {-(x-la+-ko)2/2V 2} dx.
d

Let

y = (x-_.-kc0/V

so that

x = Vy+g_ko

dx = V dy

C-20
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and

We may define . ..... _...r._ ,._..¢,,,_:_._,;_ . .. ,_:r -,. ~ ,- _- _.,::_-- ,:..

z2 V2

so that we may write

Prob(_) =(_/-_r'f_/..e_p(-y=/2)dy.

Note that z/c_ is the coeffident of variation of s.

The probability that the lower bound of the confidence interval is

greater than g is thus

1- (_'_-1 [k/z, exp (_y2/2) dy

and the probability that the upper bound is less than g is

(_(-_-, f-k/, exp (_y2/2)dy.

We may call these the coverage probabilities of the lower and upper

"tails" of the confidence interval, respectively.

In Table C-5 we show the values of these probabilities for the nominal

95 percent confidence interval (in which case one takes k = 1.96) and for the nominal

90 percent confidence interval (in which case one takes k-1.645). The

computations are shown for various combinations of p (in the column headed
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"R.ho") and _/o (in the column headed "CV(s)', the coefficient of variation of the

estimated standard error). The coverage probability of the confidence interval itself

is simply the complement of the sum of the coverage probabilities of the tails. In

each of the columns headed "Bias' we show the _-dlffer_ce' be 'tween the nominal' :! :"' ,::

probability and the actual probability. , Note that this follows the statistical .5

convention of showing the estimate (taken to be the nominal probability) minus the _'

value being estimated (taken to be the true probability of the tail).

To illustrate, consider a case in which p = .7 and CV(s) = .1. For a

nominal 95 percent confidence interval, the probability that the value being

estimated is in the lower tail (i.e., the !ower bound is greater than the true value) is

.0125 and the probability that the value being estimated is in the upper taft (i.e., the

upper bound is less than the true value) is .0436. Since the nominal probabilities are

both .025, the biases are, respectively, .025 -.0125 - .0125 and .025 - .0436 = -.0186.

The relevance of this discussion to the A.FDC-QC sample estimates is
^

that the estimated error rate R and the estimated standard error sl_ are

app:oximately jointly normally distributed, but with positive correlations (these

positive correlations are essentially constant for all sample sizes from a given
^

population). Thus, R and s_ are (approximately) examples of the variables u and s

in the above analysis. The coverage probabilities read from Table C-5 are reasonably

consistent with those estimated from simulated sampling from the test populations

as displayed ir- Table 2-4, for the estimated values of p and the coefficient of

variation Vsl o,ven in Table C-1. The tail probabilities of the tails of the nominal

confidence intervals, as given by simulated sampling from the test populations with

various sample sizes, are compared in Table C-6.
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Table C-5. Bias of nominal coverage probabilities, for samples from a skewed distribution*

RholCV(s) I 95% _onfidence Inlervals [ 90% Confidence Iniervals I
I.owcr tail Interval [ Upper tail Lower tail [ Interval I Upper tail

Ptob 1 Bias Prob. [ Bias [ Prob. I Bias Prob. [ Bias I Prob. I Bias I Prob. [ Bias
0.9 0 5 .00_,) .0250 .8451 .104_ .1549 -.1299 .0001 .0499 .8226 .0774 .1773 -.1273

0.9 04 .O0(X) .0250 .8701 .0799 .1299 -.1049 .0005 .0495 .8449 .0551 .1546 -.1046

0.9 0.3 .0001 .0249 .8968 .0532 .1031 -.0781 .0029 .0471 .8672 .0328 .1299 '-.0799

0.9 0.2 .0017 .0233 .9230 .0270 .0753 -.0fi03 .0110 .0390 .8854 .0146 .1036 -.0536

0.9 0.1 .0090 .0160 .9428 .0072 .0483 -.0233 .0272 .0228 ,8965 .0035 i_.0763 -.0263

0.9 0.08 .0115 .0135 .9453 .0047 .0432-.0182 .0313 .0187 .8978 .0022 .0709 - :-.0209

0.9 0.06 .0143 .0107 .9474 .0026 .0383-.0133 .0357 .0143 .8988 .0012 .0656'.-.0156
0.9 0.04 .0175 .0075 .9488 .0012 .0336-.0086 .0403 .0097 .8995 .0005 .0603-.0103

0.9 002 0211 .o039 .9497 .0292-.oo42 .045o .0050 .8999 0001 .0051-.0051

0.8 05 .fi/)9 .0241 .8507 .0993 .1484 -.1234 .0031 .0469 .8261 .0739 .1708 -.1208

0.8 0 4 .f_)5 .0245 .8758 .0742 .1236 -.0986 .0038 .0462 .8478 .0522 :'.1484 -.0984

0.8 03 .0010 .0240 .9015 .0485 .0975 -.0725 .0073 .0427 .8684 .0316 '_.1243 2.0743

0.8 0.2 .0035 .0215 .9256 .0244 .0710 -.0460 .0155 .0345 .8854 .0146 ".0991 ' -.0491

0.8 O.1 .0107 .0143 .9434 .0066 .0459 -.0209 .0299 .0201 .8963 .0037 _,.0738 "-.0238

N 0.8 0.08 .0129 .0121 .9457 .0043 .0413-.0163 .0335 .0165 .8976 .0024-_688 '-.0188

0.8 0.06 .0155 .0095 .9476 .0024 .0369 -.0119 .0373 .0127 .8987 .0013 _.0640 _-.0140
0.8 0.04 .0184 0066 .9489 .001 1 .0327 -.0077 .0414 .0086 .8994 .0006 ".0592 _ -.0092

0.8 0.02 .0215 .0035 .9497 .0003 .0287 -.0037 .0456 .0044 .8999 .0001 .0545 _ -.0045

0.7 0.5 .(1)53 .0197 .8532 .0968 .1415 -.1165 .0116 .0384 .8244 .0756 '_,1640 ' -.1140

0.7 0.4 .0032 .0218 .8798 .0702 .1170 -.0920 .0107 .0393 .8474 .0526 '.1418 -.0918

0.7 0.3 .0033 .0217 .9050 .0450 .0916 -.0666 .0135 .0365 .8681 .0319 _.1185 -.0685

0.7 0.2 .0059 .0191 .9276 .0224 .0665 -.0415 .0205 .0295 .8850 .0150 '.0945 -.0445

0.7 0.1 .0125 .0125 .9440 .0060 .0436 -.0186 .0327 .0173 .8961 .0039 '.0712 -.0212
0.7 0.08 .0145 .0105 .9461 .0039 .0394 -.0144 .0358 .0142 .8975 .0025 .0667 -.0167

0.7 0.06 .0167 .0083 .9478 .0022 .0355 -.0105 .0390 .0110 .8986 .0014 .0623 -.0123

0.7 0.04 .0192 .0058 .9490 .0010 .0318 -.0068 .0425 .0075 .8994 .0006 .0581 -.0081
0.7 0.02 .0220 .0030 .9498 .0002 .0283 -.0033 .0462 .0038 .8999 .0001 .0540 -.0040

'(_ on a model in which x and s_have a bivariate normal distribution with correlation p.) :_i



Table C-5. Bias of nominal coverage probabilities, for samples from a skewed distribution* (c-.tinued)

IRholCV,s,, n,,de..,nerv s'1 ''Confde .,n,  sLowcr tad [ Interval [ Upper tail I _ Lower tail ] Interval I Uppertail
trot, I U,a,I Prob.I BSasI Prob. I Bi,,, I Prob. I s,,s I P_,,b.I Bias I Rob.I Bias

0.6 0.5 0134 0116 .8523 .0977 .1342 -.1092 .0238 .0262 .8195 .0805 .1567 -.1067

0.6 0.4 .0_5 Ol_ .ssi4 .o686 .1101-._1 .0201 .o299 .s.9 .0551 .1349-.0549
0.6 0.3 .0071 .0179 .9073 .0427 .0856 -.0606 .0208 .0292 .8669 .0331 .1124 -.067'

0.6 0.2 .0_9 .0161 .9291 .0209 .0620 -.0370 .0257 .0243 .8844 .0156 .0898 -.0398

0.6 0.1 .01, 0105 .9444 .0056 .0412-.0162 .0355 .0145 .sm .0040 .0685-.0186
0.6 0.08 .0161 ._9 .9464 ._6 .0a76-.oas .ox .0120 .8974 .0026 .0645-.0146
0.6 0.06 .0179 .0071 .9480 .0020 .0341 -.0091 .0407 .0093 .8986 .0014 .0607 '_ -.0107

os 0.04 _ .0o49 .9491 .o009 0300-.ooss .04as .oo64 .8994 .0006 .057o-.oo70
0.6 0.02 0224 .0026 .9498 .0002 .0278-.0028 .0467 .0033 .8909 .0001 .0534-.00B4

05 0.5 .0239 .0011 .8496 .1004 .1265 -.1015 .0375 .0125 .8134 .0866 1490 -.0990

0.5 0.4 .0158 0092 .8814 .0686 .1028 -.0778 .0308 .0192 .8415 .0585 .1276 '_ -.0776

0.5 0-3 .0122 O128 ... 5 .0415 .0793 -.0543 .0288 .0212 .8653 .0347 .10(R) -.0560

0.5 0.2 .0124 .0126 .9302 .0198 .0575 -.0325 .0312 .0188 .8838 ,_t62 .08.50_ -.0350

N 0.5 0.1 0164 .(kl86 .9148 .0052 .0389 -.0139 .0383 .0117 .8958 .0042 .0659_. -.0159,L,
0.5 0.08 0177 .0073 .9466 .0034 .0357 -.0107 .0402 .0098 .8973 .0027 .0624_ -.0174

05 0.06 0192 0058 .9481 .0019 .0327 -.0077 .0424 .0076 .8985 .0015 .0591_-.0i_ !
0.5 0.04 .0209 .004 i .9492 .0008 .0299 -.0049 .0448 .0052 .8994 .0006 .0559 ': -.0059

0.5 0.02 .0229 .0021 .9498 .0002 .0273 -.0023 .0473 .0027 .8999 .0001 .0529 f:-.0029

0.4 0.5 .0354 -.0104 .8462 .1038 .1184 -.0934 .0516 -.0016 .8076 .0924 .1408 "i_-.0908

0.4 0.4 .0243 .0007 .8805 .0695 .0953 -.0703 .0420 .0080 .8380 .0620 .120027 -.0700

0.4 0.3 .0181 .0069 .9090 .04 10 .0729 -.0479 .0371 .0129 .8636 .0364 .0994 .; -.0494

0.4 0.2 .0162 .0088 .9309 .0191 .0528 -.0278 .0368 .0132 .8832 .0168 .13801:! -.0301

0.4 0.1 .0184 .0066 .9451 .0049 .0365 -.0115 .0411 .0089 .8957 .0043 .0632 'a -.0132

0.4 0.08 .0194 0056 .9468 .0032 .0338 -.0088 .0425 .0075 .8972 .0028 .0603 ' -.0103

0.4 0.06 .0205 .0045 .9482 .0018 .0313 -.0063 .0441 .0059 .8985 .0015 .0574 '? -.0074

0.4 0.04 .0218 .0032 .9492 .0008 .0290 -.0040 .0459 .0041 .8993 .0007 .0548 t.-.0048

0.4 0.02 .0233 .0017 .9498 .0002 .0269 -.0019 .0478 .0022 .8999 .0001 .0523, J_0023
· ._ '_'_.

e(Bat, ed on a model in which x and sxhave a bivariate normal distribution with correlation p.) ,L'
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Table C-5. Bias of nominal coverage probabilities, for samples from a skewed distribution* (continued)

f

[ Lower ,a,I I Interval I Upper tail ! Lower,_, I Interval I Upper hail

I Prob.I B,asI Prob.I BiasI _'roU.I BiasI r'rob.I BiasI Prob.I ,_asI Prob.I BiasI
0.3 0.5 .0472 -.0222 .8431 .1069 .1098 -.0848 .0652 -.0152 .8027 .0973 .1321 -.0821

0.3 0.4 .0335 -.0085 .8792 .0708 .0873 -.0623 .0532 -.0032 .8349 .0651 .1118 -.0618

0.3 0.3 .0246 .0004 .9091 .0409 .0663 -.0413 .0455 .0045 .8620 .0380 .092.5 -.0425

0.3 0.2 .0204 .0046 .9314 .0186 .0481 -.0231 .0424 .0076 .8826 .0174 .0750 -10250

0.3 0.1 .0205 .13045 .9453 .0047 .0342 -.0092 .0439 .0061 .8956 .0044 .0605 -,0105

0.3 0.08 .0211 .(X)39 .9470 .0030 .0319 -.0069 .0447 .0053 .8972 .0028 .0581 -,0081

0.3 0.06 .02 !8 .0032 .9483 .0817 .0299 -.0049 .0458 .0042 .8984 .0016 .0558 -.0058

0.3 0.04 .0227 .0023 .9492 .0008 .0281 -.0031 .0470 .0030 .8993 .0007 .0537 °'0037

0.3 0.02 .0237 .13013 .9498 .0002 .0264 -.0014 .0484 .0016 .8999 .0001 .0517 -,0017

i!iC3

'(Balmd on a model in which x and s- have a bivariate normal distribution with correlation p.)X
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Table C-6. Tail coverages as estimated by simulation and as given by the normal model

95% Confidence Interval _ -_ _,-. _. 90_ Confidence in I_val .:¥.

i

Lower tail UPper tail :. Lower tail ,, _- Upper tail

Sample size Rho CV(s) Estimated IModeled Estimated Modeled Estimated' 1Vlocleled Estimate_ Modeled

Population A
2400/360 0.75 0.18 0.011 0.006 0.053 0.064 0.024 0.020 0.084 0.092
1200/3-'_ 0.75 0.14 0.006 0.008 0.059 0.054 0.028 0.025 0.097 0.082

880/260 0.76 0.18 0.010 0.005 0.066 0.064 0.028 0.020 0.100 0.092

350/160 0.79 0.20 0.013 0.004 0.075 0.071 0.031 0.016 0.102 0.099

Population B
2400/360 0.66 0.20 0.011 0.007 0.067 0.065 0.032 0.023 0.093 0.093

1200/350 0.62 0.16 0.012 0-010 0.042 0.054 0.030 0.028 0.072 0.082
880/260 0.61 0.18 0.008 0.(X)9 0.055 0.058 0.033 0.027 0.093 0.086

350/160 0.67 0.24 0.017 0.00_c 0.062 0.075 0.036 0.019 0.096 0.103

Population C
2400/360 0.68 027 0.003 0.004 0.060 0.083 0.014 0.016 0.093 0.110

1200/350 0.66 022 0.011 0.006 0.080 0.070 0.021 0_21 0.103 0.097

880/260 0.68 0.26 0.009 0.005 0.(384 0.(380 0.020 0.017 0.113 0.108
350/160 0.71 0.30 0.007 0.(_3 0.087 0.092 0.028 0.013 0.120 0.119

[
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APPENDIX D

LoWim-:d6NnO C sOtmOS" _ RELIABILITY OF ..... , :_
d

!

D.1 Variances of Lower Confidence Bounds and Point Estimates Compared

The estimated variances and standard errors of the regression estimate

of R and of the lower bound of the confidence interval, based on 1000 independent

replicates sampled from each test population, for each of several sample sizes, are

shown in Table D-1. In this analysis, the lower confidence bound, L, has been

computed at the 95 (or 5) percent nominal confidence level, i.e., L = 1_- ts_ with

t = 1.645. From the table, it can be seen that the estimated variances of the lower

confidence bounds (s L) vary from about one-third to two-thirds as large as the

variances of the estimated payment error rates (s2_), depending on the state sample

size and the fraction in the Federal subsample. The standard errors of L vary from
^

about 60 to 80 percent of the standard error of R.

Table D-1. Variances and standard errors of 95 percent lower confidence bounds and of estimated
payment error rates, for regression estimator, for three test populations for seven
illustrative sample sizes

Sample size Population A Population B Population C

2 2 2 2 2

. .' _'/n q/_ h/_ SL/_ %._ _/_ _/_

2400 360 .15 .65 .81 .69 .83 .60 .77
_200 36o .3o .70 .84 .75 .86 .65 .81
880 260 .30 .65 .81 .73 .85 .61 .78
350 160 .46 .60 .78 .64 .80 .55 .74

1200 180 .15 .40 .64 n/a nora n/a n/a
500 80 .16 .36 .60 n/a n/a n/a n/a
300 50 .17 .32 .56 n/a n/a n/a n/a
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These results are both surprising and interesting. They are far different

from what would occur in estimating a mean and computing connaence intervals

from a simple random sample from approximately-normal-distributions. They -.
would also have desirable implications for AFDC if lower confidence bounds were

to be used in determining disallowances. The relatively smaller variances of L occur
^ ^

because R and s_ are ? _itively correlated. Consequently, if R is high, then s_ tends

also to be higE and the computed lower bound._. is, on the average, lower than it
^

would be if the standard error of R were known and used to compute it, and vice

versa. On the other h: :t, in sa.npling from a normal distribution, the estimated
mean and its estimated standard error are uncorrelated and there is no such

compensation in the computed lower confidence bound, and the variance of the

computed lower confidence bound would be larger than the variance of the rvean.

The estimated correlations observed -,. the sets of 1000 replicates for

various sample sizes from the three test populations are summarized in Table C-1

in Appendix C, and are seen to be quite high (of the order of .6 to .8). They vary

trivially with sample size, and this variation aFvarently is due primarily to

sampling variability.

To provide additional insight, since the nominal 95 percent lower
confidence bound is

^

L = R-1.645s_,

it follows that the variance of L is

2 2 2

o L = O_ + (1.645)20s_ - 2(1645)p O_Os_

where p is the correlation of L and sR .
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The first term in 02 is the variance of 1_; the second term is the

^

contribution from the variance of the estimated ssft, the standard error of R; and the
' . · ...... "* -_ -__- *-e_-__ _-' _.... ' ,r" _' ',. _: _ ' _.r._.'_ · '_ ,' 6' _ _ _r

, tttircl term xs determined by p, the correlation of R and s_. Some estimates of _ and

-- os_ based on the 1000 replicates are given in,TableSC*2A, B, and C, 'and*are "

summarized in Table C-1 in Appendix C. Estimates of p are also given in Table C-I.

The variance of the lower confidence bound for the regression estimator can be

obtained by making the appropriate substitutions in the above equation for c_. The

results agree dosely with the values given in Table D-l, which were obtained by

computing the variance of L directly from the 1000 replicates.

The implication of these results, as stated earlier (Section 2.5.2), is that̂

the lower confidence bound computed by use of the estimated standard error of R

from the sample is a substantially more stable and better way to compute the lower
confidence bound than would be obtained if the unknown true value of the

standard error were in fact known and used in computing the lower confidence
limit.

D.2 Use of Mivtmum CormlaHon in Computing Lower Confidence Bound

to Control Possible Lower Quality of State QC

It has been recognized at OFA, and is a source of concern, that if a lower

confidence bound is used in computing disallowances, a state could achieve a

considerably lower average disallowance simply by doing a lower-quality QC job,

and thereby yielding a lower correlation between the Federal review results and the

state QC results. This effect can be seen by examining the role of r (the correlation)

in Equation (3), Chapter 1. While it may or may not be likely that this would occur

in practice, there is a concern that it might, since the higher the quality of the work

done on QC in a state, the higher the correlation, and, as a consequence, the higher

the lower confidence bound and the higher the disallowance.
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There is a simple solution to this potential problem. The procedure is

to identify those states for which r, the estimated correlation between the state and

Federal QC results, is less tl_ rD where rL is, per l_al_s_ the 30th percenfi!e of the · ,_,_
· _;state esl_mates of r for the pnor year;, that is, rL is the value such that 30 percent of

the observed state correlations of state and' Federal payment errors in the prior year"

are below rL, and 70 percent are above. An acceptable variant of this procedure is to

substitute a constant value for rL tha: would approximate the 30 percent rule. The

constant can be chosen based on recent prior experience. We would expect that for

many or most states for which the estimated correlation is below rL, the low

correlation will occur primarily because of sampling variability. The procedure is tô

substitute rL for r in Equation (3) of Chapter 1 in estimating the variance of R

whenever r is less than rL. The principal gain from this procedure is that it removes

or reduces any gain that could result if a state did poorer-quality QC work in order to

reduce disallowances. An additional minor advantage is that it slightly reduces the

variance of the lower confidence bounds, at the cost of a slight downward bias in the
variance estimate.

We illustrate the application of this procedure as follows. Suppose the

"30 percent" rule is adopted, and that r L = .80 is the 30th percentile of the state

correlations for the prior year. Suppose that for a particular state n'= 360 and

n = 2400, and the observed correlation is .50. This relatively low correlation might

arise either because the state QC reviewers have done poor work (whether

purposefully or not), or because of random variation, or some of both. The ratio of

the computed standard error of _ with .50 substituted for r in Equation (3) to the

standard error if .80 is substituted is 1.31. Thus, the use of the standard error

computed with rL = .80 substituted for r will substantially raise the lower confidence

limit.

Table D-2 shows the distribution of the estimated state correlations for

each fiscal year from 1981 to 1984 for the 44 states that did not treat the QC samples as

stratified samples in making sample estimates in any of the four years. Figure D-1

shows the cumulative distribution of the correlations for each year for the same

44 states. Figures D-2A, D-2B, and D-2C show the cumulative distribution of the

estimated correlation, based on the 1000 independent samples from each of the Test
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Populations A, B, and C, respectively, for each sample size. It will be noted that in

each of these three figures the .two.distributionsfor which the Federal subsample

si,..ri'is36o,,..', red.tm ;, - i

.._ Figures D-3A, D-3B, and D-3C mustra_ e for Test Po ations A, B, and C " "

the reductions in variance that result from the application of the 30th percentile

rule where all correlations are estimated from samples of the same population.

Note that in these figures the curves based on the estimated and the minimum

correlations are almost indistinguishable. When they overlap, only one is shown.

We note that whether or not the rule of substituting rL for r is applied

-' in computing the standard error of fi for a state, the value of fi is based entirely on

the sample for the state, and the computation of fi is unaffected by the substitution

of rL for r. Also, while the use of the minimum correlation rule makes a substantial

difference in the variance estimates for individual states for which the estimated

correlation is low, it only moderately reduces the estimated variance over all

possible samples that could be drawn. This is dearly illustrated by Figures D-3A, D-

3B, and D-3C.

We note another important point in connection with the possible use

of lower confidence bounds for assessing disallowances. This is that the lower

confidence bound, and consequently the expected disallowance, would average

lower for a relatively small than for a relatively large size of QC sample. This could

create an incentive for a state with a relatively high error rate to use smaller QC

samples just to reduce the potential for disallowances, even though it would be

undesirable from the point of view of corrective action and other uses of the quality

control sample, as well as from the Federal goal of achieving an acceptable return

from disallowances. Consequently, it would be necessary, if a lower confidence

bound approach were adopted, to specify minimum sample sizes, and these minima

should not be so small as to unreasonably lower the expected lower confidence

bounds. Of course, relatively larger samples will also better serve the basic role for

which QC was created, i.e., providing guidance for improved AFDC design, and for

taking corrective action to improve administration. This issue of desired

(optimum) size of QC sample for computing disallowance is briefly considered in

Section 3.4 and in Appendix G.
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Table D-2. Distribution of states by the estimated correlation between state and Federal findings for
fiscal years 1981-1984, for 44 states

fulcra_ 2,,

Estimated

correlation 1981 :,.: ;._ 1962 ?_ O;_,_1983 _Z,.:,- '._.,'V'.1964 :,i:_ AU years --,

.40- .49 0 4 0 0 4

.50- .59 7 3 1 0 11

.60- .69 3 2 3 2 10

.70- .74 2 3 4 0 9

.75- .79 5 6 5 4 20

.80 - .84 6 7 5 5 23

.85 - .89 3 7 5 9 24

.90 - .94 7 5 11 12 35
J

·95 - .99 9 5 10 10 34
1.00 2 2 0 2 6

Totals 44 44 44 44 176

Median ,846 .837 ,881 .905 .875

30th percentile .760 .780 .782 .870 .791

Note: The correlations are tallied only for the states that did not use stratified samples.
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Figure D-1. Cumulative distribution of estimated correlation for 44 states
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Figure D-2A. Cumulative distribution of the estimated correlation, Population A
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Figure D-2B. Cumulative distribution of the estimated correlation, Population B
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Figure D-2C. Cumulative distribution of the estimated correlation, Population C
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Figure D--3A. Cumulative distribution of the nominal 95 percent lower confidence bounds of the payment error rate using (A) the
estimated correlation, and (B) the minimum correlation rule, in the regression estimate of variance, for Population A
Coasedon independent simulations Of 1000 samples)
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Figure D-3B. Cumulative d_slrlbution of the nominal 95 percent lower c( i,,nce bout._i_ of the payment error rate using (A) the
estimated correlation, and (B) the minimum correlation rule, in the resression estimate ol variance, for Population B
(based on independent simulaUons ol 1000 samples)
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Figure I)-3(2. Cumulative distribution of the nominal 95 percent lower confidence bounds of the payment error rate using (A) the
estimated correlabon, and (B) the minimum contention rule, in the regression estimate of variance, for Population C
(based on independent simulations of 1000 samp&es)
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· ,......... 0i _l(ilE _ _,_,, :zz_-_-_.,_L.
, ?

FOR COMPUTING POOLED VARIANCE ESTIMATES ,:_

E1 Introduction

The current practice in the AFDC quality control program is to estimate

the variance of the overpayment error rate for each state using only the data

provided by the sample for that state in the current period. It seems likely that the

mean square error of the estimated variance could be reduced by somehow making

use of additional data. The additional data might be:

(a) Data for the same state for prior periods; or

(b) Data for other (presumably similar) states.

We refer to variance estimation procedures that utilize data from prior time periods

or from other states as pooled variance estimation procedures.

Three principal uses for an estimated variance of an estimated

overpayment error rate are:

(1) To provide a general measure of precision of the estimated
overpayment error rate. Examples of this are to indicate the
approximate magnitude of the sampling variability of an
estimated overpayment error rate, or to compare the precision of
estimates for different states, or to compare the precision of
different allocations of the sampling effort to the state sample
and to the Federal subsample for a state.

(2) To provide a lower confidence bound for an overpayment error
rate. Consideration has been given to the use of a lower
confidence bound in vari'ous ways in the computation of
disallowances, as discussed, for example, in Chapter 3 of this
report.
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(3) To predict for a future year, the sampling errors that would
result from specific sizes of Federal and state samples for a state,
or alternatively, to determine for a future year, the approximate

sample sizes needed to achieve a _edfied level of precision. ._. t

Th':ix;0i varianceestimaa0n'l_'ddedurL,_ ' that*We discuss in this .. I
appendix wiU be especially useful for purposes (1) and (3). We have already shown

in Sections 2.3 and 2.4 that for purpose (2) the direct estimate of variance based only

on data for the current year for a state, presumably (but not necessarily) using a

transformed Jackknife variance estimator, is a preferred procedure for computing

lower confidence bounds. As discussed ir ,ction ZS, such a procedure provides a
more stable lower confidence bound than would the use of the unknown true

variance of the overpayment error rate, even if it were known, or than would result

from the use of a pooled varianceeselmate.

In this appendix, we provide descriptions and approximate evaluations

of some alternative procedures for pooled unit variance estirnation.

E.2 Variance Estimates Using Data for the Same State for Prior Periods

Alternative (a) mentioned in the introduction to this appendix

suggests the possibility of using the regression of the unit variance (defined as the

estimated variance of the estimated overpayment error rate multiplied by the

Federal subsample size) on other current and recent past data for the same state. We

tested this procedure by using the data for the 50 states and the District of Columbia

for the four six-month periods in fiscal years 1981 and 1982. The regression was

estimated from the data for the first three of the four periods. The regressor

(independent) variables were:

· The estimated overpayment error rate for period 3;

· The estimated overpayment error rate for period 2;

· The estimated overpayment error rate for period 1;

· The estimated unit standard error for period 2; and
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" The estimated unit standard error for period I.

(dependent) variable, was me esRma_d unit variance for lmriod 3.... t:_
-- _o weights were u_ m compu_ng the re__.sles .on';.. The estimated multiple

correlation was .87, mclicating that at)out three-foi_ths of the variance of the

estimated unit variances in period 3 among the states was explained by the

regression. It may be seen from the Technical Note at the end of this Appendix that

the independent variables for period 1 made trivial contributions to the regression
estimates.

Of course, the predictive value of a regression equation appears to be

higher for the data used in computing the regress ion coefficients than will be the

case when tested with an independent sample from the same population. An

independent sample for the same period is not available. However, a useful test of

the effectiveness of the regression procedure is to apply it to data for a succeeding

period. Consequently, an estimate of the variance for each state was computed for

period 4 by applying the regression coeffidents that had been computed for period 3.

The regressor variables were now the estimated overpayment rates for periods 4, 3,

and 2, and the estimated unit variances for periods 3 and 2. For period 4, the

estimated multiple correlation was .68, indicating that about one-half of the

variance among the states was explained by the regression. Figure E-1 illustrates,

with scatter charts, the relationship of the direct and regression estimates of the unit

variances, for states, for both periods 3 and 4. Table E-2 in the Technical Note for

Appendix E shows, by states, the values of the dependent and independent variables

used in the regression, as well as the unit variances estimated from the regression

for periods 3 and 4.

We note that if a predicted value were a perfect prediction of the true

unit variance for a state, the correlation between the predicted and the direct

variance estimate could not be high if the direct estimates are subject to large

variances, as indeed they are. Nevertheless, if a prediction method based on

independent data yields a higher correlation with the direct estimates than does a

different prediction method, also based on independent data, the higher correlation

is evidence of the greater precision of that method. We also note that since this
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particular regression approach involved the use of the estimated error rate for the

current period as an independent variable, the result is a higher correlatior, and a

higher fraction of variance explained than would be the case if, the current error rate

were not used as an independent variableT-_Moreover,_.s, ince the independent '_._ . i_ · _. ,,,_,'_' -_t_' _l_..'?_.l_k'_ _:_ _._t,"_! ,,_,2'_. .:_ :_:;, .....

variables used in the regression predictions are subiect to large var?anco, we

believe, without further evaluation, that this regression approach for u 'tflizing prior

years' data provides a less promising prediction method than the alternatives we

discuss below, which employ pooled variance estimates across a considerable
number of states.

E.3 Pooled Variance Es_timates for Groups of States

Alternative (b) mentioned in the introd'; trion suggests the possibility

of using a composite estimator of the variance, that is, a weighted mean of the direct

estimate for the state and the average of the estimates for some group of states that

are similar to the given state in the sense that their average unit variance ior recent

prior periods was approximately the same. The weights would be chosen so as to

minimize, so far as feasible, within each group of states, _e mean square error of

each estimated state unit variance To experiment with this idea, the groups were

determined by sequencing the states according to _he average value c,f the estimated

unit variance in fiscal years 1981 and 1982. Composite variance esumates for fiscal

year 1984 were to be made using these groups. We note that we use data for fiscal

years 1981 and . 982 to group states for making variance estimates for fiscal year 1984.

In practice, the prior years' data might or might not be available for such a grouping.

Later, we test the method by examining how well the pooled variance estimates for

fiscal year 1984 serve as predictors of the variances for 1983. It would have been

desirable to use 1985 data (which were not available). Consequently, 1983 serves as a

proxy for 1985.

Figure E-2 shows the average unit variance for the states, arranged

according to the value of the average unit variance in 1981 and 1982, as well as the

groups that were defined.
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On the basis of this graph:

· The first group was defined to consist of the first 10 states;

.. _"........ · . The second group consists of the llth through the 21st state; '_ V::':_--''._:.-_-7_]

'- · The third group consists of the ??nd through the 31st state; _._:.t.¥_

· The fourth group consists of the 32nd th.rough the 41st state; and

· The fifth group consists of the 42nd through the 51st state.

The states assigned to each of the five groups can be seen by referring to

Table E-3, where the states are ordered by group, with a space between groups. For

each state, the composite estimate was the weighted mean of the direct estimate of

the unit variance for the state and the weighted average of these estimates for the

other states in its group, under the condition that the other states had a Federal

subsampling rate the same as that of the specified state.

Each group of states was then used to make a pooled unit variance

estimate for the current period for each of the included states. The pooled variance

estimate for state k within a group is made by taking a weighted average of the

current unit variance estimate for the particular state (state k) and the pooled unit

estimate for the other states in the group. More specifically, the pooled unit

variance estimate for state k is obtained by computing the weighted average

-2 2 2
sk = wkSk+(1-Wk)Sok,

2 . ^

where s k is the estimated unit variance of Rk (computed as in the present AFDC
2

procedure) for the current period for state k, Sok is the weighted average (weighted by

the Federal subsample size) of the unit variance estimates for the current period for

the other states in the group (excluding state k). In this computation for state k, the

unit variance esamate for each of the other states is modified by replacing its Federal

subsampling rate by the rate used for state Ir,.
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This pooled estimate will consi:-erably improve the unit variance

estimate for state k provided that the true and unknown unit variance in each of

fthe otherstatesin thegroupis n°t "Uodifferent'frO-m the u'ue(unknown)unit

variance for state k. The improvement results because Sok is estimated from a much ..
2 .....

2 2
bias depending on how much the expected value of Sok differs from Sk. The weight

w k for state k can be chosen, as described in the Technical Note to Appendix E, so as

approximately to 'minimize the mean square error of s2 as an estimate of S2k' taking

account of approximate measures of the bias as well as the variances involved.

We note, especially, as seen in the Technical Note, that in order to

compute approximately optimum values of w k for a state, estimates are needed of
2 2

the unit variance for each state, as well as of the bias of Sok as an estimate of sk. Of

course, we do not know the values of these terms and must estimate them. We

have used approximate procedures to do this, as discussed in the Technical Note. In

particular, the bias could be estimated directly for each state, but such estimates are

subject to variances that are too large to be useful. Consequently, we examine the

implications of some alternative procedures for determining an approximately

optimum w k .

As seen in the Technical Note, the estimates of the average squared

bias were negative for four of the five groups, and positive for one. While the true

squared bias must be zero or positive, negative estimates are possible. These

estimates, even the average for a group of about 10 states, are still subject to very

large sampling errors. Of course, the negative estimates are the result of sampling

erro!,, and we regard the positive ones as also substantially determined by sampling

variability. Consequently, we have used two different measures of bias that result in

two sets of approximately "optimum" weights. For one set, we used an estimate of

zero bias for each state. As another alternative, we use for each state a high average

E-6



14/fstat, Inc.

squared bias estimate obtained as the average of the absolute values of the estimated

squared biases of the five groups.

- - The manner m which-theWeights i_ the composite estimator were ;7_
dete_uaned, so as approxm_at_y to _'the'average mean SqUare error for the '- '?_

states in the group, is detailed in the Technical Note at the end of this appendix.

Tables E-3 and E-4 display, for the alternative estimates of optimum

weights, the composite estimate of the unit variance in fiscal year 1984 for each of

the 50 states and the District of Columbia. The tables also show for each state,

among other things, the size of the Federal subsample (n'), the weight used in the

composite estimator, the direct estimate of the unit variance, the variances of the

estimated average variance in the group and of the direct variance estimate, and the

variance of the composite estimate of the unit variance. The definitions and the

estimation procedures are given in the Technical Note.

In addition, as a fourth and simpler alternative pooled variance

estimation procedure, we have made pooled estimates of the unit variance of the
2

Federal overpayment errors, s x, of the average payment error, -t, and of the

estimated correlation of the Federal and the state determinations of overpayment

errors, r. These estimates were pooled over all states in the group. The simple

pooled unit variance estimate for a state is then

2

where fi = n'i/ni is the subsampling fraction for the Federal subsample in the state.

This procedure provides what we refer to as a simple pooled variance estimate, and

is similar but not equivalent to the assumption of zero bias in the computation of

optimal weights. Table E-5 di.qplays the simple pooled estimates of unit variances.
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In an effort to evaluate the two alternative composite variance

estimators, we have made approximate estin_ates of their variances. We refer to

these estimates of the variance of the estimated variances as "experimental"
estimates. This term has been used because we have not made these estimates

directly from the sample data. Instead, as discussed in the Technical Note, we have " !
2

derived them from the assumption that the relvariance of the direct estimate, s_, of
^

the variance of R, the regression estimator for a state from a double sample, can be

approximated by

2s_ _-1 (02)2 (1)(3 -- n'
e,-

2 2
The value of o_ is estimated directly from the sample data by s_. Approximate

values for _ are derived from the estimates of the variance of variances that have

been obtained from the 1000 replicated samples from each of the three test

populations, for various sizes of state samples, n, and of Federal subsamples, n'.

We did not make direc, analytic estimates of the variance of the

variance of the regression estimator for a double sample because the theory is not

available. We did not regard it as worth the effort to develop the theory at this time

because we believe our "experimental" estimates provide an acceptable alternative,

and perhaps a better alterv, ative than direct estimates which would be subject to very

large variances.

The estimated values of _ are shown in Table C-1 and are also

discussed in the Technical Note in Appen_ax C. A linear regression on the Federal

subsampling rate was fitted to these values of _ and used to compute approximate

values of _ for each state. These are displayed in Tables E-3 and E-4. These and the

estimated unit variances were then substituted in Equation (1) above to compute the

"experimental' ,-alues of the variance of _e estimated unit variance for each state.

The vari._.'-ces of the composite estimate', f unit variances were derived from these,

as explained Ln the appended Technical Note.
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We now present two kinds of evaluations of the pooled variance

estimators .... From Figure E-3 (each point represents the ratio for a state), it is seen

C . _t,.that the ratio of. the estimated ,variance!of_the_direct:_..eStimate: to. the. esH?_'-ted- ?:i;_:._:?_

variance of the composite estimate with zero as. the, estimate of bias squared varies ':>.!!?i
"' from an average of approximately a factor_of 14 (Varying from about 12 to 17) for

states with annual Federal subsamples of 150 to an average of approximately 8

(varying from about 6 to 10) for states with a Federal subsample size of

approximately 360. Thus, the variance of the composite estimate using zero as the

squared bias is small, very substantially below that of the direct estimate of the
variance.

The simple pooled variance estimator yields results that are very close

to those for the composite estimator using zero as the squared bias, so the variance

reductions for the simple pooled variance estimator are similar to those shown in

Figure E-3 for the "zero bias" estimator. In fact, it is shown in the Technical Note

that the correlation, across states, of the simple pooled variance estimates with those

from the composite estimate using zero bias squared is approximately .98. This

correlation is high enough that we regard it as not worthwhile to make a separate

evaluation of the variances of the simple pooled variance estimator.

We note that while the reductions in the variance of the variance

estimates are substantial for all Federal subsample sizes, they are greatest for the

states irt which the Federal subsample is relatively small, and in which reductions
in the variance of the variance estimates are most needed. We also note that these

results are based on the approximate experimental variance of variance estimates, as

discussed earlier. However, since these results depend importantly on the sample

sizes involved, the ratios displayed in Figure E-3 should be reasonably close to what

they would be if the true variances of the variance estimates were known.

Figure E-3 also displays the ratios of the variance of the direct variance

estimate to the variance of the composite variance estimate using the high estimate

of the squared bias. The resemblance of the simple pooled estimator to the

composite estimator using zero squared bias is a consequence of the similarity in the

weights assigned to the direct estimate of the unit variance in these two estimators.
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In Fi.- ..re E--4, we show the weight assigned to each state for each of four

estimators of the variance of the estimated unit variance. (The esHrnator designated

?"adjusted simple pooling" is described in Section 2.5,1 of this 're_rt.)'In this fig_ure,

the states are arranged in order of the weights assigned in the simple pooling. We

- _te that the weights are nearly identical for the simple pooled estimator and the

composite estimator using zero squared bias. The weights for the composite

estimator u._:_g the "high" squared bias are much greater, and therefore, result in

less variance reduction. Consequently, from the point of ew of variance

reduction, there is a considerable advantage in using the zero bias squared in the

composite estLm,ator versus the alternative high bias squared estimator that we have

evaluated. The adjusted pooled estimator assigns weights that are slightly less than

twice those assigned by the simple pooled estimator.

The next point to _.'_mate is how well the direct es mate of the unit

variance, and each of the pooled variance estimates, serves as an estimate of the
unknown true unit variance for each state. We cannot make this evaluation

directly but can do it indirectly. We have shown in the Technical Note that,

without knowing the true variances for 1983, we can approximate the correlation,

across states, between the true state unit variances for 1983 and the variance

estimates for 1984, tor each variance estimation procedure.

Table E-I summarizes the indicated estimated coefficients of

correlations (r), and their squares (r2), called coefficients of determination, obtained

as described in the Technical Note. These are estimated unweighted correlations

across states - a small state and a large one have equal weights.
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A

Table E-I. Estimated unweighted correlations of true unit variance of R for 1983 with estimated unit
variances for 1984

r-. _,:.. ,_- _._.:_-....._-_._._ _t,._ _ :l_d!al[_dl_ _ ,aC.t_,_'__: _?_,'_ .-*,'. _,._, ..-,:_:-_:.'-_

r

Estimated unweighted correlation of true unit
A

variance of R for 1983,with:

(a) Direct variance estimate for 1984 .64 .41

(b) Composite variance estimate for 1984using
zerosquared bm .69 .47

(c) Composite variance estimate for 1984using
high squared bias .75 .57

(d) Simple composite variance estimate for 1984 .69 .47

These correlations are reasonably high, although not as high as would

be desirable. About half of the unweighted variance between states of the true unit

variance is accounted for by each of the three pooled variance estimators, indicated

by the squared correlations. The correlations for the pooled variance estimators are

somewhat higher than the correlation for the direct variance estimation (although

this may result from sampling variability). This fact, together with the fact that their

variances are very much smaller, is sufficient to indicate the substantial advantages

of using a pooled variance estimator for general precision measures, for predicting

needed sample sizes, or for predicting the precision to be obtained from specified

sample sizes in a future year.

We note that it would be desirable, also, to estimate the correlations of

the 1984 true state unit variances with the various 1984 variance estimators. We are

not able to do this because we do not have independent direct variance estimates for

1984. Nevertheless, it is obvious that the correlations of 1984 true unit variances

with the 1984 variance estimates would be higher than those shown in Table E-1.
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On the evidence presented, it appears that the simple pooled variance

estimator might reasonably be regarded as the preferred one among the three
estimators we have _evaluated._" Since __ _l_"_'_-ts--alm-"o_-id_fic:al'_"the ._

composite estimator using _'squa_. bias, the gains in variance reduction will be ?
substantial, as indicated bY Figure E-3. _ estimated correlation with the 1983 true "

values is lower than that of the composite variance estimator with the high squared

bias. The gain in correlation with the latter (which may be real or the result of

sampling error) seems not to be worth the substartial additional computation

complexity involved in computing the c -_osite variance estimates. -'he s:.mple

pooled variance also has the advantage of providing separate estimates of the

2 _2variance components in the regression es_ir_ator (i.e., s x / and r) for use in
/...

evaluat_'tg alternate allocations to the state sample and the Federal subsample.

It is possible that, on further analysis, an estimator intermediate

between the simple pooled variance estimator and the composite estimator with

high bias squared would be found to have additional advantages. We have

described such an alternative in Section 2.5, and the weights assigned by such an

estimator are shown in Figure E-4. It seems like y that it would have minor

advantages over the simple pooled varian e estimator as defined and evaluated

here. When data for an additional year become available, such a modified simple

pooled variance estimator may reasonably be evaluated in comparison with those
shown here.

We conclude, then, that for the present, the simple pooled variance

estimator (or the modifications of it, as described in Section 2.5.1 of the report _,.s to

be ?referred for most variance estimation purpose< other than for the computation

of lower confidence bounds. The advantages, for these purposes, over the direct
variance estimator are substantial
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Figure E-I. Scatter charts illustrating the relationship between the direct estimate of variance and
the estimate based on the regression, for states, for periods 3 and 4
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Figure E-2. Average unit variance in FY 1981-82, for states _rnmsed by that average
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Figure E-3. Ratio of the vari,_ce of the direct estimate of unit variance to the composite estimate of
unit variance using zero and high squared bias, related to the size of the Federal
subsarnple
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Figure E-4. State weights for pooled unit variance estimates, for states sequenced by weight for the
simple pooled estimate
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TECHNICAL NOTE FOR APPENDIX E

This note gives details on the computations referred to in Appendix E.

Regression Estimator of the Unit Standard Error of the Payment Error
Rate

We are concerned here with the regression of the unit variance

(defined as the variance of the es_mate of the payment error rate, multiplied by the

Federal sample size) on the estimated error rates in the same and the previous two

six-month periods and on the unit variances in the previous two periods. In matrix

notation, we wish to fit the model

y = Xl3+e

where X is a matrix of 51 rows (the 51 states) and six columns (corresponding to the

constant term and the five regressor variables as defined in Appendix E), and y is the

column vector of the unit variances. We have estimated the regression coefficient

vector _ by (unweighted) least squares, namely by

b = (xTx)'IXTy.

The computations were made using the data for the first three of the

four periods available, yielding the following solution for the vector b:

-0.0005 Constant term

0.2873 Payment error rate, period 3
-0.0090 Payment error rate, period 2
-0.0033 Payment error rate, period 1
0.2941 Unit standard error, period 2

-0.0000 Unit standard error, period 1

The regression estimates of the unit variance in period 3 varied among the 51 states
; from 0 to 0.069, with a mean value of 0.020 and a standard deviation of 0.013.
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Table E-2 gives the data and the results of the regression value of the

unit variance for period 3 as well as the calculated unit variance for period 4 using

the coefficients given above. The regression estimate of the unit variance in

period 4 varied among the states from 0 to 0.058, with a mean value of 0.019 and a
standard deviation of 0.012.

Composite Estimator of the Unit Variance

We consider first the general problem in which a composite estimate Ei

for the i-th locality of a group of localities is a weighted mean of a local unbiased

estimate xi and the mean of the estimates xj of the other localities that are members

of the same group. Let m de:_)te the number of localities in the group. The

composite estimator for the i-th locality is defined by

_i" Wixi+(l'Wi)_'(i) (1)

where x'(i) denotes the mean of the estimates for the m-1 localities other than the

i-th locality. We wish to determine the weight W i that minimizes the mean square

error of the composite estimator. We have

l%_E(_ i) '" Var(x' i) + (Ex~ i - Exi)2 (2)

W2iox2i 2= + (1-Wi)20 x(i) + (1-Wi)2 (Ex-(i) - Exi)2.

The value of W i that 'minimizes the mean square error is obtained by equating to

zero the derivative of the mean square error with respect to Wi:

2 2

0 = 2Wicrx i - 2(1-W i) {Ox(i) + (]_(D' Exi)2} '

Solving this equation for Wi yields the optimum value
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2 2
CL + (Ex(i) - Exi)

x¢0

w. = (3)!

2

% + +(ma)- 2

M

The parameters in the equation for the optimum W i are not known, So

that estimates of them are used to obtain an estimate of the optimum weight.

In our case, xi is the estimated unit variance s2. of the estimated
^

payment error rate Ri for state i. We make the assumption

2

Os_ - (_i' 1) 0 4 / n' i (4)

2
where [}iis a specified constant for each state i and ai is the unit variance that is

2
estimated by s i . This relationship would hold for simple random sampling with

replacement. 1 For the regression estimator with double sampling, as used in AFDC,

it is an approximate relationship. The specified 13i for each state are shown in

Tables E-3 and E-4. The values of 13i were computed from the observed relationship
, 2 2

of _i (as given by the approximation 13t = 1 + n iS xl/S_l), that is yielded by

Equation (4), to the Federal subsampling rates n'/n in the Test Populations A, B, and

C. A linear regression equation was fitted to the data shown in Table C-1 in

Appendix C. The dependent variable was the _t shown in the table, and the

independent variable was fi=n'i/ni . The resulting regression equation was

[3i = 64.3 - 54.47fi .

IHansen, M.H., Hurwitz, W.N., and Maclow, W.G., Sample $m, oey Metfioda ami T/mn 7, Vol. I, p. 427
(New York: John WHey & Sons, 1953)
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We then define the estimator

2

Sx i - (_i' ]) {Ui(] ' (3'n'i/ni)r2)} ._-n'i (5)

where u i denotes the ratio of the esl'imat,_ _ variance of the Federal determination of

the overpayment errors to the square of the average payment error estimated from

the state sample, and r i denotes the estimated correlation between the Federal and

state determinations of the overpayment errors. Tke expression in the braces

divided by n' i is the appropriate regression variance estunator of the payment error

rate, f_i',as used by AFDC.

Groups of states were defined in the following way. For each state i, for

each six-month period t in fiscal year 1981-82, the unit variance was computed as

2 2
sti = uti (1 - .6rtt)

where the uti and rti are defined as u i and ri in Equation (5). This computation of

the unit variance replaces the Federal subsampling rate that was used for the state by

the constant rate .2, which is roughly the average Federal subsampling rate. The

average unit variance for state i m fiscal year 1981-82 was then taken as the weighted

mean of the four six-month periods, viz.,

n't,
t=l t-I

where n'ti denotes the Federal sample size in period t. The states were ordered by
2

the value of s i and five groups were defined as exhibited in Figure E-2.

For the set of states in a group other than the state i, the average
variance is

x(i) "_i n'juj [1 - (1-n'i/ni)r2j ] / (n'-n' i) (6)
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whose variance is estimated by

2

= z n'j(_j-,){h[1-O-n'dni)?j]}2/(n'-n'l)2.
x(i) j_i

The term {E_'(i)-Exi}2 in Equation (3) is the square of the bias that results

when the average variance for the other states in a group is used as an estimate of

the variance for state i in the group.

To estimate (_'(i)-Exi)2, we note that

E('x(i) - xi)2 = E{(x'(i ) - E_(i)) - (xi- Exi) + (Ex-(i) - Exi)} 2

2 2

= a-- + C_1 +(_(i)'Exi )2x(i)

since x i and _'(i) are independent. An unbiased estimate of the desired parameter,

termed the square of the bias, is then given by

2 2

(_(i)-,_)2_s_ - _lx(D

This could be computed directly for each state, but such estimates are subject to

extremely large variances, too large to be useful. Instead, we consider, as a first

alternative, using for each state the average squared bias for the whole group of

states. We would therefore estimate this parameter for a group by

2 2
= -s..}. (8)

b2 _n'l{(_'_-0_2'% x_

E-21



Although the parameter being estimated is non-negative, the estimate b 2 may take

on a negative value for a group. In such a case, b2 may be taken to have the value

zero for the group. As a second alternative, because even the group averages are

subject to wide sampUng variation, the values of b 2 may be taken to be the average

over all the groups. Even the average may be negative, in which case we may take

b2=0. Substituting the estimates of the parameters in Equation (3), we obtain the

estimates of W i.

A further modification is suggested by the fact that the first term in the
2

denominator of W i, namely _xi, is subject to a quite large variance. We therefore
2

consider replacing the estimate s_ by a more stable estimate of _xi in the following

way. We first replace the quantity within the braces in Equation (5) by the average of

such quantities for the other states in the same group; the latter is given by E(i) of

Equation (6). We then define the more stable estimator as the weighted mean of the

new variance computed by Equation (5) and the direct estimate of variance for the

state. Thus, we have

- 2

S =
xi n'

2
This is then substituted for a. in Equation (3).'l

The various parameters as discussed above were estimated for each

state from the state data for fiscal year 1984, based on the groups of states as defined

above and displayed in Figure E-2 and Tables E-3 and E-4. The average value of b2

turned out to be negative. Table E-3 gives the composite estimates when b 2 is taken

to be zero for each group. Table E-4 gives the composite estimates when !)2 is taken

to be the weighted mean of the absolute values of the value of b 2 computed for each

group. We refer to this as the "high" squared bias, because it is likely to be greater

than the true squared bias (since its expected value is greater). In addition to the

composite estimate of the unit variance for each state, Tables E-3 and E-4 display the
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size of the Federal subsample, n', the values of _ (beta), the estimated error rate, the

weight used in the composite estimator, and the experimental estimate (described
below) of the variance of the estimated unit variances for both the direct estimate

and the composite estimate.

The weight calculated for a state is considerably greater when the

"high" squared bias is used than when a zero squared bias is used. The true

optimum weight is somewhere between the two, since the true squared bias is

undoubtedly positive. Figure E-5 is a scatter diagram which shows the relationship

of the weights for zero and high squared bias. We note that, on the average, the

weight is about four times higher when the high squared bias is used. Figure E-4

also shows this relationship.

Because the composite estimator involves considerable computation,

we consider also a simple pooled estimate of the unit variance. Groups of states are

defined as above for the composite estimator. For state i of group g, the simple

pooled estimator of the unit variance is given by

Ss---_x 1- 1- si 2 (9)
-2 _. g

J

In this expression, ng i and n'g t denote the sizes of the state sample and the Federal
subsample, respectively. The other quantities are weighted means of corresponding

quantities for all states in the group. Specifically,

_. - .·,2 = ___r_'_l_s2_/ (,,'gm_i

' ?%Sgy -: - -i

,_ -- _ (_'_-0,_ / (%-rog)i
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rg = Sgxy / sgx Sgy

mg = number of states in group g

n'g = _ n'gii

2
Sgix = estimated unit variance of the Federal determ _tion of

payment error

2 - estimated unit variance of the state determination of
Sgiy

payment error, as estimated from the Federal subsample

Sgixy --- estimated unit covariance of the Federal and state
determinations of payment error.

Table E-5 displays the simple pooled estimates for each state. These

closely resemble the composite estimates using zero squared bias, as exhibited in

Figure E-6. The correlation between the two state estimates is .978. On the average,

the simple pooled estimate is about 10 percent greater than the composite estimate.

The variance of an estimate of the unit variance for a state is a function

of the size of the sample used to estimate the ·-.-tit varia._ce. In Figure E-3 we show,

by state, the ratio of the direct es_rrtate for FLqcal year 1984 to the composite estimate

(using zero squared bias and the high squared bias) as related to the Federal sample

size. The relationship, as expected, appears to be a monotone decreasing function of

the sample size, concave upward, and somewhat flatter when using the high

squared bias.

An important reason for seeking a better estimate of the true unit

variance in a given year is to predict the unit variance in a subsequent year, for the

purpose of determining the sample sizes that will yield estimates of the payment

error rate of some prescribed precision. In the discussion above, we have used data

for fiscal years 1981 and 1982 to group states, and have then estimated unit variance
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for 1984. In practice, we would estimate the unit variance for 1983 and use it to

predict the unit variance for 1984. Since this should be similar to "predicting" 1983

from the 1984 estimates, we present such analyses here. Figure E-7 presents scatter

diagrams showing the relationships of the several 1984 estimates of unit variance to

the direct estimate for 1983. As shown in Figure E-?, each of the estimates for 1984

shows a moderate correlation with 1983, of about .5 (ranging from .44 to .52).

To evaluate the 1984 pooled variance estimator as a predictor of the
1983 variance, let

xti = direct estimate of unit variance for state i in year t, where

t---3for fiscal year 1983 and t--4 for fiscal year 1984;

zti --- pooled estimate of unit variance;

Xti = true unit variance; and

Ztt = expected value of zti.

We are interested in the correlation, over states, between the direct estimate for 1984

and the true unit variance for 1983, and the correlation between each of the pooled
unit variance es '-ttmates for 1984 and the true unit variance for 1983. We denote

these correlation coefficients by Px4x3 and pz4x 3, respectively. We define

aX4i = X4i- X4i

'X4 -- average of X4i across states

Y('3 = average of X3i across states.

The covariance of x4i and X31across states is defined by
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°,,_,,3= EE{("_'_)(X3_'_)li}

= _'E{(X4_+a"4_'X4)(_' _)Ii! ..

= EE{(x4_-x4)(x3_-%)li}

- E(X4i- X4)(X3i- X3)

= %x3'

The variance of x4i across states is defined by

2

ax4 = E E{(x4i -X4)2 1i}

= E E{(X4i + Ax4i- i4)2 ]i}

= E E{(X4i-X4 )2} + E E{(Ax4i)2 l i}

= E(X4i- X4 )2 + E{(_241 Ii}

2 2

Ox4+ ,_y.= O_4

Since

E(X3i-X3)2 = O_

we have
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(_x4X 3

Px4X3 - °.4(%

_X4X3

°X 3 (_X4 + OAx4

_X4X3

(%% l +_4 / ex4

1 (10)
= OX4X3 2 2

._1 + /oX4
°AX 4

Similarly, it can be shown that

1 (11)
Pz4X3 = PZ4X3 I 2 2

-q ]+ °/_4 / _4

None of the correlations between the values X3, X4 and Z 4 can be

estimated directly from the data. We can, however, estimate the correlations of

their estimates, and similar algebraic manipulation shows that

2 2 1

Px3x4 = PX4X_ 2 2 (12)
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2 2 1

Px3z4 = PX3Z4 2 2 (13)

Solving Equation (12) for Px4x 3 and substituting into Equation (10), we

obtain

z

OAx3

Px4X3 = 1 + _ Px_o_,,i (14)
,%

Similarly, solving Equation (13) for px3ziand substituting into

Equation (11), we obtain

Oax3

Pz4X3 = 1 + _ px3z4 (15)
OX 3

It is necessary to estimate the quantifies in these equations. We have

I

1 51
= 51 Z E{(x4i- X4i) + (X4i' fi4 ) + (X 4' )(4)}2i

1 51
= 51 Y' {E(x4i' X4i)2 + (Xti' _4 )2 + E(x4' )(4)2i

' 2_(x4-x4)("4a'x4_)}
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1 51 2

= 51 _" { C_x4i+ (X4i - X4)2 - E('x4 ' X4 )2}l

=

We ignore the third term of the right member since it is small compared to the first

term. Similarly, we have

1 51 2 2

E 51 ._ (Z4i'z'4)2 -' (_Llz4 +OZ 4 '1

From Table E-3, we compute the estimates of the quantities involved:

1 51
5"i- _ (x_'_4)2 = 1'222Sx10'4

2
= 6.4484 x 10-5

S_t 4

so that

2

sx4 = 5.7796 x lO s

and

2

5Ax 4
,- 1.1157.2

We assume that this ratio has the same value for 1983 as for 1984, so that we take

2°

%
·. 1.1157.2

sh
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From the data ; have also estimated

^

Px3x¢ = .439

^

px3z4 = .473 for the composite estimate using zero squared bias

= .519 for the composite estimate using high squared bias

= .473 for the simple pooled estimate.

Substituting the estimates into Equations (14) and (15) yields

A

Px_Xo Composite zero bias Composite high bias Simple pooled

.639 .688 .755 .688

Thus, the composite estimate using zero squared bias and the simple pooled
variance estimates for 1984 have the same estimated correlation with the true unit

variance for 1983. The estimated correlation with the direct estimate is somewhat

lower. It is somewhat higher with the composite estimate with high squared bias.

The differences may be real or due to sampling variability. These correlations are

about 50 percent greater than the correlation between any of these estimates for 1984
and the direct estimate for 1983.

We return to explain the computation of the variances of the

composite estimators, as shown in the last column of Tables E-3 and E-4. These

values, which we have termed "experimental," are based on the following

speculation. For economy of notation, let s_ denote the variance defined by
2

Equation (5) and s(i ) the variance defined by Equation (7). Let -2s i denote the

composite estimate of the unit variance for state i, i.e.,

- 2 2

S_ = Wis i + (1-W i) s(i ) .
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Conditionalon thevalueof W i,

Var(_ 2) - W_i Var(s2)+(1-Wi)2Var(s(2)) (16)

2
since s_ and s(i) are independent. We take

!

Var(s_) --- (_i-1) (si)2/ni

and

Va,(s , p--
The experimental estimate of the variance or mean square error is given by

substituting estimates of the quantities in Equation (16).

The problem with direct variance estimates by states is their greater

sampling variability, as discussed in Section 2.5 of the report and in Appendix C.

We conclude that the sampling variability of the composite estimator is

considerably less, as illustrated in Figure E-3. Consequently, for making estimates of

needed sample sizes, at least, the composite estimates are likely to have substantial

advantage over the use of the direct state
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Table E-2. Data and results of regression estimates of w .-lance, by states

Estimated payment error rote F_m_ted unit _ri_ce _ton es6mates

Period Period Period

State 1 2 3 4 1 2 3 4 3 4

AK .1376 .2211 .1288 .1104 .04417 .13373 .07181 .05_47 .06947 .04653
AL .0832 .0709 .0551 .0508 .03238 .01607 .01482 .01842 .01522 .01380
AR .0657 .0701 .0884 .0521 .01705 .00986 .02907 .01493 .02303 .01807
AZ .0874 .0784 .1155 .1165 .02107 .02190 .02900 .02887 .03421 .03628
CA .0861 .0500 0736 .0463 .04103 .01264 .02717 .01636 .01971 .01604
CE) .0998 .0652 0500 .0800 .04197 .01983 .01643 .01496 .01486 .02273
CT .0798 .0690 .0528 .0748 .00155 .00999 .01124 .0455_ .01280 .01967
DC .1511 .1198 .1759 .1666 .00896 .04274 .05690 .03832 .05711 .05820
121E .1285 .1024 .1008 .1357 .06263 .03811 .06372 .13296 .03440 .05206
1_ .0749 .0836 .0631 .0576 .00617 .01429 .01126 .00972 .01691 .01459
GA .0732 .0577 .0477 .0549 .01105 .00737 .01773 .02082 .01069 .01594
HI .1012 .1008 .0872 .0770 .03756 .02881 .03234 .05748 .02786 .02609
IA .0440 .0411 .0406 .0490 .00890 .00500 .00775 .01111 .00820 .01143
ID .1265 .0507 .0473 .0613 .07180 .02711 .01128 .02674 .01627 .01591
IL .0860 .0793 .0767 .0883 .02616 .0_034 .02030 .03559 .01966 .02596
IN .0520 .0323 .0345 .0425 .01478 .OC_ll .00429 .01227 .00653 .00863
KS .0751 .0870 .0562 .0008 .00967 .03703 .02391 .00004 .02158 .02480
KY .0550 .0443 .0337 .0378 .00773 .00596 .00443 .00775 .00643 .00729
LA .0577 .0763 .0645 .0604 .01396 ,01300 .02134 .00727 .01705 .01838
MA .I112 .0735 .0545 .0944 .03411 .01689 .00842 .01699 .01517 .02444
MD .1179 .1132 .0911 .0733 .01007 .02996 .02363 .01769 .02916 .02239
ME .0861 .0716 .0526 .0291 .02243 .01710 .01581 .00280 .01479 .00788
MI .0691 .0767 .0898 .0814 .01000 .03191 .01360 .00946 .02984 .02190
MN .0381 .0499 .0309 .0297 .01933 .02657 .01415 .02225 .01169 .00783
MO .0648 .0770 .0611 .0343 .01834 .01609 01344 .01141 .01695 .00858
MS .0733 .0649 .0500 .0446 .01431 .02044 .01391 .02405 .01513 .01182
MT .068_ .0305 .0113 .0384 .02961 .00550 .00303 .02612 ..00006 .00730
NC .0619 .0465 .0372 .0283 .00859 .00406 .00288 .00452 .00684 .00407
ND .0330 .0287 .0128 .0254 .01668 .00666 .00284 .00736 .00084 .00350
NE .0410 .0676 .0586 .1325 .OIP_ _ .00252 .01945 .08227 .02417 .03862
NH .0549 .0771 .0584 .0587 .040iO .00648 .02194 .02564 .01338 .01811
bO .0836 .0770 .0936 .0S22 .02154 .02009 .02882 .00900 .02741 .01795
NM .1241 .1236 .1189 .0915 .04409 .00972 .02956 .02926 .04284 .02908
NV .0250 .0203 .0147 .0104 .01310 .00019 00152 .00941 -.00041 -.00119
NY .0912 .0694 .0681 .0913 .01118 .01816 01055 32338 .01956 .02407
OH .0838 .0933 .0769 .0753 .02.562 .02783 .01982 .03070 .02474 .02204
OK .0492 .0829 .0465 .0286 .03647 .03942 .01665 .01143 .01962 .00800
OR .0670 .0615 .0734 .0679 .01669 .05963 .04594 .02411 .03336 .02771
PA .0979 .0830 .0937 .0762 .01062 .01364 .03423 .01128 .02544 .02642
RI .0676 .0573 .0584 .0548 .02607 .Olld.4 .02007 .02837 .01498 .01651
SC .0739 .0828 .0937 .0839 .01571 .00972 .02264 .01540 .02437 .02522
SD .0721 .0208 .0376 .0365 .06411 .00378 .01002 .01380 .01001 .00860
'IN .1019 .0771 .0557 .0427 .01251 .02053 .01523 .00928 .01659 .01157
'IX .0711 .0791 .0881 .0790 .02880 .01595 .02411 .02165 .02463 .02431
Ur .0598 .0371 .0543 .0057 .0354S .01057 .01957 .01897 .01375 .01385
VA .0369 .0349 .0330 .0481 .00867 .00470 .00238 .01301 .00600 .00968
VT .0382 .0646 .0566 .0327 .01421 .03737 .00749 .01562 .02212 .00645
WA .0985 .0868 .0731 .0560 .07344 .02723 .02435 .00640 .02348 .01788
WI .0942 .0771 .0489 0089 .02155 .01907 .01607 .01607 .01423 .01366
WV .1894 .0762 .0811 0838 .10835 .01851 .01519 .02310 .02302 .02314
WY .0709 .0836 .0385 0563 .03275 .03759 .02020 .04434 .01671 .01707
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Table E-3. Composite estimates of unit variance, using zero squared bias, by states

] [ Unit variance Varianceof:
Variance

Local average of
State n' beta f Weight Direct Composi_ average variance variance c_,.q.,ostte

]_) 144 39 .4S6 .066 .0268 .0146 4.028E-06 5.729E-05 .0137 3.764E-06
NV 151 39 .462 .079 .0146 .0146 4.599E-06 $.336E-05 .0146 4.235E-06

368 56 .147 .158 .0070 .0074 1.550E-06 8.288E-06 .0075 1.306E-06
IA 344 51 .239 .151 .0077 .0095 2.368E-06 1.327E-05 .0098 2.009E-06
VT 145 38 .482 .076 .0185 .0151 4.767E-06 5.770E-05 .0148 4.403E-06
KY 360 56 .156 .156 .0060 .0076 1.666E-06 8.992E-06 .0079 1.406E-06
VA 364 55 .162 .155 .0075 .0078 1.643E-06 8.978E-06 .0078 1.389E-06
IN 377 56 .161 .165 .0034 .0077 1.833E-06 9.238E-06 .0085 1.530E-06

147 39 .473 .059 .0335 .0148 3.889E-06 6.214E-05 .0137 3.660E-06
UT 177 37 .500 .095 .0191 .0155 5.096E-06 4.860E-05 .0152 4.612E-06

MT 150 38 .479 .066 .0350 .0244 1.035E-05 1.455E-04 .0236 9.659E-06
ME 219 46 .335 .083 .0197 .0189 6.669E-06 7.358E-(}5 .0189 6.115E-06
FL 360 56 .153 .102 .0167 .0122 2.658E-06 2.337E-05 .0117 2.386E-06
AR 241 51 .252 .085 .0113 .0158 4.899E-06 5.258E-05 .0162 4.481E-06
KS 257 48 .298 .087 .0243 .0176 5.460E-06 5.705E-05 .0170 4.983E-06
SD 151 39 .456 .069 .0124 .0231 1.021E-05 1.384E-04 .0239 9.$12E-06
LA 373 56 .154 AlS .0137 .0123 2.897E-06 2.232E-05 .0121 2.564E-06
GA 361 56 .146 .110 .0140 .0120 2.729E-06 2.210E-05 .0118 2.429E-06
CT 358 53 .211 .125 .0074 .0143 4.4OOE-06 3.092E-05 .0152 3.852E-O6
MO 405 56 .149 .131 .0112 .0121 3.008E-06 1.999E-05 .0123 2.615E-O6
'IN 366 56 .159 .120 .0095 .0125 3.236E-06 2.362E-(}5 .0129 2.846E-06

RI 219 44 .369 .106 .0172 .0217 1.115E-05 9.444E-05 .0222 9.975E-06
SC 363 54 .194 .154 .0099 .01:S3 6.$29E-06 3.587E-O5 .0162 $.524E-06
NY 357 56 .148 .118 .0239 .0140 4.251E-06 3.163E-05 .0127 3.747E-06
CO 288 48 .299 .130 .0091 .0189 9.381E-06 6.268B-05 .0203 8.160E-06
MI 364 56 .150 .151 .0129 .0139 5.219E-06 2.945E-05 .0141 4.433E-06
PA 365 56 .148 .106 .0273 .0138 3.830E-06 3.237E-05 .0122 3.425E-06
WI 372 56 .149 .143 .0182 .0140 4.814E-06 2.892E-05 .0134 4.127E-06
AZ 258 49 .286 .092 .0359 .0192 7.216E-06 7.094E-05 .0175 6.549E-06
MS 361 55 .176 .149 .0036 .0144 6.229E-06 3.5551F.-05 .0163 5.300E-06
MN 366 54 .192 .152 .0038 .0149 6.673E-06 3.713B-(}5 .0169 5.657E-06

MA 366 56 .149 .127 .0184 .0181 7.176E-06 4.924E-0S .0181 6.263E-06
NJ 362 56 .149 .130 .0148 .0180 7.468E-06 4.994B-0S .0185 6.497E-O6
AL 367 55 .I79 .116 .0255 .0191 7.184B-06 5.452B-05 .0182 6.348E-06
WV 298 51 .239 .115 .0126 .0209 9.814E-06 7.573E-05 .0220 8.688E-06
OK 278 50 .268 .107 .0067 .0217 1.075E-05 8.958E-05 .0235 9.596E-06
ID 156 37 .495 .069 .0540 .0300 1.545E-05 2.091E-04 .0283 !.439E-05
MD 363 56 .150 .132 .0130 .0181 7.651E-06 5.043E-05 .0188 6.643E-06
WY 164 39 .471 .076 .0334 .0289 1.574E-05 1.922E-O4 .0285 1.455E-05
CA 387 56 .151 .120 .O245 .0181 6.$34E-06 4.773E-05 .0173 5.747E-O6
'IX 363 56 .149 .122 .0208 .0181 6.913E-06 4.979E-0'3 .0177 6.070E-06

t_! 382 56 .152 .116 .0211 .0151 4.539E-06 3.445E-05 .0143 4.010E-O6230 46 .337 .103 .0141 .0228 1.201E.-(}5 1.048E-04 .0238 1.078E-05
OH 368 56 .151 .144 .0083 .0152 6.041E-06 3.$98E-0_ .0164 5.173E-06
NE 199 43 .397 .089 .0316 .0256 1.337F,-05 1.376B-(M .0250 1.218E-05
DC 240 48 .297 .095 .0261 .0'213 9.391E-06 8.9291-05 .0208 8.497E-06
l'a 211 45 .349 .087 .0316 .0235 1.112E-05 1.162]_04 .0228 1.015E-05
WA 389 54 .182 A55 .0110 .0165 6.999E-06 3.804E-OS .0175 5.912E-06
OR 280 50 .264 .116 .0147 .0199 9.245E-06 7.031B-05 .0206 8.171E-O6
AK 160 38 .479 .082 .0327 .0290 1.734E-05 1.930E-(M .0286 1.5911:-05
EIE 164 36 .524 .085 .0453 .0311 1.897E-05 2.046E-04 .0298 1.736E-05

Average .0185 .0173 6.999E-06 6.4.48E-05 .0173 6.266E-06
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Table E-4. Composfie estimates of unit variance, using high estimate of average squared bias, by states

Unit variance Variance of:

Gruup Variance

C,mup Local average of
State n' beta f Weight Direct Compmit. average variance ivariance composite

ND 144 39 .456 .387 .0268 .0188 4.028E-06 5.729E-05 .0137 1.00aE-05
NV 151 39 .462 .407 .0146 .0146 4.5991],-06 5.336E-03 .0146 1.047E-05
NC 368 56 .147 .802 .0070 .0071 1.550E-O6 8.288E-O6 .0075 5.396E-06
IA 344 51 .239 .722 .0077 .0083 2.368E-O6 1.327E-05 .0098 7.099E-06
VT 145 38 .482 .390 .0185 .0162 4.767E-06 5.770E-05 .0148 1.054E-05
KY 360 56 .156 .790 .0060 .0064 1.666E-06 8.992E-06 .0079 5.680E-06
VA 364 55 .162 .790 .0075 .0076 1.643E-06 8.978E-06 .0078 5.673E-06
IN 377 56 .161 .786 .0034 .0045 1.833E-06 9.258E-O6 .0085 5.798E-06
NH 147 39 .473 .367 .0335 .0209 3.889E-06 6.214E-05 .0137 9.915E-06
UT 177 37 .500 .433 .0191 .0169 5.096E-06 4.860E-05 .0152 1.077E-05

MT 150 38 .479 .226 .0350 .0262 1.035E-05 1.455E-04 .0236 1.362E-05
ME 219 46 .335 .345 .0197 .0192 6.669E-O6 7.358E-05 .0189 1.162E-05
FL 360 56 .153 .598 .0167 .0147 2.658E..06 2.337E-05 .0117 8.784E-06
AR 241 51 .252 .413 .0113 .0142 4.8991g,..O6 .q.258E-O5 .0162 1.065E-05
KS 257 48 .298 .397 .O243 .O199 5.460B-06 5.705E-O5 .0170 1.097E-05
SD 151 39 .456 .234 .0124 .0212 1.021E-05 1.384E-04 .0239 1.358E-05
LA 373 56 .154 .610 .0137 .0131 2.897E-06 2.232E-05 .0121 8.759E-06
GA 361 56 .146 .612 .0140 .0131 2.729E-06 2.210E-05 .0118 8.68 IE-06
CT 358 53 .211 .541 .0074 .0110 4.400E-06 3.092E-05 .0152 9.985E-06
MO 405 56 .149 .637 .0112 .0116 3.008E-06 1.999E-05 .0123 8.511E-06

366 56 .159 .599 .0095 .0109 3.236E-O6 2.362E-05 .0129 9.003E-06

219 44 .369 .314 .0172 .0207 1.115E-05 9.444E-05 .0222 1.456E-05363 54 .194 .518 .OO99 .O129 6.529E-O6 3..qSTE-O5 .O162 1.116E-05
NY 357 56 .148 .535 .0239 .0187 4.251E-O6 3.163E-05 .0127 9.962E-06
CO 288 48 .299 .398 .O091 .0159 9.381E-06 6.268E-05 .0203 1.334E-05
MI 364 56 .150 .559 .0129 .0134 5.219E-06 2.945E-05 .0141 1.021E-05
PA 365 56 .148 .526 .0273 .0201 3.830E-06 3.237E-05 .0122 9.816E-06
WI 372 56 .149 .561 .0182 .0161 4.814E-06 2.892E-05 .0134 1.002E-05
AZ 258 49 .286 .357 .0359 .0240 7.216E-06 7.094E-05 .0175 1.200E-O5
MS 361 55 .176 .519 .0036 .0097 6.229B-06 3.555E-05 .0163 I.IO1E-O5
MN 366 54 .192 .511 .0038 .0102 6.673E-06 3.713E-05 .0169 1.128E-05

MA 366 56 .149 .444 .0184 .0112 7.176E-06 4.924E-05 .0181 1.191E-05
NJ 362 56 .149 .442 .0148 .0169 7.468E-06 4.994E-05 .0185 1.208E-05
·M.. 367 55 .179 .419 .0255 .0213 7.11ME-06 3.452E-05 .0182 1.199E-05
WV 298 51 .239 .356 .0126 .0186 9.814E-O6 7.573E-05 .0220 1.368E-05
OK 278 50 .268 .324 .0067 .0181 1.075E-O$ 8.958E-05 .0235 1.429E-05
ID 156 37 .495 AlS .0540 .0330 1.545E-O5 2.091E-04 .0283 1.743E-05
MD 363 36 .130 .441 .0130 .0163 7.631E-06 5.043E-05 .0188 1.219E-05
WY 164 39 .471 .199 .0334 .0295 1.574E-05 1.922E-04 .0285 1.772E-05
CA 387 56 .151 .447 .0245 .0205 6.534E-06 4.773E-05 .0173 1.154E-05
'IX 363 56 .149 .439 .0208 .0191 6.913E-06 4.979E-05 .0177 1.178E-05

IL 382 56 .152 .515 .0211 .0178 4.539E-O6 3.445E-05 .0143 1.O21E-O5
NM 230 46 .337 .296 .0141 .0210 1.201F.,-O$ 1.048E-O4 .0238 1.514E-05
OH 368 56 .lJl .514 .0083 .0122 6.041E.06 3.598E-05 .0164 1.095E-05
NE 199 43 .397 .248 .0316 .0266 1.337B-05 1.376E-04 .02J0 1.604E-05
DC 240 48 .297 .317 .0261 .0223 9391g-06 1.929B_05 .0208 1.336E-05
Ig 211 45 .349 .271 .0316 .0252 1.112B.05 1.162E-04 .0228 1.444E-05
WA 389 54 .182 .507 .0110 .0142 6.999g.06 3.B04E-05 .0175 1.147E-05
OR 280 50 .264 .370 .0147 .011M 9.245g-06 7.031B-05 .0206 1.330E-05
AK 160 38 .479 .204 .0327 .0295 1.734E-05 1.930E-04 .0286 ! .902E-05
E]E 164 36 .524 .200 .0453 .0329 1.897E-05 2.(}46E-04 .0298 2.031E-05

Average .0185 .0174 6.999E-O6 6.448E-05 .0173 1.153E-05
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Table E-5. Pooled unit varianee es_mtes, by states

Pooled

State n' f unit variance

ND 14.4 0.456 0.01708
NV 151 0.462 0.01724
NC 368 0.147 0.00885
IA 344 0.239 0.01130
VT 145 0.482 0.01777
KY 360 0.156 0.00908
VA 364 0.162 0.00924
IN 377 0.161 0.00922

147 0.473 0.01753
UT 177 0.500 0.01826

MT 150 0.479 0.02550
ME 219 0.335 0.02008
FL 360 0.153 0.01320
AR 241 0.252 0.01692
KS 257 0.298 0.01866
SD 151 0.456 0.02463
LA 373 0.154 0.01323
GA 361 0.146 0.01295
CT 358 0.211 0.01539
MO 405 0.149 0.01306
TN 366 0.159 0.01343

RI 219 0.369 0.02686
SC 363 0.194 0.01907
NY 357 O.148 0.01705
CE) 288 0.299 0.02372
MI 364 0.150 0.01712
PA 365 0.148 0.01702
WI 372 0.149 0.01706
AZ 258 0.286 0.02317
MS 361 0.176 0.01829
MN 366 0.192 0.01899

MA 366 0.149 0.02251
NJ 362 0.149 0.02250
AL 367 0.179 0.02368
WV 298 0.239 0.02598
OK 278 0.268 0.02710
ID 156 0.495 0.03592
MD 363 0.150 0.02256
WY 164 0.471 0.03499
CA 387 0.151 0.02259
'IX 363 0.149 0.02251

IL 382 0.152 0.01794
NM 230 0.337 0.02543
OH 368 0.151 0.01792
NE 199 0.397 0.02785
DC 240 0.297 0.02379
[] 211 0.349 0.02592
WA 389 0.182 0.01917
OR 280 0.264 0.02249
AK 160 0.479 0.03115
DE 164 0.524 0.03296
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Figure E-5. Weights for the composite estimate using zero and high _ bias
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Figure E-7. Relationship of v-gious estin_t_ of unit variance for 1984 to the direct e_imate for 1983 (x 103)
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Figure E-7. Relationship of various estimates of unit variance for 1984to the dizect estimate for 1983(x 103)
(continued)
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APPENDIX F

OPTIMUM SAMPLE SIZE FOR DISALLOWANCES BASED ON POINT ESTIMATES

For the purpose of this appendix, we may define the optimum sample
size as that which minimizes the cost. But the cost can be defined in more than one

way. We shall define the expected cost from the Federal point of view as the Federal

share of the cost of review of the state sample plus the cost of review and processing

the Federal subsample minus the expected value of the disallowance assessed. We

shall define the expected cost from a state's point of view as its cost of processing the

state sample plus the expected value of the disallowance assessed.

Let us denote

U = the Federal contribution for the time period;

k = proportion of the cost that is borne by the state;

n = size of the state sample;

n' = size of the Federal subsample;

cO = state share of the state cost per case in the state sample;

c1 = Federal share of the state cost per case in the state sample;

c2 -- Federal cost per case in the Federal subsample;

r = estimated payment error rate; and

R = E(r), the expectation of r.

We consider, first, the problem of minimizing the variance (thus

maximizing the precision) of the estimated payment error rate, for a fixed Federal

cost K defined by cln + c2n'. The minimizing values of n and n' are obtained by

setting equal to zero the partial derivatives of the function
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2
V = o r - k(K - cln - c2n')

and solving the resulting equations for _., n and n'. This gives the optimum

subsampling fraction f = n'/n as

f2=

The optimizing sample sizes are then

n : K/(c l+fc 2)

n' -'_. fn.

Present plans call for annual samples of n=2400 and n'=360 in large

states. It has been estimated that c1=$130 and c2=$330, which gives rise to the value

K=$430,800. The values that would minimize the variance for that cost would be

n=1667 and n'--649.

We now suppose that a portion of the Federal contribution U to a state

is withheld when the point estimate of the payment error rate, r, exceeds .03, and

that then the disallowance is the fraction of the Federal contribution equal to the
excess of r over the tolerance level .03. Let

- (r - .03)

g = E(_ = (R-.03) U

o2 22= _- U_ r .

The disallowance is defined by

_ fir> .03D = 0, otherwise.
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It can be shown (see note at the end of this Appendix) that, since _ is approximately

normally distributed, the expected value of the disallowance is approximately

EtD}-- (o/"]-_m,(.,2/2_+(,/q-_ .j'- _ <-_/2)dr.
-iz / u

This expression can be evaluated, given the values of a (which is a function of n, n',

and certain other parameters) and of g (which is a function of R and U).

The expected value of the gain to the Federal government is

G = E(D)- ctn- c2n'.

2

We pose the question: given that it is required to attain a variance o r

of the estimated payment error rate, is it possible to choose a state sample size n that
maximizes G? We have

2 {o2/--T2_,}{1(1.,,./rOp2}.(_r '" ' ·

2
o x = variance of the payment error finding by the Federal review;

T = average AFDC paymentl; and

p = correlation between the Federal and state findings.

2
To attain a given variance o r given the sample size n, we must have

n' - <l-02)/C_o_/_-p2/n).

Since n' s n, we must satisfy the inequality

1We have used T (which is a constant) in the estimate rather than the estimate from the state sample,

in order to simplify this analysis.
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Thus, for example, if the standard error is to be at most or--.01, and if the ratio

Ox/T=.2, then the state sample size must be at least n=400. The Federal subsample

size would then have to be n'=289 ff p-.85. N n were increased to 2400, the desired
standard error would be attained with n'-127.

For ,_:=._es of n satisfying the conditions ated above, we now examine

the properties of G as a function of n for a fixed value of or. We have

dG/dn = -c I - c2 dn'/dn

= *  o-02)p2/c 2o/OxLp2)2.

Table F-1 gives the values of this derivative for cl=130, c2=330 and several values of

the other parameters. An entry of zero in the table indicates that the specified
standard error cannot be attained with the associated value of n. The table shows

that once the state sample is of sufficient size to yield the desired standard error,

increasing the size of the Federal subsample will only reduce the expected value of

the Federal gain.

We now also examine the effect on the expected value of the Federal

gain that would result from varying the desired standard error. The derivative of

E(D) with respect to a is

which is always positive. For a fixed n, we have dD/dn'=(dD/do)(do/dn'). Since

da/dn' is dearly negative, so is dD/dn'. Thus, the expected Federal gain is a

decreasing function of the Federal sample size, for any given size of the state sample.

It follows that to maximize the expected value of the Federal gain, given the state

sample, the Federal sample should be as small as possible. Similarly, to maximize
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the Federal gain, given the size of the Federal subsample, the state sample should be

as small as possible. We conclude that from the point of view of maximizing the

expected value of the Federal gain, there is no optimum choice of the sample sizes.
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TECHNICAL NOTE FOR APPENDIX F

Theorem: Let _ be normally distributed with mean la and variance o2,

and let D be the random variable defined by

{ if_>0D = 0, if_<0.

Then the mathematical expectation of D is

ED=(o/_,p<-_2/2o2>+0_/_rg,-_f' ,,_(-t2/2).
_/a

Proof:

ED = th'ob (_,< O)x 0 + Prob fi, > O)x E(_ I _>0)

= (1/_o)j'-_q,{-(x-_2/2o2)}_.
0

Under the transformation t-(x-g0/o we get

ED = (1/_ f" (_+_)exp(-t2/2)dt

_/o -_/o

- (o/%/':br)'exp(_2/2o2)+ _/%_-)' f' exp(-t2/2)dt

which was to be proved.
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Slope of the Federal gain function of the state sample size

rho- 0.85 T-bt, 300 S(x)- 60

n $Landarderror of the estimiLKI pmymen[error rate
0.005 0.0 1 0.015 0.02 0.025

100 0 0 0 -129.7616 -129.9212
200 0 0 - I _.B_5 - 12g.g4a2 - I _.g72_
300 0 0 - ! 2g9314 - !29 9709 - i 299833
400 0 -129.7515 - 129.ge,J67 -12g.97c_ -129.9§§
500 0 -129.874 -129.9683 -129.9845 -129.9907
600 0 - 12g.914g - 129.g73 1 - 129 .g873 - 129.9924
700 0 - 129.93,56 - 12g.9794 - 129.9895 - 1299935
800 0 -129.g482 -129.g352_ -129.9909 -129.9944
900 0 -129.9567 -129.g848 -129._12 -129995

1000 0 - 129.g62_ - 129.g_L5 - 1299929 - 129.9g_6
1100 0 -129.9674 -129.g87g -129.9936 -129.996
1200 0 - ! 29 .gTOg - 129.c_g - 129.9941 - 129.9963
1300 0 -129.97:38 -129.g9 -129.9946 -129.gg66
! 400 0 - 129.9762 - 129.gg07 - 129.g95 - 129.gg6g
1500 0 -129.9781 -129.9914 - 129.C)g_54 -129.9971
1600 -129.7616 -129.g79a -129.gCJ2 -129.gg57 -129.9gT,5
1700 -129.8054 -129.9812 -129.9925 -129.9959 -129.9974
I800 - 129.8_)6 - 129.982'J - 129.993 - 129.gg62 - 1299976
1900 - 129.8577 - 129.9836 - 129.9934 - 129.9964 - 1299977
2000 - 129.8746 - 129.g_4_ - i 29.gg_/ - 129.gg66 - 129.g978
2100 -129.8879 -129.9854 -129.g94 -129.9967 -129.gg79
2200 -129.8986 -129.g062 - 12g.g94_ -129.gg6g -129.g98
2300 - 129.9075 - 129.9868 - 129.9946 - 129.997 - 129.9981
2400 -12g.g 14g - 129.C_7_ - 12g.gg4a - 129.9972 - 129.C)g_2
2S00 -129.9212 -129.988 -12g.ggS -129.9973 -129.gg83
2600 - 129.g267 - 129.g_a_ - ! 29 .gg_2 - 129.9974 - 12g.gge3
2700 -129.9314 -129.9_g - 129.g954 -129.9975 -129.9984
2800 -129.g_56 -12g.geg'J - 129.gg'rU6 -129.9976 -129.99a5
2900 - 129.g393 -1299899 - 129.gg?)8 -129,9977 -129.gg85
;5000 - 129.9426 - 129.g902 - 129.g_9 - 129.g977 - 129.gga6
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Slope of the Federal _ [unction of the state sample size (continued)

rho= 0 m85 T_ = 300 S( X _

n SUmdarderrorof'theestimatedoaymenterrorrite
0.005 0.0 i 0.015 0.02 0.025

100 0 0 -129.8782 -129.9567 -1299763
200 0 - 12g.83_6 - 129._34 - 12g .982_ - 129 .g§g=J
300 0 - 129.9314 - 12g.9785 - 129.969 - 129.9933
400 0 - I _ .9567 - 129.g848 - 12g.gg2 - 129.gg_5
500 0 - 129.9683 - 129.9882 - 12g.9937 - 12g.99{51
600 0 -12_t.97=J1 -12g.gg04 -129.9948 -129,9968
700 0 -129.9794 -129.9919 -129.9g_5 -129.9972
000 -12'g.e3_6 -129.ga2_ - 129.gg3 -129.gg62 -12g gg76
900 - 12g.87B2 - 129.9848 - 12g.9938 - 129.9966 - 129.9979

1000 - 129 9032 - 129.98_ - I _.g<Jt4_ - 129._7 - 129 .gg§ 1
I 100 -129.9197 -129.9879 - 129._i1,_ -129.gg72 - 1:2_1._3
1200 -129.9314 -12g.gSg -129._ -129.gg7_ -129.ggB4
1300 -129.9402 -129._ -129._ -129.9977 -129.g985
1400 -129.946g -129.g907 -129.9961 -I29.g979 - 129.g906
1500 -129.9523 -129.g914 - 129.g964 -129.998 -129.9987
1600 - 129.9567 -129 992 -129.9966 -129.9081 -129.9988
1700 -1299603 -1299925 - 129.g968 - 129.g0,,82 -12g.gg8g
1800 - 129.963.4 -129._3 -129.gg7 -129.gg03 -129.gg_g
1900 -129.g661 - 129.9g,3,4 -129.9g72 -129.g984 -129.99g
2000 - 129 .g683 - 129.gg37 - 129 .gg73 - 12g.gg_ - 129.ggg
2100 -129.g703 -129.gg4 -129.gg74 -129.gg66 -129.9991

-129.g721 - 129._13 -129._7_ -129.g9t_ -129._1
2300 -129.9737 -129.gg46 -129.gg77 -129.gg07 -129/_92
2400 -129.g7_I -I29.9948 -129 ggTe -129.gg_ -129.ggg2
2500 -129.9763 - 129.995 - 129.ggTg -1 29.9988 -129.9992
2600 - 129.g7'74 - 12g._2 - 129.g97g - 129.ggag - ! 29.C)C_J3
2700 -129.971_ -129.gg54 -129.998 -129,gglBg -129.9993
2§00 -129.gTg4 - 129 .cJge'_6 - 129.0981 -12_.gg_g -129.9993
2900 -129.g_)03 -129 9958 - 129 c._IB2 -129.90g -129.9<}93
3000 -129.9811 - 129 9Ci_CJ - ! 29.9982 - 129.99g - 129.g'gg4
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Table F-1. Slope of the Federal gain function of the state sample size (continued)

rho- 0.05 T-bt- ,300 S(x)= 1O0

n $Landarclerror of Lheestimal_d paymenLerror tale
0005 0 0 1 0.01S 0.02 0.025

100 0 0 0 0 0
200 0 0 0 0 - 129.03=J5
300 0 0 0 -129.8149 -129.9314
400 0 0 0 -129.g07_ -129.9567
500 0 0 - 29.7719 -1 29.9386 - 129.9683
600 0 0 - 29.0657 - 129.g_1 - 129.97_ 1
700 0 0 - 29.904 -129.9632 - 129.9794
800 0 0 - 29.92_ - 129.9693 - 129.98_
gO0 0 0 - 29.939g - 129.9737 - 129.(3848

I000 0 0 29.9,_ - 129.9T7 - 129.9865
1100 0 0 - 129.955 - ! 29.9796 - 129.9879
1200 0 -129.8149 -129.9813 -129.9815 -129.989
1300 0 -129.8521 -129.9654 -129.9833 -129.99
1400 0 -129.8759 -129.gG87 -129.9847 -129.gg07
1500 0 - 129.8946 - 129.9714 - 129.9859 - 129.gg 14
1600 0 - ! 299078 - 129.9'7'_ - 129.9869 - 129.gg2
1700 0 -129.9181 -129.9757 -129.9877 -129.992S
1800 0 - 129.9263 - 129.9774 - 129.988_ - 129.993
1900 0 - 129.9:53 - 129.9788 - 129.9892 - 129.9934

0 -129.9_86 -129.9801 -129.915_ -129.9937
2100 0 - ! 29.94,_ -129.9813 -129.9903 -129.994
2200 0 - 1251.9474 - 129.9823 - 129.9908 - 129 .gg4_
2300 0 -129.9509 -129.g_2 -129.gg!2 -129.9946
2400 0 -I 29.g_4 -129.g04 -129.gg!§ - 129.g_JJ48
2500 0 -129.9567 -129.9848 -129.99'2 -129.995
2600 0 - 129.g=Jg1 - 129g_4 - 129.g923 - 12g.gg=J2
2700 0 -129.9613 -129.9861 -129.9926 -129.99S4
2000 0 - 129.9632 - 129.9a66 - 129.9929 - 129.99_5
2900 0 - 129.9649 - ! 29.9872 - 129.9932 - 129.9958
3000 0 - 129.9665 - 1299t57§ - 129.9934 - 129.g959
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Slope of the Federal gain function of the state sample size (continued)

rno= o.g T-bmr= 300 S(x]= 60

n $landerd error of Lbs esttrnlted payment error rile
0.005 0.01 0.015 ...... 0.02 0.025

I O0 0 0 0 - !2<3.7327 - 129.9325
200 0 0 -129.B_8 - 1LKI.9"J73 -129.g781
300 0 0 -129.9421 : _t29.g768 -129.g86g
400 0 -129.7327 - 12g._17 -129.9841 -129.9907
SO0 0 - 129.8846 - 12g.9746 - 129.9879 - 129.9927
600 0 - 129.9264 - 129.91_02 - 129.9902 - 129.9941
700 0 -129.946 - 129.9_38 -129.9918 -12g._
BOO 0 - 129.9_575 - 129.9_62 - 1299929 - 129.9S_7
900 0 - 129.9647 -12g.g881 -129.g938 -129.9962

1000 0 - 12g.g699 -12g.gSg=J -12g.g94_ -129.g966
1100 0 - 129.9738 -129.9g06 _ -129.gg5 -129.gg6g
1200 0 -129.g768 -129.g91_ -129.99_ -129.9972
?:.:)0 0 - 129.g792 - 12g.9922 - 129.ggS8 - 129.9974
1400 0 - 129.91SI1 -129.g928 -t2<) g961 -129,9976
1S00 0 -129.9827 - 12g.99,._3 -I:2G.gG64 -12g.9978
1600 -129 7327 - 12g.9841 - 12g.gg,._ -12g.gg67 -129.gg7g
1700 -129.7989 -129.g_52 - 129._]MI2 -129._ -129.g98
1§00 -12g.B388 - 12g.g862 -129.994_ -129.997 -129.g_1
1gO0 -12g.B655 -12g.g871 - 129.g94g -129 9972 - 129.9962

2000 ' 1_._1 ' 12_.{_'_ - _2_1._1 - 12_ ._J_g74 ' 12_.(_J_,,_

2100 - 129.SgOg - 129.g116 - 129.g'g54 -129._75 - 129.g9_11
2200 -129.9101 -129.gag2 -129.ggfu6 -'-129.9976 -12g.99_
2300 -129.glgl - 12g.geg7 -12g.ggS8 -12g.gg77 -12g._J186

2400 -12g.g264



Slope of the Federal gain function of the state sample _ (continued)

tho- 0.9 T_ar- _00 S(x_

n Standard error of the estimated paryrnenterror rate
0.005 0.01 0.015 0.02 0.025

I00 0 0 - 12g.8885 -129.g647 -129.9812
200 0 -12g._3a8 -1299705 -129.o_62 -129.991§
300 0 -129.9421 -129.g83 -129.ggl5 -129.gg48
400 0 - 12g.g647 - 129.gO81 - 129.9<338 - 129.gg62
500 0 -1299746 - 129.g908 -129.gg51 -129.997
600 0 - 129 .gO02 - 12g.gg2"J - 129.g96 - ! 29.gg75
700 0 -129.98_8 -129.9937 -129.9966 -129._79
800 - 1:2g.O.,.xS_ - 12g.9862 - 12g.gg4_ - 129.gg7 - 129.g98 1
gOO -129.819_5 -1299881 - 129.gg52 -129.gg74 - 129.(_184

1000 -129.g148 -129.9895 -129.9g_7 -129.9977 -1:2g.g9_
1100 -129.g31 1 - 129.9906 -1 29.gg6 1 - 129.gg7g - 129.9987
1200 -129.9421 -129.g91_ - 12g.g(J_, -129.9961 - 129.gg00
1300 -129.g501 - 129,g<J)22 -1:29.gg6e - 129.(FJ62 -129.gg6g
1400 - 129.gea62 - 129.9928 -129.gg7 -129.gg63 -129.999
IS(X) - 129.g60g -129.gg33 - 129.997'2 -129.gg85 -129.ggg
1600 - 129.9647 - 129.99_1_ - 129 .g<:J74 - 1299g§6 - 129.9991
1700 - 129.g67g - 12g.gg42 - 129 997"5 - 1299986 - 12g.ggg 1
1000 - 12g.gTO_ - 129.994_ - 129.QgT7 - 12g.gg_7 - 129,9gg2
lgO0 -129.g727 -129.g949 -129.(_)70 -129.gg(38 -129.ggg2
2000 -129.g74§ -129._1 - 129.997g - 129.C._ -129.999:3
2100 -12g.g763 -129.gg54 -129.gg6 -129.gg_ -129.ggg3
2200 -129.gT711 -129.gg_6 -129.gg61 -129.ggg -129.ggg3
2300 -129.g791 -129.9(,?_ - 129._zla2 -129.(F_ - 120.9(F)4
2400 -129.g602 -12g.gg6 - 129.gg(13 -129.ggg - 12<J.gg94
2C-----------_0-129.g012 - 129.(F;)62 - 129.gQ(M -129.9991 -129.9994
2600 -129.grZ2 - 1_:_.9963 - 129.9g04 -129.9991 -129.9994
2700 - 129.g63 - 1299965 - 12g.g98S - 129.ggg2 - 12g.99_5
2800 -129.g638 -129.g966 -12g.gg_ -129.ggg2 -129.ggg5
2900 -129.g(WI5 - 129.(.F)67 - 129.g<.,166 - 129.ggg2 - 129.g<FJ)S
3000 -129.g1_1 - t:2<J996e - 129.9966 -129.9992 - 129.99<_
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Slope of the Federal gain function of the state sample size (continued)

rho= 0.g T-bar= 300 S(x): 1O0

n SLandarderror of the esttrnaLedpayment error rats
0 005 0.01 0.015 0.02 OC25

100 0 0 0 0 0
200 0 0 0 0 - 12g.O,3a8
300 0 0 0 -129.811g -129.9421

400 0 0 0 -129.gig4 -129.ge4T
500 0 0 - 129.7492 - 129.9487 - 129,g746
600 0 0 - 12g.8746 - 12g.gG24 - 129.ga02
700 0 0 -129.9164 - 12g.g70,;3 - 129.ge,._
800 0 0 - 129.9373 - i 29.g7'_ - 129.ge62
900 0 0 - 129._ - 129.g791 - 129,g_11

1000 0 0 - ! 29.ge._12 -129.g81B - 129.gSg_
I I00 0 0 - 12g.g642 - 12g.g_lg - 12g.gg06
1200 0 -129_119 - 12g.g_17 - 12g.ga_ - 12g,ggl5
1300 0 -129.8589 -129.9721 -129.ga_ -129.9922
1400 0 - t 2g.as7 ! - 129.g74g - 129.gaa - 129.9928
1500 0 - 12g .906 - 129.9772 - 1299889 - 129.9933
1600 0 - 129.g 194 - 129.g791 - 129.9897 - 12g.99:58
1700 0 -129.9295 -129.9807 -129.9904 - 129,g942
1800 0 - 129.g3T3 -12g.gl_l -12g.ggl -129.9_
1900 0 - 129.g436 -129.g_._ -129.gg16 -129.9949
2000 0 -129.9407 - 129.g043 -12g.gg21 -12g.gg_l
2100 0 -129.g53 - 12g.g6_r_ -129.gg25 -12g.gg54
2200 0 -12g.geU66 -129.ga61 - 12g.gg"_Jl -12g.gg'J6
2300 0 - 129 .g597 - 129.9868 - 129 .gg32 - 129.9958
2400 0 -129.gG24 - 129.c._7=j -129,gg_ -129.996
2500 0 - 1299647 - 12g1988! - 129.gg,.'Sa - 12G.gg62
2600 0 - 12g.g668 - 12g.g_16 - 12<J.g941 - 12g.gg63
2700 0 - ! 29.g6a7 - 129.gag 1 - 12g.9943 - 12g.9965
2800 0 - 12g .970_ - 129._ - 129.9_115 - 129.9966
2900 0 -129.9718 -129.99 -129.9947 -129.g967
3000 0 -129.97'31 - 12g.gg04 - 12g.g94g -12g.gg6_
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Slope of the Federal gain function of the state sample size (continued)

rho= 0.0 T-b_= 300 S(x)= 60

n $t_ndmrderrorortheestimatedpeyrnenterrorrate
0.005 0.01 0.015 0.02 0.025

!00 0 0 0 -129.7888 -129.9176
200 0 0 -t29.§4_2 -12g.9441 -129.9694
300 0 0 -129.g274 -129.9678 -129.9812
400 0 - 12g.7'BSS -129.g_2B -129.gT74 -129.9064
SOO 0 - 129.87ed4 - 12g.g65 - 129.g_26 - 12g.gSg4
600 0 - 12g.9116 -129.9722 - 129.91_e -129.9g 13
700 0 - 129.9315 - 129.9769 - 12g.988 - 129.9926
800 0 - 129.g441 - 12g.9803 - 12g.gsg7 - 12g.9g_5
900 0 -12g.9S28 - 129.g82B - 129.gg09 -129.9943

1000 0 - 12g.g'-Sg1 - 12g.g_lT -129.gglg -12g.gg4g
1100 0 -!29.964 -129.986,._ - 12g.gg'27 -129.9q_o4

1200 0 -129.96_ -129.9076 -129.993_ -129.9958

1300 0 -129.g709 -129.g686 -129.99,T8 -120.9961

1400 0 -129.g754 -129.9_ -129.9943 -129.g964
1500 0 -12g.g7S6 -129.9902 -129.9947 -129.9967
1600 -129.701_ - 12g.g774 -129.9909 -12g.gg_1 -129.9969
1700 -129.82 -129.9789 -12g.gglS - 12g.ggr'o4 -129.9971
1000 - 129.§4_2 - 129.9803 - 12g.gg2 - 129.99_ - 129.gg72
1900 - 12g.B611 -129.9815 - 12g.gg24 - 129.995g -129.9974
2000 -129.07_4 - 12g.g_ -12g.gg28 -12g.ggG! -12g.ggT=J
2100 -12g.B86g -129.g_._ -12g.gg32 -129.9963 -129.gg76
2200 -129.09e6 -1:29.g044 -129.ggie_ -129.9964 -129.99T'/

2300 -129.g047 -12g.g_l -12g.gg38 -12g.gg66 -129.gg78
2400 -129.9116 - 12g.g_la - 12g.gg41 - 12g.gg67 - 12g.gg7g
2500 -129.91'76 -129.9864 - 129.91_113 -129.9969 -12g.gg6
2600 -129.g228 -12g.g_7 -129.9946 -12g.gg7 -129.C_1
2700 - 129.g274 - 12g.g676 - 12g .gq4B - 12g.gg71 - 12g.9962
2000 -129.g315 -12g 988 -12g.gg_ -129.gg72 -129.g982
2900 -12_.9_2 -129.9885 -129.9951 -129.997_ -12g.99_
_O(X) - 129.9,._84 - 12g.giB_9 -12g.gg_,_ -129.9974 -12g.99_1
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Slope of the Federal gain function of the state sample _ze (condnued)

rho= 08 T-bmr= 300 S(x_, 40

n Stlndrderroroftheestimatedplymenterrorrite
0005 0.01 0.0!5 0.02 0.025

100 0 0 -12g.8785 -12G.g528 -12g.g736
200 0 - 12g.84_2 - 12g.g*_go - 12g.gS03 - ! 2g.g88 !
300 0 - 129.9274 - 129.g?Sg - 129._76 - 129.9923

0 -129._'J20 - l_.g_lO -129._ - I_MjI._jMI3
SOO 0 -129,_ -12g.gS_l_) -124;I.g4;r28-12_)._

600 0 -12g.g722 -12g.gog 1 -12g.gg41 -12g.gg63
700 0 -129.g76g -129.9907 -129,_ -12G.9968
000 - 12g.84,_2 - 12g.9803 - 12g.g92 - 129.99_ - 12g.9972
gOO - 12g.87_ - 1_._8 - 12g.gg2g - 12g.gg61 - 12g.g_75

1000 - 12g.gO08 - 12g.g047 - 12g.gg37 - 12g.ggCl_ - 12g.gg78
Ii(X) -12g.g162 - 12g.gCNLt - !2g.gg411 *12g.gg68 -12g.gg8
1200 - 12g.g274 - 12g.g875 - 129.gg48 - 12g.gg71 - 12g.gg82
1300 -12g.g36 -12g.g686 *129._2 -129.9973 - 12g._jlS_
1400 - 12g.9428 - 129.g1_J=J -12g.g_j_ -12g.gg?=j -129.9984
1500 - 12g.9483 - 12g.9_)2 - 12g.995g - 12g.gg77 - 129.9985
1600 -129._28 -t2g.?90g -12g.gg61 -12g._78 -12g.9986
1700 - 12g.g566 -12g.ggl$ - 12g.gg64 -12g.gglB -12g.gg87
1800 - 12g.g_g8 - 12'9.9(J2 - 129.9'966 -129.g981 -12g._
Ic_)O - 129.g626 -I 2g.gg24 - 12g.gg61l - 12g.gg_2 -!_JL_
2000 - 129 .ge_ - 12g .gg20 - 129.gg6g - ! 2g .gg_ - 12g.gg6g
2100 -12g.g671 -12g.gg32 -I2g.ggTI -12_.9Q_4 -12_._
2200 -t_.gSg -t_.gg_ -I_.g972 -I_X_._J_4 -l_l.ggg

2300 -12g.gT07 - 12g.gg38 -12g.gg7_ - 12g.gg_5 -12g.ggg1
2400 - 12g.g?22 - 1.-'_l.gg41 -12g.gg74 - 12g.gg6_ -12g.ggg1
2500 -129.9736 -12g._i_43 -12g._ -12g._ -12g._l

2600 - 12g.g748 - 12g.gg46 - 12g.gg715 - 12g.gg_7 - 12g.ggg2
2700 - 12g.gTe_g - 12g.gg4_ -12g.gg77 - 12g.g_J_7 - 12g.ggg2
2800 - 12g.g75g - 12g.gg_ - 12g.gg78 - 12g.gg_8 - 12g.ggg2
2gO0 - 12g.g77g -12g.9951 - 12_._J}7_ -129.9_ - 12_.9992
,_000 - 12g.g788 - 12_9ge'_ - 12g.gg_ - 12g .ggSg - 12g.ggg_5

F-14



F-1. Slope of the Federal gain function of the state sample size (continued)

rho= 0.§ T-bt- 300 S(x)= 1O0

n S61ndarderrorortheestimltedpaymenterrorrate
0 m005 O 'O I O .0 I 5 0 &02 0 025

100 0 0 0 0 0
200 0 0 0 0 - 129._1_2
300 0 0 0 - !2g.8272 - 129.9274
400 0 0 0 - 129.90_ - 129.9_2B
500 0 0 -129.7959 -129.9345 -129.965
600 0 0 - 129.a678 - 12g .g_ - 129.g722
700 0 0 - 12g.go_2 - 12g.gsg6 - 129.g76g
§00 0 0 -129.g224 -129.9661 -129.9803
900 0 0 -129.93,57 -129.9708 -129.9628

1000 0 0 - 129.94_ I - 129.9743 - 129.9847
1100 0 0 -129.9521 -129.97'71 -129.9863
1200 0 - 129 ._'272 - 129 .cJ'57_ - 129.9793 - 129 .g_?6
1300 0 -129.8565 -129.9616 -129.g812 -12g.9886
i 400 0 - 129.8774 - 12g.g654 - 129.g_27 - 12g.g;_g5
1500 0 -12g.8929 -1299683 -129.984 -129.9902
1600 0 -129 .gO_ -129 .g708 -129.9_52 -1299gOg
1700 0 -129.9146 - 129.97"29 -129.9861 -129.9915
I BOO 0 - 129 .g224 - 12g.g747 - 12go_7 - 129.992
1900 0 - 12<39289 - 129.9763 - 129.9877 - 129.9924
2000 0 - 129.g,._4_ - 129.g777 -129.gsa4 -129.9920
2100 0 -129.g392 -129.gTg -129.g89 -129.9932
2200 0 -129.g4_ -129.9001 -12_.9896 -129.gg3_
2:500 0 -129.9468 -129.9811 -129.g9 - 129.993a
2400 0 -129.g_ - 129.g62 - 129.gg05 -129.9941
2_0 0 -129.g52a -129.9828 -12g.ggOg -129.9943
2600 0 -129._ - 129.g_.'56 -t29.gg13 -129.g946
2700 0 -129.g_7_ -1299843 -129.9916 -129.9948
2§00 0 -129.g_g6 -1 29.g6.49 -129.9919 -129.99_
2900 0 -129.9614 -12_).9_:_ -129.992'2 -129.9951
3000 0 -1299631 -129.986 - 129.992=J -129.gg53
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Ad'_IX G

OPTIMUM SAMPLE SIZE FOR DISALLOWANCES

BASED ON LOWER CONFIDENCE BOUNDS

In this appendix, we suppose that a portion of the Federal contribution

is withheld when the lower bound of the nominal (two-sided) 90 percent (or

95 percent) confidence interval for the payment error rate exceeds .03, and that then

the disallowance is the fraction of the Federal contribution equal to the excess of the
lower bound over the tolerance level .03. We use the same notation as in

Appendix F and we also denote

sr = the estimated standard error of r

g = r-l.645sr.

The disallowance D is then given by

(E- .03)U if g > .03
D = 0, otherwise.

For a sample that is sufficiently large, g is approximately normally

distributed, with mean

gg = R- 1.645o r

and variance

2 2 2 2
0_, ' o r + (1.645) Osr - 2 x 1.645Pr,,srOrOsr .

From the theorem proved in Appendix F, the expected value of D is given by
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2 2 f._J27rE(D) = o_ exp(--gg/2og) + (I.tg - .03) exp(-t2/2) dt.

As in Appendix F, the expected value of the gain to the Federal government is

G = E(D) - cln - c2n

but the value of E(D) is different than in the context of Appendix F.

We now ask whether there are sample sizes n and n' which maximize

the expected value G of the Federal gain. As before,

aE(D)/_e >o

and

_/a_ = (aEO_)/aoe )(aue/an)-c r

But

a_/an = (_/2o0 aox/an

---(_/_)ta_/_+ZT0_,=,-3._p,_
× {o,(_/a_) +% (aor/a_}]

since Pr,s_is insensitive to variation mn. Now, since

and

ao,/a. - 0/2o)(_/_),

we have
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lan --(1/2at_)[a_2r/[hn+ 2.7068_s/[hn

---(1/2o )

+ a ,2/an].

This expression is difficult to evaluate analytically. It may be positive for some

values of n and negative for others. We are able, however, to calculate E(D) and

therefore E(G) for given values of n and n'. We have calculated the expected

Federal gain for three values of the annual Federal dollar amount of contribution

(20, 50, and 300 million dollars), for four levels of the population payment error rate

R (.04, .05, .06, and .07), and for three levels of the unit standard deviation of the

overpayment error ax (30, 50, and 70). These assumed values cover a reasonable

range of the observed values of the parameters. For Population A, the value of R is

.07297 and the value of o x is about 70. The unit costs assumed are

cI = $130 - one-half of the cost of the state QC per _ in 1982; and

c2 = $,3,30 ,- unit co6t per case of the Federal review in1982.

The assumed values for the remaining parameters are:

n'/n -- .15

Pxy = .9

pr,sr = .8.

These are reasonable values according to the available data for the year ending

September 30, 1982, and for the three test populations that we constructed.
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For the above values of the parameters and for Federal subsample sizes

up to n'=500, Figures G-1 through G-3 show the expected Federal gain as a

proportion of the Federal contribution. The portions of the curves for extremely

small sample sizes should be disregarded, for the approximations used in the

mathematical development are not acceptable for such small sample sizes.

It will be seen from Table 3-3 in Chapter 3 of this report, and from

Figures G-1 through G-3, that when the Federal contribution is relatively large (for

example, $300 million or more) and the payment error rate is even moderately

higher than the target level of .03 (say .05 or more), the expected proportion of the
Federal contribution that is withheld increases with the size of the Federal

subsample, assuming that the subsampling rate remains constant. The proportion

increases quite rapidly for the smaller sample sizes but at modest rates of increase for

sample sizes greater than about 250. The proportion disallowed increases with

increasing values of a x. Moreover, at any sample size the proportion disallowed is

very small if the true payment error rate is less than 5 percent.

For smaller Federal contributions, the proportion no longer increases

monotonically with sample size. For high values of the payment error rate, e.g.,

R=.07, there is a sample size for which the proportion is maximum. However, the

curve is quite flat in the neighborhood of the maximum, so that the proportion

varies only a little over a broad range of sample sizes. If the payment error rate is

Iow, say below 5 percent, the Federal gain may well be negative, and increasingly

negative as sample size increases.

In general, then, from the point of view of maximizing the Federal

gain from disallowances after offsetting the costs of sampling, the optimum strategy

would be to use quite large samples if the Federal contribution is large and the true

payment error rate is relatively high, but to use no sample otherwise. Nevertheless,

in the latter case samples are needed to provide assurance that the error is small, in

addition to supplying the data needed for feedback information to improve
administration.

Table G-1 summarizes, by states, the approximately optimum

subsample sizes if the Federal gain from the imposition of disallowances were the
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only consideration in determining sample size. The numbers in the table are

approximations using data for the last six months of fiscal year 1982, with very

rough interpolation of the results summarized in the attached graphs. More

accurate computations could be made for each state, but it is doubtful that it would

be worth the effort. These results indicate that from this point of view, either no

sample would be needed (e.g., if the state's error rate is less than 4 percent or the

Federal contribution is quite small), or sample sizes substantially larger than those

now used would be desirable. In some cases, no sample at all is called for, because

the Federal contribution is so small that the potential return from disallowances

cannot pay the cost of a sample. In other cases, no sample is called for because the

estimated payment error rate (which was assumed here to be the true rate) was near

or below 3 percent. Of course, the "optimum" sample allocation for a particular

state could vary widely from year to year; the results in Table G-1 are only
illustrative.

We have also es_mated the expected gain by simulation using the Test

Population A, with 1000 repUcate samples for each of three sample sizes. For that

population, the true error rate is known, namely .07297. These simulations yielded

the results shown in Table G-2. These results are reasonably consistent with the

more general results based on the mathematical argument. We note that in

Table G-2, the proportion of the Federal contribution that is returned increases with

sample size and that the proportion is not highly sensitive to the magnitude of the
Federal contribution.
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Table G-1. RoL_h approximation to optimum size of the Federal subsample if the only consideration
were the net return from disallowances

Optimum . optimum
State sample size State .... sample size

Alabarv 200 Montana *
Alaska * Nebraska 300
Arizona ] 70 Nevada *

Arkansas * New Hampshire *
California 500+ New Jer- 500+
Colorado 300 New Memco 200
Connecticut 400 New York 500+
Delaware 300 North Carolina *
District of Columbia 400 North Dakota *
Florida 250 Ohio 500+

Georgia 350 Oklahoma *
Hawaii 400 Oregon 300
Idaho * Pennsylvania 500+
Illinois 500+ Rhode Island *
Indiana * South Carolhna 250
Iowa * South D_dr.ota *
Kansas * T_ ._.__ *

Kentucky * Tex_ 300
Louisiana 350 Utah *
Maine * Vermont *

Maryland 350 Virginia 300
Massachusetts 500+ Washington 300
Michigan 500+ West Virginia 300
Minnesota * Wisconsin 5OO+

Mississippi * Wyoming *
Missouri *

Note: The asterisk (') denotes that no sample is called for because tn_ Federal contribution is low or the
payment error rate is low.
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Table G-2. Expected net gain from disallowances, based on simulations from Population A

Federal Expected Proportion
contribution n' gain tetra-ned

$720,000,000 180 $17,457,000 .024
80 12,089,000 .017
50 8,695_00 .012

360,000,000 180 8,621,000 .024
80 5,998_00 .017
50 4,319,000 .012

180,000,000 180 4,202,000 .023
80 2,953,000 .016
50 2,132,000 .012

90,000,000 180 1,994,000 .022
80 1,431_)0 .016
50 1,038_300 .012

45,000,000 180 889,100 .020
8O 669,60O .015
50 491,300 .011
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Figure G-1. Federal gain as proportion of Federal payment share of $20,000,000
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Figure G-2. Federal gain as proportion of Federal payment share of $50,000,000
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Figure G-3. Federal gain as proportion of Federal payment share of $300,000,000
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II

APPENDIX H

RULE D FOR COMPUTING DISALLOWANCES

BASED ON ACCUMULATIONS ACROSS YEARS

As discussed in Section 3.6, disallowances are computed and assessed

annually, and are subject to relatively large sampling errors, even with the larger

annual samples in use in the QC program in some states. These large sampling

errors can lead to substantially overstated and understated disallowances. The

problem of large overestimates of disallowances in some years would be avoided by

use of the lower confidence bound instead of the point estimate. However, with

present annual sample sizes, this use would result in large losses to the Federal

government by consistently and substantially understating the disallowances that

would be assessed if the true payment error rates were known.

A related problem with the current rule for the assessment of

disallowances is that disallowances are assessed annually and only when the

estimated error rate is above the target rate. Thus, because of sampling variation, a

state may be assessed a disallowance when in fact the true payment error rate is

equal to or below the target rate. Moreover, since negative disallowances are not

permitted, such disallowances would not be compensated for over time.

Consequently, a state whose true error rate is moderately above the target rate

would, on the average, be assessed a larger disallowance than it would be if the true

overpayment error rate were known. Also, a state whose error rate is at or below

but near the target rate would, on the average, be assessed disallowances.

To eliminate or substantially reduce these problems we describe a

procedure, referred to as Rule D, that accumulates the disallowances across years.

This procedure has the effect (assuming approximately equal sample sizes each year)

of doubling the sample size in two years, tripling it in three, etc., and thus over a few

years greatly reduces the impact of sampling errors. A Final settlement of the

accumulated disallowances based on the point estimates is made at a time when the
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sampling errors are acceptably small. In the intervening years, cash settlements are
assessec on the basis of the lower confidence bound of the accumulated

disallowances. The Federal government recovers somewhat less in cash prior to the. . . ~

final settlement date but avoids greafiy ovo__asses_mg some states each year. The

procedure also substantially eliminates overassessment of states with error rates
near the tolerance.

On a relative basis, the accumulated disallowance based on the lower

confidenc bound approaches over time th_ full disallowances based on the point

estimates. Thus while there may be a substantial reduction in the first year and a

moderate reduction for a few years in the cash withholding by the Federal govern-

ment, these cash losses may be deemed acceptable in order to avoid greatly

overassessing some states in individual years. Indeed, such a procedure might

reduce the controversy now taking place with the states over disallowances, and in

fact, might result in substantially greater cash collections than can be obtained by

assessing annual disallowances based on point estimates (the present procedure),

which leads to assessments but not to cash collections except perhaps with long
del_'

We have developed 16 examples to illustrate the disallowances

computed by Rule D under the differing circumstances illustrated by the examples,

and to compare them with disallowances as currently computed (Rule A). Each

example is based on specific assumptions for the true error rate and other relevant

parameters. For each example, we have computed and displayed the amounts of

disallowances _.:.at would be assessed over a period of 20 years under the present

procedure for computing disallowances, and also for Rule D. The results of these

computations appear in Tables H-1 through H-16.

While the accumulations are carried out for 20 years in the illustrative

examples, the accumulations could be cut off as soon as the estimated coefficient of

variation of the accumulated disallowance is sufficiently small, say 10 or 15 percent.

A settlement could then be made and the accumulation process could begin again.
The estimated coefficient of variation of the total accumulated disallowance each

year (based on the point estimates) is shown in the last column of the tables. The

-- cut-off time would be extended more or less indefinitely for states with overpay-
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merit error rates near the target (again by cutting off only if the estimated coefficient

of variation of the accumulated disallowance is less than 10 percent or 15 percent).

Various minor modifications of this general approach could also be considered.

Rule D is defined more exactly and the illustrative tables are explained.

more fully in what follows.

Let

A i = Federal contribution to cost in year i;

A

Ri = Estimated overpayment error rate in year i;

si = Estimated standard error of _; and

Roi = Target error rate for year i.

Rule D specifies the cumulative disallowance for year i on the basis of

the successive point estimates, _'t, of the annual error rates, namely

_)i = _)i-1 + (_i' Roi) Ai'

The cumulative cash transfer for year i is then based on the lower bound of the
confidence interval for the cumulative disallowance:

_)i-t _ (_b i) if positive,_i = 0, otherwise

where we define

_2(_)i ) ^ 2 2= O2(_)i.1) + A i si ·

The cumulative book value of the disallowance is the excess of the cumulative

disallowance over the cumulative cash transfer, and is given by
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Note that these formulas also apply to year 1, with the convention that all values

are zero for year O.

The annual cash transfer for year i is then

C i - C i - ti. 1

and the annual adjustment to the book disallowance is

Bi = fl_i' _i-l'

Note that Ci may be a negative number. A negative Ci could be

returned to the state in cash or p, :haps treated as a credit against future dis-

allowances. The choice is, of course, a policy decision.

The computation given above for the cumulative disallowance is

algebraically equivalent to applying the difference between the weighted averages of
A

R i and Roi to the total Federal contribution ap to and including the current year.

The weights are the proportions that the annual Federal contributions constitute of

the total Federal contributions. To show this, we write

_i = _)i-I + (1_i' ROi) Ai

= '_i-2 + (_i- ROi) Ai-1 + (l_i' ROi) Ai

-j-i

{ }'i Aj Y Aj.
b.l j
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Since the samples are independent from year to year, it follows that the

variance of _)i may be estimated by,

i 2

The coefficient of variation is therefore estimated by

[var (_)i)]1/2
CV(_)i) = ,,

= ;i [ j_l Aj2 _. ] 1/2

Description of Tables

The 16 examples presented in Tables H-1 through H-16 assume various

true overpayment error rates and two levels of sampling error. The assumed

parameters are shown at the bottom of each table. The examples show a 20-year

history of estimated payment error rates. For Examples 1-12, the true payment error

rate is assumed to be constant over the years. For Examples 13-16, the true payment

error rates vary over the years, as displayed in the column headed "True error
rate."

The second and third columns, headed "Error rate" and "sigma,"

represent the observed estimates of the overpayment error rate and its standard

error. They are derived by random selection from the joint distributions of R and

s_ defined by the parameters shown for the example. The simulation of the

estimated error rate assumed a normal distribution of the estimated error rate, with

the specified standard deviation. The latter corresponds approximately to the

Federal sample size shown, and is roughly consistent with values observed in the
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QC program. The standard error of the estimated payment error rate ("sigma") was

simulated by assuming that it was normally distributed with mean equal to the true

standard deviation and variance given by the quantity o 2 (_l)/4n', and with [_set

equal to 40. This gives variances of s_ that roughly correspond to variances of

estimated standard deviations observed for Test Populations A and B. The

simulation also involves the assumption that the correlation "rho" between the

estimated error rate and its estimated standard error is .7. This also corresponds

roughly to the AFDC experience (as seen in Table C-1 in Appendix C).

The column headed "AFDC" shows the disallowance that would be

assessed by the present AFDC procedure (except that the negative disallowances

shown in this column would be zeros under the present procedure). The two

columns headed "Current Disallowance" show the amounts in the current year,

added to or subtracted from the cumulative amounts for the previous year, as

described above. Thus, the "Cash" column shows the amount that would be

withheld (or perhaps disbursed or credited, if negative) in the specified year, and the

"Book" column shows the change for the current year in the amount of the credit

on the books. Note that the sum of the cash and book amounts is equal to the

figures in the AFDC column, except for rounding errors.

The remaining columns show cumulated values. The error rate

shown is the average estimated error rate, up to and including the current year.1

The accumulated standard error ("sigma") is computed on the basis of each year

providing an independent sample; i.e., the variance for a given year is computed on

the basis of the fact that the annual samples are independent of one another and

assuming that the square of the estimated standard error in each year is an unbiased

estimate of the variance of the estimated payment error rate. The "Lower bound"

for a given year is computed as the estimated error rate minus 1.645 times the

estimated standard error for the cumulative (average) error rate, and thus is the

lower bound of the nominal 90 percent symmetric confidence interval. Upper

lin practice, the procedure described above roi' computing the cumulative _wnnces by Rule D does
not involve the computation of this cumulative error rate. We noted above that, impUcitly, the

effective cumulative error rate is the weighted average of the annual error ratem,weighted by the
annual Federal payments. HoweveT, _ the annual Federal paymen_ are assumed to be constant in
these illustrations, no weighting is involved.
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Westat, Inc.

confidence bounds are computed in a similar manner, although they play no role in

Rule D. The cash and book accumulated disallowances are computed as described
above. The column "Desired Disallowance" shows the accumulated disallowances

that would be assessed under present procedures if the true error rates were known

and used to assess the accumulated disallowance. Consequently, no credit is given

in years in which the true error rate is less than the target rate.

The tables illustrate how, as the overpayment error rate approaches the

target, the estimated coefficient of variation increases, and no cash settlement is
involved under Rule D.
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Table H-I. Federal withholdm 8, Rule D, Example I

M rr.l__l. I C--.... I IIr,to D. fd, I trr.r I ,NmI tMr ! Us#r DJ,d,
Ci,k I h.t c,_nk. Ire;, I I b,uadI hud I Csk, I Sntl [Mn,. (rr,r

0

I 0085 0.00634 55 45 I 0 1,0OO 0.0850 0.0063 0.0746 0.0955 45 I 0 50 4 O.12
2 00762 0.00520 46 43 :3 2,000 0.0806 0.0041 O.O730 0.O074 ee i4 too -I 0.00
3 0.0639 000057 54 48 6 3,000 0.0017 0.0040 0.0752 0.0662 135 20 150 4 0.08
4 0.0688 0.00451 39 37 I 4,000 0.0785 0.0032 00732 0.0857 173 2i zoo Il 0.07
5 0.0721 000537 42 41 I 5,000 0.0772 0.0026 0.0729 0.0815 214 22 250 ;PI 006
& 0.0738 0.00443 44 43 I d_,O00 0.0766 0.002_$ 0.0720 0.0804 257 23 300 _J 0.05
7 0.0720 o.o04u 43 42 I 7,000 0.0761 0.0021 0.0726 0.0795 299 24 350 27 0.05
6 0.0853 0.oo779 53 50 3 6,000 0.0770 0.0021 0.0736 0.0004 349 27 400 2q 0.04
g 0.0642 0.00614 54 52 2 9,000 0o778 0.0020 0.0746 o.oolo 401 29 450 2Ii 0.04

i0 0.072 0.0067 42 40 2 i0,oo0 0.0772 0.0019 0.0741 o.olN)3 441 31 _o0 21 0.04
ii 0.0765 0.00362 46 46 I i1,000 0.0771 0.0017 0.§743 0.0800 407 32 550 _Ji" '0.04
12 0.0727 0.00457 43 42 I 12,oo0 0.0765 0.0016 0.0741 0,0795 52g 33 600 J._J 0.04
13 0.0093 0.00722 59 57 2 13,000 0.0777 0.0016 0.0751 0.0004 506 35 650 21. 0.03
14 0._5 0.lX)678 57 55 2 14,0OO 0.0764 0.0016 0.0756 0.0810 641 36 700 25 :' 0.03
15 0.00310.00647 53 52 Z 15,0000.97070.001,50.07620.0812 692 38 75o ;_1 0.03
16 0.079ll 0.(N)504 5O 49 I 16,000 0.0788 0.0015 0.0763 0.0812 741 39 800 ZII O.03
17 0007? 0.00621 50 56 I 17,000 0.0793 0.0014 0.0769 0.0817 797 4O e50 iZ 0.03
10 0.0765 0.00571 46 45 I t0,0oo 0.0791 0.0014 0.0760 0.0814 043 41 9oo Ill _03
19 o.o7870.00574 49 40 t 19,0000.0791 O.OOt4 0.0769 0.0013 090 43 95o I1 o.03
20 0.077Q O.,,nnr__ 40 47 I _0,0oo 0.0790 tOOlS 0.0769 o.0et _ 937 44 lO00 .11. 0.03

Parametenl: Note: N. indicates that the coefficient of variation Is 10 or greater.

True payment error rake 0.06
Standard deviaUon 0.006
Beta 40
rho 0.7
Sample size, n' 360
Annual Federal contribution 1,000



Table H-2. Federal withholding, Rule D, Example 2

c....,. I I Irw iX,akn_,_ Fakrd! [.,r Imm ILMr !Up#r mm_ Dmr,d mini cv
caik'l!kinkc,dfik.I r,,,I Iku_iI_ I_k Ibkl _m,. trrw

0
I 0.10210.02026 72 39 33 I,m 0.10210.02030.06870.1354 39 33 50 -22 020
2 0.0714 0.0124 41 36 6 2,m 00067 0.0119 0.0672 0.1O63 74 39 I_ -II 0.2t
3 0.089 0.0t207 S9 S4 5 S,_ o.o075 o._9 0.0729 o. lo21 129 44 15o -22 o.15
4 0.0663 o._s 3a 37 I 4,_ 0.0027 o._9 o.o714 o.o9_ 165 45 200 -II o. t3
5 0o770 0.01101 40 44 4 5.m oo017 0._ o0719 0._16 2o9 49 25o 4 0.12
6 io594 b.di_l 29 24 6 6,m 0.07_ 0._ 0.0688 0.o07'1 233 55 300 12 o.t2
7 0.0936 0.0143 64 50 5 7,000 0.O002 0.0052 0.0716 O.O0U 291 60 350 *2 0.10
8 0.0?52 0.01392 45 41 4 8o_ 0.07_ 0._49 0.0716 0.0876 332 64 G0 $ 0.10
9 0.0693 0.01_9 59 54 6 9,_ 0.0_7 0.m7 0.0729 0.O084 366 70 40 4 0.09 '

10 0.0765 0._11 _ 45 I 10,M 0._3 0._ 0.0731 0.M74 43l 7l 500 -$ 0.09
II 0.0_l 0.m?_ 20 27 I Ii,_ 0.078_ 0.M 0.0717 0._M 40 72 S50 II 0.00
12 0.0722 0.01_4 _ _ Z 12,_ 0O777 0._37 0.0716 0.M39 499 74 6O0 21 0.O0
13 0.07_ O.OO673 45 _ I 15,_ 0.07_ 0._$5 0.0710 0.O035 5_ _ 650 _ 0.07
t4 000t0 0.0t_ 52 ,48 4 14,_ o.o770o.N_ 0.07220.o0_ Sgt 79 700 Il 0.07
15 0.0856 0.0107 56 54 ;r I_,,0_ 0.070_ 0.0055 0.07_) 0.O037 644 01 ?50 _S Q.O7
16 o.o6970.01019 4o 50 2 16,m 0.07780._$! 00727 o.o029 &o2 02 _ IS 0.07
17 0._7 0.01192 _ 53 2 17,_ 0.07830._M 0.07330.o032 736 05 85o U 0.o6
t0 0.077! 0.1S 47 _ ! 10,_ 0.0702 0.m_ 0.0734 0.O030 702 06 9_ _ 0.06
19 0._ 0._! _ _ 0 19,_ o.077s 0._ 0.07290.o020 or6 _ 95o 48 0.o6
ZO 0,07_ 0.____Z _ _ I Z0._ 0.077_ 0._7 0.07___0.O087 059 07 I_ S$ 0.O6

Parameters: Note:. _ indicates that the coeffident of variation is 10or greater.

True plymem e_ror rate 0.08
Standard deviation 0.012
Beta 40
rho 0.7

Sample size, n' 120
Annual Federal contribution l,O00



Table H-3. Federal withholding, Rule D, Example 3

i

r,,e !)tsill°_noe Fodsrel I [rrer i _ I t,,,r lOPper. !)io__ Desired I)4NJ! cv
Cuk lb,* c,,d,Sk.I r,b I I bu,d I b_,ndI C,,k lB,oki Db,,. [rrer

0

I 0.06550.00734 33 21 12 1.000 0.06350.00730.05140.0755 21 12 30 -S 0.22
2 0.0634 0.00652 33 29 4 Z,O00 0.0634 0.0049 0.0554 0.0715 SI 16 60 -I 0.15
3 0.0697 0.00668 40 36 5 3,000 00655 0.0040 0.0590 0.0720 07 20 90 -17 0.11
4 0.0705 0.00713 40 37 3 4,000 0.0660 0.0055 0.0611 0.0725 124 23 120 -21 0.09
S 0.0541 0.00547 24 22 2 5,000 0.0642 0.0030 0.0593 0.0691 147 24 150 -Il 0.09
6 0.0658 0.006U 36 34 2 6,000 0.6dt4 0.002_ 0.0600 0.1)ug 180 27 180 -27 0.§8
7 0.0732 0.00775 43 40 3 7,6O0 0.0657 0.0026 0.0615 0.0700 220 30 210 -48 0.07
8 0.0588 0.00549 29 28 / 0,06O 0.0649 0.0024 0.0610 0.0687 248 31 240 -Mi 0.07
9 0.0634 0.1J725 33 31 2 9,000 0.0647 0.0022 0.0610 0.0684 27g 33 270 '42. 0.06

I0 0.0608 0.00545 3l 30 / I01000 0.0643 0.002! 0.0609 0..0670 309 34 300 .4g
' 0.osa_" 0.06I1 o.ooS05 24 23 I t1,000 O.O634O.OO2OO.O6O20.O667 3_,2 36 33O -Mi 0.O6
IZ 0.0603 0.00695 3O 29 2 IZ,O00 0.063Z 0.0019 0.O6O0 0.0663 36O 30 360 -Mi 0.06
13 0.0630 0.00534 34 33 t 13,000 0.0632 0.0010 0.0602 0.0662 393 39 390 .42 O.OS
14 0.0468 0.00532 17 16 I 14,000 0.O6200.00170.0592O.O649 40g 40 42O -ZI. 0.05
tS O.OS?ZO.OOSI5 27 26 _ I,S,O000.06t7 0._l,6 0.059OO..,_ 435 .4O 450 -_-_rl 0.05t6 0.06t20.O04LSS 3l 36 , I&,O00 6.0617 0.0016 0.0591 0.0643 465 42 48O -27 0.05
17 0.0656 0.00788 36 34 2 17,000 0.0619 0.0016 0.0593 0.0645 499 44 510 -$2 0.05
10 0.0673 0.00565 3? 36 I te,o00 0.0622 O.O01S 0.059? 0.0647 535 45 540 ,40 0.05
19 O.O506 O.00420 2l 20 I 19,000 0.0616 0.0014 O.0592 O.O64O 555 45 570 *Mi 0.05
.2..00.055_ 0.00443 ;rS 25 I P.6OO 0.061_ 0.0014 0.0590 0.0636 500 46 600 -_ 0.04

Parameters: Note:. #0 indicates that the coefikaent of variation is 10 or greater.

True pliyment error rake 0.06
Standard deviation 0.006
Beta 40
rho 0.7

Sample size, n' 360
Annual Federal contribution 1,000



Table H-4. Federal withholding, Rule D, Example 4

rmb I)4mlkfi4_ ! feird I [rrm' I m I LMr I Ut,wr m_ _tr,d D4,dm _,
C.k I B,,tI c,,drib.I r,I, I I b,,d I kind I C,,hlB,oki od,ri. [rrm'

0
I 0.0549 Q.00911 25 10 15 1,000 0.0549 0.0051 00399 0.0699 10 15 30 S 0.:37
2 00656 0.01142 36 27 9 2,000 0.0602 0.0073 0.0402 0.0722 36 24 60 Il 0.24
3 00644 0.01016 34 29 S S,OOO 0.O616 0.0059 0.0518 0.0714 66 29 90 .S 0.19
4 0.0600 0.01420 31 23 8 4,000 0.0614 0.0057 0.0520 0.0708 80 38 120 4 0.10o.o,o, , ,,oooo.o,,, o.o,,o.o,o,,,_ -, o.,,
6 0.0656 0.01257 36 31 S 6,OOO0.0621 0.0047 0.0544 0.0699 14&' 47 180 .IS 0.15
7 0.0617 0.01567 32 25 7 7,000 0.0621 0.0046 0.0545 0.0697 171 53 210 -IS 0.14
8 00712 0.01524 41 36 6 8,000 00632 0.0545 0.0559 0.0706 207 59 240 -28 0.13
9 0.0613 0.01274 31 20 4 9,000 0.0530 0.0042 0.0561 0.0699 235 62 270 -27 0.13

3 , 269 66 3OO 44 O.12I0 0.0675 0.01204 37 34 IO,OOO 0.0634 0.0040 0.0569 O.07OO
II 0.0710 0.01374 42 30 4 ll,O00 0.0642 0.0030 0.0579 O.07OS 307 70 330 .48 O.II
12 0.0639 0.01508 34 29 5 I2,OOO 0.0642 0.0030 0.0590 0.0704 336 74 360 -SI 0.11
13 0.065 0.01047 35 33 2 13,000 O.0542 0.0536 O.0584 O.0701 369 76 39O -SS 0.10
14 o.o672 O.Otnt 37 34 3 14,000 o.0545 o.ooSSo.0508 o.0701 403 8o 42o 42 0.10
15 0.0457 0.00550 16 15 I l_,9oo 0.0652 0.005_ 0._79 0.0606 410 00 45.0 40 o.to
16 o.0743 O.O1442 44 41 3 16,000 o.o639 O.OO32o.0507 0.o691 459 04 40o 42 0.09
17 o.0813 0.01207 51 49 2 17,00o 0.o649 0.0031 0.0599 0.0700 500 06 510 44 0.09
10 0.o616 0.01232 32 29 2 10,000 0.0647 0.0030 0.0598 0.0696 537 00 540 45 0.09
19 0.o634 0.01654 33 29 4 19,000 0.o647 0.OO50 0.0590 0.o695 566 92 570 40 0.09
zo 0.0661 0.01}_ 36 34 _s ZO,OOO 0.0647 O.OOZ9O.06oo o.o(_9_S 600 95 600 45 0.00

Parameters: Note: _ indicates that the coefficient of variation ts 10 or greater.

True payment error ra_e 0.06
Standard deviation 0.012
Beta 40
rho 0.7

Samplesize,n' 120
Annual Federal contribution 1,000



Table H-5. Federal withholding, Rule D, Example 5

[Y.1,...l_l,,[c....l c._.,, i iir,t, Ina,,l_n_ F.d_rd ! error I aW, I te'"nr I UPI*r DL.__L___m_IDesird Ol,ll cv
:Cub I E"*k =drill. I rite I I i...d I io..dI cashI B-kl m,.. (rm'

0

I 0.0385 0.00543 0 0 8 1o000 0.0385 0.005,1 0.0295 0.0474 0 O lO 2 0.64
2 0.0401 O.OO70? 10 tZ 6 2,000 0.0433 0.00415 0.0359 0.0506 12 15 20 -1 0.34
3 O.O390.00523 9 7 2 3,000 0.0410 0.00]4 0.0362 0.O475 10 17 3O -5 0.29
4 0.0315 0.00364 I 0 I 4,000 0.0392 0.0027 0.0347 0.0438 19 lO 40 $ 0.30
5 0.0300 0.00517 9 ? 2 5,000 0.0392 0.00?4 0.0352 0.0431 26 20 50 '1 0.26
6 0.0410 O.I)OStl 12 lO 2 6,000 0.0_96 0.O0?2 0.0359 O.O,k_3 36 2_ 6O 2 0.23
? 0.0303 0.00404 0 -t I 7,000 0.0303 0.0020 0.0350 0.0416 35 23 70 12 0.24
O 0.0401 0.00604 I0 O 2 0,000 0.0385 0.0019 0.0354 0.0416 43 25 80 12 0.22
9 0.0369 0.00491 ? 6 I 9,000 00303 0.0010 0.0354 0.0413 49 26 9o IS 0.21

lo 0.035 0.00537 5 ,4 ! I0,000 0.0300 0.00!? 0.0352 0.0,100 52 20 IOO 21 0..,21
Il 0.0352 O.O0577 5 4 2 11,000 0.0377 0.001& 0.0351 0.0404 56 29 I10 25 0.21
12 0.052 0.00822 22 19 3 12,000 0.0309 0.0016 0.0362 0.0416 75 32 120 Il _' 0.10
13 0.0200 0.00542 -t -2 I 13,000 0.0302 0.0016 0.0356 0.040? 72 34 130 _1: 0.19
14 0.0368 0.0043 7 6 I 14,000 0.0301 0.0015 0.0356 0.0405 70 34 140 21 ' 0.18
15 0.0391' 0.00584 9 0 I !5,000 0.0301 0.00!4 0.0358 0.0405 86 36 150 21 0.10
16 0.04.17 0.00635 10 16 2 16,000 0.030.t 0.0014 0.0364 0.0410 102 3.t 160 2t 0.16
17 0.0418 000637 12 lO I 17,000 0.0389 0.0014 0.0366 0.0412 113 39 170 II : 0.15
10 0.0442 0.00644 14 13 I 10,000 0.0392 0.0014 0.0370 0.0414 126 40 lO0 Iq 0.15
19 0.0399 0.0063 10 9 I 19.,000 0.0392 0.0015 0.0371 0.0414 134 41 190 H 0.14
20 0.0463 9.00006 16 15 Z 20,000 0.0396 0.0015 0.0374 0.0417 149 43 200 I 0.14

Parameters: Note: '_ indicates that the coefficient of variation is 10 or greater.
True paymenterrorrate 0.04
Standard deviation 0.006
Beta 40
rho 0.7

Sample size, n' 360
Annual Federal contribution 1,000



Table .H-6. Federal withholding, Rule D, Example 6

rd, D,dk,n_ F_rd I [,,,' I *kJ ! L,_,r lurer Dl_l._ D,_.d DW _,
C,,kI_ cedrik.I r,_, I I m,d I keundI c,,h I 1B,ekl_wn. Error

o
I 0.0433 0.01036 13 0 13 1,000 0.0433 0.0104 0.0263 0,0604 0 13 I0 -S 0.78
2 0.0405 0.00997 II 0 I0 2,000 0.0419 0.OO72 0.0301 0.0537 0 24 20 4 0.60
3 0.0287 0.00517 -I 0 -I 3,000 0.0375 0.0OSI 0.0291 0.0459 0 23 30 1 0.68

4 0.0738 0.0183 44 Z7 17 4,000 0.0466 0.0060 0.0368 0.0564 27 39 40 ?1_ 0.36
S 0.0306 0.00772 I -I 2 S,O00 0.0434 O.OOSO0.0351 0.0S16 26 41 50 ... 0.37
6 0.0247 0.007S? -S "'? 2 &,0OO 0.0403 0.0O44 0.0331 0.0475 19 43 60 0.42
7 0.0483 0.013o5 18 13 s 7,0o0 0.0414 0.0042 0.0346 0.0483 32 48 70 -II 0.37
8 00503 0.01138 20 17 4 O,OOO 0.0425 00039 0.0361 0.0490 49 52 80 -21 0.31

: 9 0.0366 0.0090o 7 5 2 9,ooo 0.0419 0.0o56 0.0359 0.0479 53 54 9o -I1 0.31
: 10 0.0391 0.01332 9 5 4 JO,Ooo 0.0416 0.0035 0.0358 0.0474 58 50 100 -lO 0.30

t t 0.05430.01s86 24 19 6 11,0oo0.04200.oo350.0370o.o485 77 64 Jib -m 0.28
12 0.033 0.01354 3 -1 4 12,0oo 0.0419 0.0034 o.o363 o.0476 76 67 120 -ZS 029
13 0.0127 o.0o849 -17 -19 I 13,000 0.0397 o.0032 o.o344 o.o45o 57 69 130 4 0.33
14 o.o367 o.otot8 7 5 2 14,000 0.0395 0.0031 0.0344 0.0445 &2 71 140 I 0.32
15 0.0581 0.01267 20 25 3 15,0o0 0.0407 0.0o30 0.0350 0.0456 07 74 150 -II 0.28
16 o.o293 o.oo336 -1 -t 0 16,000 oo40o o.oo28 0.0354 o.o446 86 74 160 I 020
17 0.0642 0.02001 34 27 7 17,000 0.0414 0.0o29 0.0367 0.0462 113 81 170 -24 025
10 0.0461 0.01662 16 12, 4 18,0O0 00417 0.0O29 0.0369 0.0464 125 86 100 -N 0.25
19 0.0214 0.0o?s,I -9 - I0 t 19,000 o.o4o6 o.oo28 0.0361 o.o452 ItS 86 t9o -12 026
.20 ,0.0225 0.0o6_ -7 -Il I zo.0oo 9.o.3.970.0o26 0.0,3_40.0441 107 07 zoo ; 0.27

Parameters: Note: "_ indicates that the coefficient of variation is 10 or _'eater,

True payment error rate 0.04
Standard deviation 0.012
Beta 40
rho 0.7

Sample size, n' 120
Annual Federal contribution 1,000



Table H-7. Federal withholding, Rule D, Example 7

i

,,u_ [I)lNdlovlnco Federal i [rrer I _ ! Lever l u.;r 04_ IMtred IX#Ii cv
I tm IB,dc ._,b. I r,t, I I b,u,dI i..d I C,k IB.okl Dd.,,. [rm'

0

I 0,02. 0i_ _ .I 0 -! I.O00 00266 0.005, 0,0194 0.036l _ ] 63 I 4,65
2 0.0306 0 : I 2,000 0.029, 0.0O40 0.0232 0.0362 : : '"
3 00314 0:00553 0 I S.00O 00305 0.0052 0.02_30 0.0,56 I 9 Ht "',oo,,o.oo, _ -, ,.o,o.o,,o._,o.o_ooo,, o _? ,_ ,,_, o.o.o.oosss : o -s s,oooo.o.so._40.,6 0.03. : ,5 22 ,.63

0.0357 0._ 6 6 6.000 0.0297 0.0022 0.0260 0.0334 0 i02 18 21 7.96,o.o,,,o.o0,, ,_ o° ,_ ,.oooo.o,,,o.o..o.o,,o.o.o _, . ,,_:oo,, o.o., o ,,oooo.o,,,o.oo.o.o.oo.o,4,o ,: . ,,
002. 0.00559 -, 0 -t 9,o00 00310 0.0019002790.0]141 27 I1 I.e?

tO 0.0301 o..0062! _ e 10,000. 0.0317 o.oole 0.02000.0346 0 17 30 IS t.05II 0.0269 0.0_)_ - 0 -3 I1,000 0.0313 0.0017 0,0284 0.0541 14 33 lib 1.36

oo,,,ooo., , o : ,,..oo,,.o.,,o..oo,o. : o.,, 00,,0.0.,, -, . ,,.ooo0..,,0,,,o.o2.0.0., . ,, ,,,
,,0.0,,0.00_0,, 0 _ ,,.00000,,0.,,,, 0.0,,0.0,4o, :: 004,_0.0,4o.o,,, , oo ,,._ o.o.,o.oo,,o.o,.o.o_ o ,, ,_ o.,,16 o.0173 0.004_ -13 -13 16,000 0.0311 0.0014 0.0208 0.0 18 MI 1.27
17 0.0304 0.00702 O 0 0 t,,000 0.0316 0.00J4 0.0zgz 0.O339 0 27 51 N 0.90
16 0.021)7 0.0059 -9 0 -9 10,000 0.0310 0.0014 0.02070.0332 0 17 54 _I! 1.43
t9 0.03J2 O.OO559 t 0 I 19,000 0.0310 0.00i3 O.O2. O.O332 0 t9 57 Sl t.37
20 o.04p O..M___7 13 0 J.3 20.__mO9.0316 9-.m-13 o.o_4 0.0557 0 32 60 21 0.04

Parameters: Note:. ""* indicates that the coeffident of variation is 10 or greater.

True payment error rake 0.033
Standard deviation 0.006
Beta 40
rho 0.7

Sample size, n' 360
Annual Federal contribution 1,000



Table H-8. Federal withholding, Rule D, Example 8

MEr-l-I,lc-.,I . c,,-.,- t I Iride f)4wlJMJa Fodorid I Error I °lJlm I LMr l Up#r eb.]t___L.____]h_rod _,dl _,
tni l enk .ddk I r.t. I I b..d I i...d I tnb Ibkl u4nn. irr.r

0
I 0.0249 0.01007 -5 0 -5 1,000 0.0249 0.0101 0.OO03 0.0415 0 -5 3 I 1.90
2 0.0464 0.01}36 16 0 16 2,000 0.0357 0.0004 0.0219 0.o494 0 II 6 -S 1.47
3 0.0277 0.0139s -2 0 -2 3,000 0.0330 0.0073 0.0211 0.0450 0 9 9 t 2.41
4 0.0237 0.0124 -6 0 -6 4,000 0.0307 0.0063 0.0204 0.0410 0 3 12 I 9.23
S 0.0241 0.01433 -6 0 -6 S,O0(0 0.0294 0.0058 0.0199 0.0389 0 -3 15 10 9.16
6 0.030i oMO 0 0 0 6,000 0.0295 0.0049 0.0214 0.0376 0 -3 10 2i 9.69
7 0.02450.oo938 -6 0 -6 7,00o 0.02000.00440.02150.038l 0 -9 21 SI 3.63
0 0.0238 0.00055 -6 0 -6 0,000 0.0202 0.0040 0.0215 0.0340 0 -15 24 SI 2.19
9 0.0536 0.01358 24 0 24 9,000 0.0310 0.0039 0.0246 0.0374 0 9 27 I1 3.95

10 0.0338 0.01014 4 0 4 10,000 0.0313 0.0().36 0.0253 0.0573 0 13 30 17 2.07
II 0.0314 0.0i429 I 0 I I1,000 0.0313 0.0_ 0.02540.037i 0 14 33 Il 2.78
12 0.0293 0.01296 -I 0 -I 12,000 O.OStl 0.0034 0.0255 0.0368 0 13 36 23 3.00
13 0.029 0.01213 -1 0 -I 13,000 0.0310 0.0033 0.0255 0.0364 .0 12 39 2! 3.45
14 0.0663O.OtS?2 36 0 36 14,000 0033s 0.oo330.02010.0389 0 49 42 -7 0.94
15 o.0301o.o1491 0 0 9 1_,000 0.0333o.00520.o2000.o305 0 49 45 ,,4 o.9.9
16 0.0267 0.008,10 -3 0 -3 16,000 0.0328 0.0031 0.0270 0.0379 0 46 48 2' 1.07
17 0.0326 0.01102 3 0 3 17,000 0.0328 0.0030 0.0280 0.0377 0 48 51 _J 1.05
10 0.0560 0.01634 27 0 27 10,000 0.0342 0.0029 0.0293 0.0390 0 75 54 -21 0.?t
19 0.0371 0.01461 7 0 7 19,000 0.0343 o.0029 0.0296 0.0391 0 02 57 *23 0.67
20 0.01,_)60.007(i;5, -14 9 -14 Z0.000 O,.93340.OO2Oo.o_oe0.0.379 0 60 60 4 0.02

Parameters: Note:. -* indicates that the coefficient of variation is 10 or greater.
True peyment error rate 0.033
Standard deviation 0.012
Beta 40
rho 0.7

Sample size, n' 120
Annual Federal contribution 1,000



Table H-9. F.ederai withtmiding, Rule D, Example 9

IY'l'*r'*l--I  lC'r"l1 C..,,,. I t !rite DSml_mm f_lKd Error I t_Pm'l LeverJ Upper DI_ Deslred Mini1 rv
CmkI!_k c_rlk, rate I I i_nl I bunl I Casklb oki Dtmllr Error

0
I 0.0341 0.00672 4 0 4 1,000 0.0341 0.0067 0.0230 0.041 0 4 0 .4 1.65
2 0.025 0.00597 -5 0 -5 2,000 0.0296 0.0045 0.0222 0.0369 0 -I 0 I to.
3 0.0349 0.00662 5 0 S 3,000 0.0313 0.0037 0.0252 0.0375 0 4 0 .4 2.77
4 0.0303 0.00736 0 0 0 4,000 0.0311 0.0033 0.0256 0.0366 0 4 0 -4 3.07
S 0.0275 O.OQ?S -3 0 -3 5,000 0.0304 0.0031 0.0253 0.03S4 0 2 0 -2 0.31
6 0.0327 0.00S74 3 0 3 6,000 0.0308 0.002)O.02&_ b.03S2 0 5 0 -5 3.62
7 0o229 0.00611 -7 0 -7 7,O00 00296 OO0250O255 O.0337 0 -3 0 3 6.90
8 00411 0.00669 II 0 11 0,000 0.0311 0.0023 0.0272 00349 0 9 0 4 2.1e
9 0.0296 0.00666 0 0 0 9,000 0.0309 0.0022 0.0273 0.0345 0 e 0 4 2.44

to 0.026? 0.005 -3 0 -3 10,000 0.0305 0.oo2o 0.0271 0.0339 0 5 0 -S 4.23
II 0.0266 0.00S61 -3 0 -3 11,000 0.0301 o.OOlg 0.027o 0.0333 0 I 0 -I "bo,
12 0.0193 000442 -II 0 -II 12,000 0.0292 0.0010 0.0263 0.0322 0 -9 0 I 2.34
13 00318 0.00652 2 0 2 13,000 0.0294 0.0017 0.0266 0.0323 .0 -? 0 )' 3.05
t4 0o328 0.0o6,47 3 0 3 14,000 0.0297 0.0017 0.0269 0.0324 '0 -5 0 S 514
15 0.03.!.0._ t 0 t 15,009 00298 0.0016 9.02..7.1o.03,24 0 -4 0 4 6.69
16 0.0341 0.00732 4 0 4 16,000 0.0300 0.0016 00274 0.0326 0 I 0 -1 mmm
17 0.027 0.00615 -3 0 -3 17,000 0.0299 0.0015 0.0273 0.0324 0 -2 0 Z ot,e
JO 0.0201 0.0(016 -i0 0 -I0 10,000 0.0293 o.ools 0.0269 0.0317 0 -12 0 12 2.13
19 0.0397 0.00509 lO 0 I0 19,000 0.0299 0.0014 0.0275 0.0322 0 -3 0 $ oo,

20 0.031,9 Ip.00664 2 0 _. _0,000 0.0300 0.0014 0.02.76 003_'3, 0 -I 0 I '"

Parameters: Note: _ indicates that the coefficient of variation is 10or Greater.

True iMym_t errorrate o.03
Standard deviation 0.006
Beta 40
rho 0.7
Sample size, n' 360
Annual Federal contribution 1,000



Table H-lO. Federal withholding, Rule D, Example lO

rite I)InllevmmD Fabrd Error I dgm I rMr I Ul_r Dt_l..__._____._.JD_trENI I)Imdl cv
r3d lB'Bt mtrlk, ref_ I I kH.d I leundI Cuk lB ooki D_MII. Error

0
I 0.0297 0.08107 0 0 0 1,000 0.0297 0.0111 0.0115 0.0479 0 0 0 I """
2 0.0153 0.01068 -15 0 -15 2,000 0.0225 0.0077 0.0090 0.0351 0 -15 0 15 1.02
3 0.0443 0.01591 14 0 14 3,000 0.0298 0.0074 0.0176 0.0419 0 -I 0 I eeo
4 0.0567 0.01551 27 0 27 4,000 0.0365 0.0068 0.0254 0.0476 0 26 0 -ZI 1.04
5 0.0279 0.0!03! -2 0 -2 51000 0.0348 0.0058 0.0253 0.0443 0 24 0 -24 1.21
6 0.0348 0.01451 5 0 S 6,000 0.0348 0.0054 0.0259 0.0437 0 29 0 -2l 1.13
7 0.009 0.00564 -21 0 -21 7.000 0.0311 0.0047 0.0234 0.0388 0 8 0 '41 4.24
0 0.0653 0.01930 35 0 35 0,000 0.0354 0.0048 0.02?5 0.0432 0 43 0 .,IS 009
9 0.0411 0.01314 11 0 11 9,000 0.0360 0.0045 0.0206 0.0434 0 54 0 -Sql 0.74

lO 0.0178 0.01002 -12 0 -12 BOLO00 0.0342 0.0042 0.0274 0.04!0 0 42 0 42 0.99
II 0.0107 0.012 -II 0 -II I1,000 0.032J 0.0039 0.0263 b.b303 o 31 0 -Si 1.41
12 0.042 0.010;,3 12 0 12 12,000 0.0336 0.0037 0.0275 0.0396 0 43 0 dIS 1.04
13 0.0420 0.01491 13 0 13 13,000 0.0343 0.0036 0.0203 0.0402 .0 55 0 -SS 0.05
14 O.OIg50.00788 -I0 0 -I0 14,000 0.0332 0.0034 0.02760.0388 '0 45 0 -45 106
15 0.0233 0.0079 -7 0 -7 15,000 0.0325 0.0032 0.0273 0.0370 0 30 0 -Mi 1.26
16 0.0214 0.00805 -9 0 -9 16,000 0.0319 0.0031 0.0268 0.0369 0 30 0 -Mi 1.65
17 0.0326 O.OlllO 3 0 3 17,000 0.0319 0.0029 0.02700.036? 0 32 0 -I,_ 1.55
10 0.0396 0.0133 I0 0 10 II,O00 0.0323 0.0029 0.0276 0.0371 0 42 0 `42 1.24
19 0.0120 0.00783 -17 0 -17 19,000 00313 0.0020 0.0268 0.0358 0 25 0 -ZS 2.12
_O O.OZO9 0.01_? '! O -I 20,000 0.0312 0.0027 0.0267. 0.0356 0 24 0 -_ 2.2_

Parameters: Note:. _* indicates that the coefficient of variation tis10 or greater.

True peymefit error rile 0.1:13
Standard deviation 0.012
Beta 40
rho 0.7
Sample size, n' 120
Annual Federal contribution 1,000



Table H-II. Feclerai withholding, Rule D, Example 11

M,rr--I.I I I i I C--.. t I ICisb I _ olddrik, re_ I)tmll. [rm'

0
t 0.0220.oo672 -e 0 -o i,ooo 0.02200.oo670.01100.0331 0 -o -5 s 0.04
2 0.02o00.oo642 -9 -z -7 2,0oo 0.02t4 0.oo460.01300.0291 -2 -15 -to 1 054
3 0.0267 o.oo656 -3 0 -3 3,oo0 0.0232 o.oo30 0.0169 o.0294 -2 -19 -15 S 0.56

4 0.0173 0.0068 -13 -lO -3 4,000 0.0217 0.0053 0.0163 0.0272 -ti -22 -20 I_ 0.40S 0.032? 0.00773 3 6 -3 5,OOO 0.0239 0.0051 0.0189 0.0290 -5 -25 -25 O.SO
6 o.otlm o.oosiki -11 -to -t 6,ooo 0.02310.002_0.01860.02';S -ts -27 -30 12 0.39
7 0.0226 0.00652 -? -5 -2 7,OOO 0.0230 0.002S 0.0109 0.0271 -20 -29 -35 14 0.36
8 0.0234 0.0060 -? -4 -2 O,OOO 0.023i 0.0023 0.0192 0.0269 -25 -31 -40 11 0.34
9 0.01200.oo394 -17 -16 -1 9,0oo 0.0219 0.0021 0.0184 0.0254 -41 -31 -45 21 0.26

I0 0.0256 0.006?8 -4 -2 -2 10,00() 0.0223 0.002O 0.0109 o.o,256 -44 -33 -50 _ 0.26
II 0.024 0.OOS84 -6 -4 :1 11,000 0.02:_S 0.0019 0.0105 0.02S6 -48 -35 -ss .- 0.26
12 0.0263 o.00576 -4 -2 -I J2,0oo 0.0220 0.0010 0.0190 0.0251 -50 -36 -60 28 0.25
13 0.0372 0.oo72S 7 9 -2 13,000 0.0239 0.0018 0.0210 0.0268 -41 -30 -65 H 0.29
14 0.0249 ooosoo *5 -4 -t J4,000 0.0240 o.oot? 0.02120.026o -_ -39 -70 Pi 0.28
15 0.0236 O.OOd_ -6 -6 -i ts,ooo 0.0240 o..09!.&0.0213 0.02_ -51 -40 -?5 ·_ 0.2716 0.020l 0.oo653 -2 -i -i 16,000 0.0242 o.ool6 0.02i6 0.0260 -si -41 -80 I, 0.27
17 0.0191 0.00486 -II -lO -I 17,OOO 0.0239 O.OOlS 0.0215 0.0264 -62 -42 -05 Il 0.25
t0 0.0235 0.0067 -7 -S -t 18,000 0.0239 0.oo15 0.0215 0.0263 -67 -43 -90 20 0.24
19 0.0207 00052 -9 -0 -I tg,0OO 0.0237 0.0014 0.0214 O.0260 -75 -44 -95 Z4 O.22
20 o..(qlS 9.005?6 -8 -7 -I 2,0,999 0.0236 0.99,14 9.0,214 o.o_rs9 -03 -45 -too 21 o.21

Parameters: Note: '*4"indicates that the coefficient of variation is 10 or greater.
True peyn_mterrorrate O.025
Standard deviation 0.006
Beta 40
rho 0.7

Sample size, n' 360
Annual Federal contribution 1,000



Table H-12. Federal withholding, Rule D, Example 12

' C.---- I I Iride Odml_ fekrel Error I dtml I LMr I Upper I)lml(..._.._ I_tred I)iNn cv
"Crabl Bmk aHdrlk, rate I I keundI k..d I CashIB.ok I Droll. [rrM'

0
I 0.03 0.01589 0 0 0 1,00O 0.0300 0.0159 0.0059 0.0562 0 0 -5 -5 iii
2 0.0321 0.01311 2 0 2 2,000 0.0311 0.0103 0.0142 0.0480 0 2 -I0 -12 9.41
3 0.0163 0.00753 -14 0 -14 3,000 0.0262 0.0073 0.0141 0.0382 0 -12 -15 '_l 1.91
4 0.0343 0.01238 4 0 4 4,00O 0O282 0.0063 0.0170 O.0386 0 -7 -2O -IS 3.50
5 0.0186 0.00956 -II 0 -ii 5,000 0.0263 0.0054 0.0174 0.0351 0 -19 -25 4 1.45
6 0.0145 0.01014 -15 0 -IS &,O00 0.0243 0.0046 0.0164 0.0322 0 -34 -30 dl 095
? 0.0423 0.01276 12 0 12 ?,0O0 0.0269 0.0045 0.0195 0.0343 0 -22 -35 'IS 1.45
8 0.0167 0.00724 -13 0 -13 8,000 0.0256 0.0040 0.0190 0.0323 0 -35 -40 '5 0.92
9 0.0202 0.00042 -2 0 -2 9,000 0.0Z59 0.0037 0.0198 0.0320 0 -37 '45 4 0.91

,Z:., I0 0.0406 0.01401 II 0 II IOl00o 0.0274 0.0037 0.0214 0.0334 0 -26 -50 '2dl , 1.40
0 II 0.0310 0.612b3 2 0 2 jl,O00 0.0278 0.0035 0.0220 0.0536 0 -24 -55 '_11 1.59

12 0.0222 0.00971 -e 0 -e 12,000 0.0273 0.0o33 0.0210 0.0320 0 -32 -60 -2t 1.24
ts 00105 0.01127 -12 0 -12 13,000 0.0266 0.0o52 0.0214 0.0319 .0 -,44 -65 -21 0.95
14 0.0326 0.01342 3 0 3 14,000 0.0271 0.0o31 0.0219 0.0322 '0 -41 -?0 -21 106
15 o.020? 0.010o3 -9 0 -9 15,00o 0.0266 o.0o3o 0.0217 0.0315 0 -50 -75 -_ 0.09
16 0.04 0.01304 I0 0 I0 16,0O0 0.0275 0.0029 0.0227 0.0323 0 ,40 -co all 1.15
12 0.0496 0.01913 20 0 20 17,0O0 o.02ee 0.0o30 0.0239 0.0337 0 -21 -05 .44 2.42
10 0.0007 0.00?3 -21 0 -21 10,0O0 0.0277 0.0o28 0.0230 0.0323 0 -42 -90 40 1.21
19 0.04?4 0.01625 17 0 l? 19,0O0 0.0207 0.0O200.02410.0333 0 -25 -95 -1l 2.17
20 0.0306 Q.Ol_i? I O I _PO.0OOO.OZeO 9;gOZO 0.0242 0.0334 0 -24 -I00 -_(_ 2.31

Parameters: Note:. _ indicates that the coefficient of variation is 10 or greater.
True pi)relent error rate 0.025
Standard deviation 0.012
Beta 40
rho 0.7
Sample size, n' 120
Annual ]Federalcontribution 1,000



Table H-13. Federal withholding, Rule D, Example 13
!

Calk i -Ibok eidillrlb, rde lined llidllil J Calk I Blek I Oiall. IITel'l/I [rrer

0
I 0.075 0O0634 45 35 lO 1,000 00750 OOO63oO648 00855 35 I0 40 0.070 -5 0.1409
2 0.0612 0.00528 31 28 3 2,oo0 0.0681 0.0o4! 0.0613 0.0749 63 14 75 0.065 -t 0.1065
3 0.0639 0.00957 34 28 6 3,050 0.0667 0.0o40 0.0602 0.0732 90 20 I05 0.o60 -50. lOe!
4 00488 0.00451 19 17 i 4,050 0.0622 o.oos2 0.057o 0.o6?5 108 21 135 no60 6 0.0967
5 0.0421 0.00337 12 II I 5,000 0.0582 0.0026 00539 0.o625 119 22 155 0.050 14 0.0934
6 0.0438 0.(N)443 14 13 I 6,050 0.0556 0.0023 0.0520 0.05o6 132 23 i 75 0.050 20 0.0697
7 0.0428 o.o04so 13 12 I 7,000 00539 0.0021 0.0505 00574 144 24 195 0.050 27 0.0673
8 0.0633 0.00779 23 20 3 8,000 00639 00021 0.0506 00673 164 27 215 0.050 24 0.0668
9 0.0492 0.00614 19 17 2 9,000 0.0533 0.0020 0.0501 0.0566 lei 29 230 0.045 20 0.0841

10 0.037 0.0067 7 5 2 J,o,ooo 0,.051700019 0.04o6 0.0548 186 31 245 0.o45 28 0.007
I 1 o.o365 o.oo362 6 6 I I 1,000 o.o503 0.0017 o.o4?5 0.0s52 192 32 255 o.o4o 31 0.0661
12 0.0327 0.00457 3 2 I 12,000 0.0489 0.0016 0.0461 0.0516 194 33 265 0.040 39 0.0074
13 0.0493 0.00722 19 17 2 13,000 0.0469 O.O01S 0.0462 00516 ;_t 35 2?5 0.040 29 0.0857
14 0.0415 0.00678 12 to 2 14,ooo 0.0484 0.0016 0.0458 o.oslo 221 36 26o 0.03S 23 0006
15 0.034]1 0.00647 e 7 2 15,000 0.0477 0.001_; 0.0452 0.050_ 227 36 205 0.035 20 0.0869
16 0.0296 o.w 0 -i I 16,000 0.0466 0.0016 00441 0.0490 226 39 285 0.030 20 0.0697
17 0037? 0.00621 0 6 I 17,000 0.0460 0.0014 0.0437 0.0484 232 40 265 0.030 12 0.0901
10 0.0265 0.00571 -4 -5 I 18,000 0.0450 00014 0.0426 0.0473 228 265 0.030 16 0.0937
19 0.0237 o.oos?4 -6 -7 I 19,000 0.0438 0.0014 0.o416 0.0461 22o 4s 200 0.025 t7 0.0904
Zo 0..0_8 0.__m3_5w_ -7 -8 ! 20,000 0.1)428 0.0013 0.0406 0.0454) 212 44 275 0.025 19 0.1037

Parameters: Note: Ne indicates that ti, _)efficient of variation is 10 or greater.

Varying imyment error rate
Standard deviaUon 0.006
Beta 40
rho 0.7

Sample size, n' 360
Annual Federal contribution 1,000



Table H-14. Federal withholding, Rule D, Example 14

rd. F,d.rd t,,v dsm bmr C r.d Tru,
I _ I I1_ I ndrlk, nde 1mind ImNd I _ ] Bilk I i)lmtl, mWlilt [rr,r

0
I 00921 0.02026 62 29 33 I,OOO 0.0921 0.0203 0.0507 0.1254 29 33 40 0.070 -22 0.3:3
2 0.0564 0.0124 26 21 6 2,000 0.0742 0.0119 0.0547 0.0930 49 39 75 0.065 -13 0.27
3 0.069 0.01207 39 34 S 5,OOO 0.0725 0.OO09 0.0579 0.0671 84 44 105 0.050 -22 0.21
4 0.0403 0.00605 10 17 I 4,000 0.0664 0.0069 0.0551 0.0777 100 45 135 0.050 -11 0.19
5 0.0478 0.01101 . Iii 14 4 5,000 0.0627 0..(X)60...0.0529 0.0726 114 49 155 0.050 -9 0.16
6 0.0294 0.0148i -I -6 & &'O00 0.0572 0.0056 0.0480 0.0563 108 SS 175 0.050 12 0.21
7 0.0636 0.0143 34 20 S 7,OOO 0.0501 0.00S2 0.0495 0.0667 136 60 195 0.050 -2 0.19
8 0.0452 0.01392 IS II 4 8,000 0.0S65 0.0049 0.041)4 0.054 147 64 215 0.050 3 0.10
9 0.0543 0.01669 24 19 6 9,000 0.0562 0.0047 0.0465 0.05410 166 70 230 0.04 -6 0.10

10 0.041_5 0.00011 II I0 I 10j000, 0.05,,48,,0.0045 0,.04,76 0.0619 176 71 245 0.045 -3 0.17
II 0.0181 0.00709 -12 -13 I I1,000 0.0514 O.OO40 0.0449 O.OS4iO 163 72 255 0.040 19 0.19
12 0.0322 0.01004 2 0 2 12,000 0.0496 0.00370.0437 0.0560 164 74 265 0.040 27 0.19
13 00346 0.00673 S 4 I 13,000 0.0467 O.OO3S0.0429 0.0544 166 75 275 0.040 32 0.19
14 0.0368 0.0146 7 3 4 14,000 O.O4780.0034O.0422O.0534 171 79 200 0.O35 31 0.i9
15 0.0406 0.0107 11 9 2_. !5,000 0.047.3 0.OO$$0.0420 0.0527 179 01 205 0.035 25 0.19
f6 0.0197 O.OlOl9 -tO -12 2 16,OO00.0456 O.OOSI0.0405 0.05O8 167 82 285 0.o30 3s 0.20
17 0.0357 0.01192 6 3 2 17,000 0.0450 0.00500.0401 0.0500 171 05 205 0.050 30 0.20
10 0.0271 0.00065 -s -4 t te,ooo 0.0440 0.00290.0393 0.o4(18 167 06 265 0.030 32 0.21
19 00094 0.00441 -21 -21 0 19,000 0.0422 0.0020 0.0377 0.0467 146 06 200 0.025 ale 0.23
20 0.0196 0,00{i92 -IQ -I_ ! 20,000 0.041! O.OQ_r70.03_7 0.04_.4 134 07 275 0.075 53 0.24

Parameters: Note: _'_ indicates that the coefficient of variation is 10or greater.
Varying i_yment error rate
Standard deviation 0.012
Bela 40
tho 0.7

Sample size, n' 120
Annual Federal contribution 1,000



Table H-t5. Federal withholding, Rule D, Example 15

I''l rr'l--I '',.  rr.r C''"'u'I I i..,,,I I"J '""hud I Cmk I bk I Distil. IffOfld(I Error

0
I 0.055 000654 25 15 I0 1,000 0.0550 0.0063 0.0446 0.0655 15 10 40 0.070 15 0.25
2 0.0412 0.00528 II il 5 2,000 0.0461 0.0041 0.0413 0.0549 23 14 75 0.065 39 0.23
3 0.0469 0.00057 19 13 6 3,000 0.0464 0.0040 0.0410 0.0649 35 20 105 0.060 50 0.22
4 0.0266 0.00451 -I -3 I 4,000 0.0435 o.oo_r_. 0.0502 0.0487 33 21 135 0.060 0l 0.24
5 0.0321 0.(W,$$7 2 I I 5,000 0.0412 0.0026 0.0369 0.0455 34 22 155 0.050 99 0.24
60.02M 0._ -I -2 I 6,000 0.0391 0.0020 0.0353 0.0429 32 23 175 0.050 120 0.25
7 0.0278 0.00450 -2 -3 I 7,000 0.0375 0.0021 0.0341 0.0410 29 24 195 0.050 142 0.26
6 0.0383 0.00779 6 5 3 6,000 0.0376 0.0021 0.O3420.0410 34 27 215 O.O5O 154 0.27
9 0.0342 0.00614 4 2 2 9,000 0.0372 0.0020 0.0340 0.0405 36 29 23O 0.045 165 0.27

JO 0.022 0.0067 -0 -10 2 10,000..0.0357 0.0019 0.0326 0.0300 26 31 245 O.045 100 0.33
II 0.0265 0.00362 -4 -4 I 11,000 O0349 0.0017 0.0'J_6 0.0378 22 32 255 o.040 20l 0.36
12 0.0177 0.00457 -12 -13 I 12,000 0.0334 0.0016 0.0507 0.0362 9 33 265 0.04O 224 0.46
13 0.0343 0.00722 4 2 2 13,000 0.0335 0.0016 0.0500 0.03&2 II 35 275 0.040 229 046
14 0.0315 O.OO&TO 2 0 2 14,000 0.0334 0.0016 0.0508 O.03&O It 36 280 0.035 233 0.47
15 0.0201 0.04)_.47 -2 -3 2 15,000 0.03_ Q..O01.50.0_:05 0.0355 7 38 205 0.035 240 0.51
16 o.o298 0.00504 0 -I I 16,000 0o328 0.0016 0.0504 0.03_ 6 39 285 0.050 24o 0.53
17 0.o377 0.00621 e 6 i 17,000 0.0331 0.0014 0.0507 0.0355 12 4o 265 o.030 232 0.47
lO 0.0265 0.00571 -4 -5 i 10,000 0.0327 0.0014 0.0504 0.0350 0 41 205 0.050 236 0.51
19 0.0237 0.00s74 -6 -7 I 19,000 0.0323 0.0014 0.0300 0.0345 0 43 260 0.025 237 0.60
20.0.OZ;_ O.,.-m?_? -7 0 '7 _O___l_d_O_0.0310 0.0010 O.O_HI()0.0340 0 56 275 o.o25 239 0.74

Parameters: Note: *"*indicates that the coefficient of variation is i0 or greater.

Varyin 8 payment error rate
Standard deviation 0.006
Beta 40
rho 0.7

Sample size, n' 360
Annual Federal contribution 1,000



Table H-16. Federal withholding, Rule D, Example 16

ieu,d I Ca_ I B,ek I Dlmll. I en_nde [rror I

0
I 0.0721 0.02026 42 9 33 1,000 0.0721 0.0203 0.0387 0.1054 9 33 4o 0.070 -2 0.48
2 0.0364 0.0124 6 I 6 2,O00 0.0542 0.0119 0.0347 0.0738 9 39 75 0.O65 27 0.49
3 OO54 0.01207 24 19 5 3,0O0 0.0541 0.0009 0.0395 0.0687 29 44 106 0.O6O 33 037
4 0.0283 0.00605 -2 -3 I 4,000 0.0477 0.0069 0.0364 0.0590 25 45 135 0.060 64 0.39
5 00370 O.Ollel 8 4 4 5,0oo 0.0457 o.o060 0.03590.0556 29 49 155 0.050 76 0.3e
6 0.0144 0.01481 -16 -21 6 6,000 0.0405 0.0056 0.0313 0.0496 8 55 175 0.050 ti2 aSS
7 O.O486 0.01483 19 t3 5 7,000 0.0416 O.O052 0.0331 0.0502 21 60 t95 O.050 its 04S
0 OO3O2 O.O1392 0 -4 4 O,OO0 O.O4O2 0.0049 0.0322 0.0483 17 64 215 O.050 133 O48
9 0.0393 0.01669 9 4 6 9,000 0.0401 0.0047 0.0323 0.0479 21 70 230 0.045 139 0.47

I0 0.0265 0.00811 -4 -5 I I0,0O0 0.0388 0.0043 0.0316 0.0459 16 71 245 0.045 t57 0.49
11 0.008t ooo709 -22 -t6 -6 i1,0o0 §.0_0 o.oo4o 0.0294 o.o425 0 66 255 o.o4o 189 o67
12 0.0172 0.01004 -13 0 -13 12,000 0.0344 0.0037 0.0282 0.0406 0 53 265 0.o40 212 0.05
13 0.0198 0.00673 -lO 0 -i0 13,000 0.0333 0.0035 0.0275 0.0390 .0 43 275 0.040 232 1.07
14 0.0268 0.0146 -3 0 -3 14,000 0.0326 0.0034 0.0272 0.0384 '0 39 280 0.035 241 1.21
15 o.os06 o.0107 i 0 t 15,000 0.0327 0.0033 o.o273 o.o3oo 0 40 265 0.035 245 t.22
16 0.0197 0.01019 -10 0 -10 16,000 0.0319 0.O031 0.0267 0.0370 0 30 285 0.030 255 168
17 0.0357 001192 6 0 6 17,000 0.0321 0.0030 0.0271 0.0371 0 35 205 0.030 25O 1.45
tO 0.0271 O.0O065 -3 0 -3 tO,OO0 0.0310 O.OO29 0.0270 0.0366 0 33 285 0.030 252 t.60
19 0.0094 0.00441 -21 0 -21 19,000 0.0306 0.0028 0.0261 0.0352 0 12 200 0.025 260 4.36
2o 0.0196 o.ooe_r -i0 _) -iQ llp,QQo 0.0301 0..00270.0257 o.o344 0 2 275 0o25 273,,,

Parameters: Note: *" indicates that the coefficient of variation is 10 or greater.

Varyin 8 payment error rate
Standard deviation 0.012
Beta 40
rho Off

Sample size, n' 120
Annual Federal contribution 1,000
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APPENDIX I

EFFECT OF SUBSTITLrFING 'f FOR T IN ESTIMATING

OVERPAYMENT ERROR RATES

A

The es_ator of the overpayment error rate in current use, R, given by

Equation (1) in Chapter 1 of the report and by Appendix B, involves the quantity 7,

the average AFDC payment per case as estimated from the state sample. In the

original proposal for the regression estimator, T, the average AFDC payment per

case in the complete caseload of the state in the specified time period was used

instead of 7, the estimate of T from the state sample. This raises questions with

regard to the statistical efficiency of the estimator _, based on t, and the validity of

the estimator of its variance. This appendix examines these questions.

The evaluation was done by simulating the sampling and estimating

procedures for Population A. For each of three sample sizes, 1000 samples were

drawn, l In each of the samples, the regression estimator and three difference

estimators (using three values of the coefficient k; see Appendix B) were computed,

using _ and also using T. The variation of the estimates over the 1000 samples
2

provided estimates of the variances of the alternative estimators, denoted _./_ and
2

O l._. The results are shown in Table I-1. For both the regression and the difference

estimators, the variances of the estimates of R do not differ greatly. For the

regression estimator the relative difference is only 8 to 10 percent, which

corresponds to a relative difference in the standard errors of only about 4 or

5 percent.

IThe sample sizes used for these simulations were different, and generally smaller, than those used in
later simulations. The mason was that these and certain other simulations were done early, with
sample sizes more representative of six month samples, chosen to illustrate what happens with
relatively smaller samples than the annual samples currently in use.

I-I
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Moreover, the variances of the estimates that use _ are moderately

smaller than of those that use T. This is because the coeffident of variation of _ is

small and the estimated average overpayment per case, E", is positively correlated

with the average AFDC payment per case. The relative variance of the ratio of two

random variables u and v is given by

2
Vu/v ' V2u+V2v-2pVuV v.

Here, p denotes the correlation between u and v. If the denominator v

is a constant (which is the case when T is used), then the relvariance of the ratio

reduces to V2 since Vv=0. If the denominator v is not a constant but a variableu

(which is the case when t is used), the relvariance of the ratio depends upon the

value of the quantity V2v-2pVuV v. The use of a variable v will produce a smaller

variance than the use of a constant v if p > Vv/V u. Since in our case the coefficient

of variation of [ is far less than the coeffident of variation of _", it does not require a

very large value of the correlation p to give the use of _ a small advantage.

Consequently, we have the fortunate result that the more convenient estimator has

a somewhat smaller variance and is not only appropriate but recommended.
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Table I-1. Comparison of variances of x"/_ and _"/T for Population A (Variances are shown times 104)

Sample size r2i'/_ r2x'/_ Ratio
(n/n') Esti_'mator (1). _. (2) (1) / (2)

1200/180 Regression 1-397 1.297 1.08
Difference, k=l 1.383 1.307 1.06
Difference, k=.9 1.393 1.309 1.06

Difference, k=.8 1.445 1.351 1.07

500/80 Regression 3.136 2.897 1.08
Difference, k-1 3.004 2.938 1.02
Difference, k-.9 3.004 2.940 1.02
Difference, k-.8 3.117 3.030 1/)3

300/50 Regression 5.176 4.696 1.10
Difference, k-I 4.923 4.786 1.03
Difference, k-.9 4.981 4.791 1.04
Difference, k-.8 5/09 4.937 1.06

I-3
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