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Executive Summary

A. Introduction

In a 1991 review, a National Academy of Sciences panel on the uses of mi-

crosimulation modeling for informing policy decisions identified the "lack of

regular and systematic model validation" as one of the two major deficiencies

that must be addressed. As part of its recommendations on model valida-

tion, the panel urged investigation of the sources of uncertainty in model

estimates. Toward this end, FCS funded error analysis research on its QC-

and SIPP-based FSP models (see Zaslavsky and Thurston, 1995). FCS also

funded research on its CPS-based FSP model through Task 29 of the cur-

rent FSP microsimulation contract. The product of Task 29 is the report

entitled "Error Analysis of MATH-CPS Model Estimates" by Thurston and

Zaslavsky of Datametrics Research, Inc.

In this executive summary, we present an overview of the Datametrics report.

Our purpose is to summarize the report in a way that makes the results

accessible to the average user of the FSP microsimulation models at FCS
and MPR.

B. The Purpose of Error Analysis

When using microsimulation model estimates, we are always uncertain how

close a model estimate is to the true effect of a reform proposal. Sometimes

we are more uncertain than others. For example, when our model estimate

is based on a small sample of the FSP population, we are more uncertain

than when our estimate is based on a large sample. Sometimes a particular

source of uncertainty contributes more to total error than it does at other

times. For example, uncertainty caused by the use of imputed asset holdings

is more important for reforms involving asset limits than for other types of
reforms.

The purpose of the error analysis performed by Thurston and Zaslavsky was

to identify sources of uncertainty and estimate their magnitude. The error

analysis is essentially a sensitivity analysis. The analysis seeks to measure

how sensitive model estimates are to various influences that cause uncertainty

in the estimates. Sensitivity analysis can help us understand how different a

model estimate might have been if:
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· the Census Bureau had drawn a different sample

· we had used a different set of pseudo-random numbers to model the
participation decision

· we had used an alternative specification for the asset imputation equa-
tion

· the allocation of calendar year income to months during the year had
been modeled differently

· we had calibrated the baseline simulation using a different model of
participation

· we had "aged" the database using a different prediction for the rate of
wage erosion for adults with low levels of education

Answers to questions such as these are valuable because they inform both
the use and the development of the model.

Knowing something about the uncertainties associated with a model estimate
can help a user decide about how best to refine the estimate or add other
information to it. For example, if a user knows that an estimate has large
uncertainty due to sampling variability, he or she may decide to run the
reform on two different samples (e.g., using both the January 1992 and the
January 1994 SIPP data), and then use an average of the two resulting
estimates. Alternatively, if the user knows that an estimate is very sensitive
to the unemployment rate reflected in the model database, he or she may
decide to run the model using two or three different unemployment rate
assumptions, and then use an average of these estimates, with the average
based on OMB projections of likely unemployment rates in the time period
of interest.

Knowing something about the uncertainties associated with a model esti-
mate can also help a model user know when to stop refining a reform impact
estimate. For example, if simply drawing a different sample might easily
result in a 30 percent change in an estimate, then a model user might de-
cide to stop refinements to the specification of the reform when additional
refinements could produce estimates that are at most 5 percent different.
Or, for example, if using a different (but equally plausible) model of filing
unit composition would result in a 30 percent change in an estimate, then
a model user might again decide to stop refinements to the specification of
the reform when additional refinements could produce estimates that are at
most 5 percent different.
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Knowledge of the uncertainties associated with model estimates is also im-
portant for guiding model development activities. Model development efforts
can be focused on model components that bring the most improvement in
the accuracy and reliability of the estimates. For example, if a key class of
estimates (e.g., those for vehicle reforms) are known to be sensitive to the
method of allocating calendar year income to months of the year, then we
may decide to focus some model development effort on reducing our uncer-
tainty about the best way to perform this allocation.

C. The Scope of the Datametrics Study

The report by Thurston and Zaslavsky describes both the development of an
error analysis methodology, as well as the application of the methodology to
a set of eleven sample reforms. Most of the work was devoted to develop-
ment of the technique; the work was not devoted to any sort of systematic
assessment of the MATH-CPS model. The application work only begins to
scratch the surface of the analysis that can be done using the techniques
developed. The analysis of the eleven sample reforms does provide some
interesting and valuable knowledge about uncertainties in the estimates for
these reforms. However, the results cannot be generalized to other reforms.
Also, note that the sources of uncertainty and the sample reforms analyzed
were both selected to illustrate different types of uncertainty, rather than to
comprehensively address all issues of uncertainty.

D. Sources of Uncertainty in MATH-CPS Model Esti-
mates

The report classifies sources of uncertainties into four broad categories: sam-
piing, stochastic simulation, model specification, and model parameters.

Sampling Uncertainty. Sampling uncertainty is caused by the use of data
from a representative sample, rather than from the entire population of in-
terest. If another sample, drawn by the same method, is used for the model
database, the estimates will be different.

Stochastic Simulation Uncertainty. Stochastic simulation uncertainty is
caused by the use of pseudo-random numbers to simulate household decisions
or to add random variability to an imputed variable. For example, random
numbers are used to simulate whether or not a household that experiences
a decline in FSP benefit decides to stop participating. Another example is
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the use of random numbers for the imputation of the month of the year a
person is simulated to begin employment (if the person is employed for less
than 52 weeks). For any use of a random number, if a different set of random
numbers is used, the model estimates will be different.

Model Specification Uncertainty. Model specification uncertainty is
caused by our uncertainty about how best to model the FSP using the avail-
able data. We are never certain about which model specifications most closely
reflect reality. For example, there may be two equally plausible ways to model
the composition of FSP filing units. We are uncertain which method is best,
but we choose one. If we had chosen the other, the resulting model estimates
would be different.

Other examples of model specifications that produce uncertainty include:

· The method used to correct for under reporting of various income
sources. Many different approaches are possible and we do not know
which is the most realistic one.

· The regression models used to impute assets and expenses. Imputed
variables are typically modeled as a function of a set of predictor vari-
ables. Alternative models that specify the imputed variable as a func-
tion of a different set of predictor variables may also be plausible.

· The method used to "age" the database to a future time period.

· The method used to calibrate the baseline participation model so that
the characteristics of the simulated population of FSP recipients are
similar to those of the actual population.

· The method used to calibrate the asset and expenses imputations so
that the average assets and expenses of the simulated population of
FSP units are similar to the averages observed in administrative data.

· The modeling of FSP eligibility rules. Not every provision of the FSP
regulations is captured in the model specification. Some provisions are
modeled in great detail, while others are captured only roughly. We
are always uncertain about which eligibility rules to model and how
best to model them with the available data. For many FSP provisions,
several different modeling approaches are reasonable.

Two sources of model specification uncertainty are analyzed in the report.
The first model specification analyzed is the specification for calibrating the
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total number of AFDC participants in the baseline simulation. In the de-
velopment of the current MATH-CPS baseline, the total number of AFDC
participants and benefits projected for April 1996 could not be reached. MPR
decided to simply select all eligible units to participate. The resulting base-
line seemed reasonable, even though it did not meet the desired targets for
total participants and benefits. Other methods of calibrating the baseline
total AFDC participants and benefits are possible. For the error analysis,
Thurston and Zaslavsky contrasted the official algorithm with an alterna-
tive specification for calibrating the baseline total AFDC participants and
benefits. They used a re-weighting method that increased the weights of
households eligible for AFDC and decreased the weights of households ineli-
gible for AFDC. Weights were adjusted differentially based on AFDC benefit,
in order to ensure that targets for both participants and benefits were met.

The second model specification analyzed in the report is for the method
of allocating annual earnings across months. The current model allocates
earnings evenly across all months worked. This model may be realistic for
many persons, but for others, work may have been distributed unevenly
across time. For example, some people may work overtime on a seasonal
basis, say during the summer. Other people might work full time during the
first hMf of the year, but then change jobs and work only part time during
the remainder of the year. If we model earnings as unevenly allocated across
the months of the year, some of the FSP-eligible households in the current
baseline during the simulation month (April) would not be eligible in the
alternative baseline, and some who are not eligible in the current baseline
would be eligible in the alternative baseline. Thus, with different households
in the baseline, reform estimates would be different.

To explore the sensitivity of model estimates to the model specification for
the timing of earnings during the year, Thurston and Zaslavsky used an
alternative model specification in which earnings are modeled to fluctuate
from month to month during the year. During the simulation month, earnings
were modeled to be between 0.5 and 1.5 times the average earnings over all
months. A uniform random number was used to determine the ratio of

earnings in the simulation month to the earnings in the average month. This
alternative earnings allocation model was only used for households with total
income below the poverty level.

Model Parameter Uncertainty. Many of the model specifications in
MATH-CPS use model parameters. Model parameter uncertainty is caused
by our uncertainty about the correct value of the parameters. For example,
we have devised a method for aging the income on the database to represent
income received in a future year. The method calls for a parameter that spec-
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ifies the expected inflation rate for the U.S. dollar. We are uncertain about

what the actuM inflation rate will be, but we choose one estimate (the one
produced by OMB) for use in "aging" income amounts. If we use a different

estimate for the inflation rate (e.g., one produced by a Wall Street firm), the
estimates produced by the model will be different.

Other examples of model parameters that produce uncertainty include:

· CMibration targets (e.g., percent of FSP units with a disabled person).

· Demographic and economic aging factors.

· Predictions for future AFDC maximum benefit levels.

· Coefficients of the regression equations used to impute assets and ex-
penses. Because the regression coefficients were estimated using a pop-
ulation sample, they are subject to sampling error and other types of
error.

One source of model parameter uncertainty is analyzed in the report: the
expected unemployment rate for the simulation month. The unemployment
rate in the future simulation month is an unknown parameter. A model
for changing the unemployment rate from the one reflected in the data was
developed by FCS and MPR, but for the April 1996 MATH-CPS database,
we chose not to use the model but instead retain the unemployment rate
reflected in the CPS data for 1992. In the report, Thurston and Zaslavsky
classify uncertainty about the future unemployment rate as a "macro effect."
A macro effect is a broad change in the state of the world, such as in the
unemployment rate or in overall wage levels.

For the error analysis in the report, Thurston and Zaslavsky ran reform
simulations using an alternative unemployment rate. The alternative unem-
ployment rate was achieved by changing the allocation of weeks unemployed
during the year to particular months. In the current procedure, the beginning
month of unemployment is randomly chosen. In the alternative procedure,
for some persons, the unemployment spell is forced to not occur during the
simulation month. Thus, some persons who are normally simulated to be un-
employed during the simulation month are simulated in the alternative model
as being employed during the simulation month. The alternative specifica-
tion implicitly models changes in the unemployment rate as mainly due to
changes in the unemployment spell length for people who are unemployed at
some point during the calendar year. The alternative procedure decreased the
unemployment rate in the simulation month from 6.4 percent to 4.3 percent.
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Note that the method used to change the unemployment rate also involves
model specification uncertainty, since many other methods of changing the
unemployment rate are also plausible. However, the purpose of altering the
unemployment rate was to explore parameter uncertainty (in this case, due
to a macro effect).

E. Methodology

The main approach used by Thurston and Zaslavsky to estimate the magni-
tude of uncertainties in the model estimates was a sensitivity analysis using
a Bayesian framework. A sample reform simulation was run under different
conditions, thus creating variability in the resulting model estimates. Sam-
pling variability was created using different subsamples of the database (i.e.,
jackknife resampling). Stochastic variability was created using different sets
of seeds for the random number generator. Model specification variability
and model parameter variability were created by running the model using
both the current (official) algorithm and one alternative algorithm for each
of the model uncertainty factors.

Depending on the particular way that jackknife replicates and random num-
ber seeds are combined, there are several possible ways to run the simulations
( i.e., several possible experimental designs). Thurston and Zaslavsky made
use of two different designs, one nested and one crossed.

For either experimental design, the contributions of each altered condition
to the variance of the model estimate can be summarized using analysis
of variance (ANOVA). Mean square errors (from the ANOVA table) were
calculated using outputs from the different simulation runs. These calculated
mean square errors were then used to estimate the parameters of a theoretical
model for the effect of each type of uncertainty on the model estimate.20

The theoretical model expresses the model output of interest (the percent
change in FSP participants or benefits) as a linear function of the "influ-
ences'' of each uncertainty source. The theoretical model was used in two
ways. First, expressions for expected mean square errors were derived from
the theoretical model and then equated to the mean square errors from the
ANOVA table for the actual MATH model estimates. Solving the equations
for the variance components produced an estimator for each variance com-
ponent. Second, the theoretical variance components model was used in a
Bayesian framework to derive expressions for the posterior variances of the
quantities of interest (primarily the posterior variance of the percent change
in benefits). The posterior variance of the percent change in benefits is ex-
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pressed as a sum of variance components, each of which represents either one
of the five modeled sources of uncertainty, or the interaction of two or more
of the sources.

In a Bayesian framework, all uncertainties are described by probability state-
ments. For example, if we are not sure which of two specifications for a
particular part of the model is correct, before seeing the data we might say
that each of the two has a 50 percent probability of being the correct speci-
fication. In this framework, the posterior variance (where "posterior" means
"after seeing and analyzing the data") summarizes our uncertainty about an
estimand after using all available information and taking into account all re-
maining uncertainties. In practice, when analyzing something as complex as
a microsimulation model we do not take into account every conceivable source
of uncertainty but restrict our attention to those we consider important and
amenable to analysis.

The use of a Bayesian framework was important because it allowed the con-
sideration of both non-random effects (model specifications and model pa-
rameters) and random effects (sampling and stochastic simulation) as con-
tributors to posterior variance. This allowed estimation of the relative im-
portance of each factor. Without a Bayesian approach, point estimates of
outputs can be compared under different model specifications. This is useful
for examining the impact of a particular feature of the model specification.
However, we would be unable to ascertain the degree to which model speci-
fications and parameters contribute to the total uncertainty of the estimate

compared to the degree to which purely random elements (such as sampling)
contribute.

F. Summary of Key Results

In this section, we summarize some of the key results presented in the report.
We divide these into three groups: (1) results from experiments measuring
only stochastic and sampling uncertainty using one sample reform; (2) re-
suits from experiments measuring all five sources of variability using eleven
different sample reforms; and (3) other key results.
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1. Measurements of Sampling and Stochastic Simulation Uncer-
tainty Using One Sample Reform

Experiments showed that sampling uncertainty was somewhat difficult to
measure reliably. We had expected variability caused by sampling to be easy
to measure well because it is easy to measure by itself. In the absence of other
sources of uncertainty, sampling uncertainty is easy to measure reasonably
well by simply drawing subsamples of the CPS sample (e.g., using jackknife
resampling). The difficulty in measuring sampling uncertainty arose in mea-
suring both sampling and stochastic simulation uncertainty simultaneously.

Estimates for sampling and stochastic variance for a sample reform simula-
tion were sensitive to several experimental conditions: the experiment de-
sign (crossed or nested), the set of random number seeds used, the number
of jackknife replicates used, and the composition of the jackknife replicates
(rotation groups or random groups). For sample reform 1 (see Tables 1 and
2 for description of the reform), estimates of the percent change in benefits
were about 9 percent. Estimates of sampling standard error varied substan-
tially: 8 estimates were zero, 14 estimates were in the 0.1 to 0.4 range, and
6 estimates were in the 0.4 to 0.7 range. Estimates of the stochastic error
varied from 0.42 to 1.03, with most in the 0.5 to 0.8 range. Estimates of
the percent variance due to stochastic error ranged from 38 percent to 100
percent, with most in the 70 to 100 percent range.

While the sampling and stochastic error estimates do seem sensitive to the
experimental conditions, they are all small relative to the impact estimate
of about 9 percent increase in total FSP benefits. Viewed relative to the
impact estimates, the estimates for sampling and stochastic error do not
vary wildly. Estimates for sampling error range from 0 to at most 8 percent
of the estimate. Estimates for stochastic simulation error range from 0 to
at most 11 percent of the estimate. All of the estimates are reliable in that
they all tell us that both sampling and stochastic error are quite small for
sample reform 1. Estimates for other reforms might prove less sensitive to
the experimental conditions.

Although sampling and stochastic simulation error estimates varied consid-
erably, some of the estimates were judged to be better than others. For
example, we believe that the nested design produced better estimates for
stochastic simulation uncertainty, while the crossed design produced better
estimates for sampling uncertainty.

Also, although sampling and stochastic simulation error proved somewhat
difficult to measure, much of the difficulty appeared to be in the allocation
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of error between these two components, which is less crucial than estimation
of the total error produced by both components.

2. Measurements of Five Sources of Uncertainty Using Eleven
Sample Reforms

Experiments using the full five-factor error model, with eleven different sam-
ple reforms provide some of the most interesting results in the report. These
results are summarized in Tables 1 and 2. Table 1 contains results from the

first six reform simulations, all of which produced estimates with little vari-
ability. For these estimates, the standard error ranged from 7 to 15 percent
of the estimate. Table 2 contains results from five subsequent reform simula-
tions, all of which produced estimates with substantial variability. For these
estimates, the standard error ranged from 63 to 193 percent of the estimate.

The top section of Tables 1 and 2 contains estimates for the percent change
in FSP benefits. The overall estimate and the estimates for each non-random

effect are listed for each reform. (Random effects are those due to sampling
and stochastic simulation.) The estimates for the non-random effects show
the effect of using the alternative calibration, unemployment rate, or income
allocation model, compared to using the versions in the official model. For
example, for reform 1, the estimate for the percent change in FSP benefits
is 9.29 percent (8.47 + 0.82) using the official (MPR) calibration, and 7.65
percent (8.47 - 0.82) using the alternative (Datametrics) calibration. (The
estimates for the non-random effects were calculated using a fiat prior; i.e.,
the official specification and the alternative specification were assumed to be
equally plausible).

The middle two sections of Tables 1 and 2 contain the most striking results
in the report. Estimates of the standard error of the overall estimate, by
error source are presented in both absolute terms, and as a percentage of the
overall estimate. The error estimates show that the each of the five measured

sources of error can be substantial in magnitude, for at least some of the
sample reform simulations. By "substantial" in magnitude, we mean that
the error is large relative to the estimate itself. Sampling error was important
for reforms 8, 9, and 10. Stochastic error was important for reforms 7, 8, 10,
and 11. Error due to uncertainty about the best AFDC calibration procedure
was important for reforms 8, 9, 10, and 11. Error due to uncertainty about
the correct unemployment rate was important for reforms 7, 8, 10, and 11.
Error due to uncertainty about the best model for allocating calendar year
income to months was important for reforms 7, 10, and 11.
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In some cases, a single source of error by itself produces a wide confidence
interval. For example, if sampling were the only source of error, our estimate
of 0.17 percent change in FSP benefits for reform 10 would have a 70 percent
confidence interval running from about 0 to about 0.35 percent. Likewise, if
error due to uncertainty about the correct unemployment rate were the only
source of error, our estimate of 0.29 percent for reform i 1 would have a 70
percent confidence interval running from about -0.05 to about 0.63 percent.

While each of the five sources of error proved to be important for some of the
reform simulations, each of the sources of error also proved to be unimportant
for other reform simulations. For reforms 1 through 6, none of the sources of
error produced a standard error greater than 15 percent of the estimate.

In Tables 1 and 2, we also present the error component estimates as percent-
age of the total error measured. These estimates allow us to compare the
importance of each source of error (relative to other sources of error) across
reforms that have very different levels of total error. These estimates nicely
illustrate what model users know intuitively: the sensitivity of the estimate
to different influences depends entirely on the reform.

Sampling uncertainty was important (relative to other sources) for reforms
1, 5, 8, 9, and 10, but not at all important for other reforms. Stochastic sim-
ulation uncertainty was important for reforms 3, 4, 6, 7, and 11. Calibration
uncertainty was important for reforms i and 5, and moderately important
for reforms 2, 3, 4, and 8. Uncertainty about the unemployment rate was
very important for reforms 2 and 6 (increases to the earnings deduction),
and moderately important for reforms 3,10, and 11. The model for allocat-
ing calendar year income across time was generally not important relative to
other sources of uncertainty.

The specification for calibrating AFDC participation totals was important
(relative to other sources of error) for several reforms even when AFDC
participation does not seem directly related to these reforms. For example,
reform 4 excludes the first vehicle for all households; using the official calibra-
tion for AFDC produced an estimate of 5.67 percent change in FSP benefits,
while using the alternative calibration produced a 4.96 percent change in
benefits. Other MATH model calibration procedures (e.g., for the vehicular
assets imputations, and for baseline FSP participation) might prove to be
even more important sources of uncertainty in estimates for vehicle reforms
(as well as for other types of reforms).
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3. Other Key Results

The report contains many additional valuable results; we describe only a few
of them here.

The use of multiple random number set can reduce error substan-
tially for some reforms. Currently, MATH-CPS model estimates are pro-
duced using only one set of random numbers. The one set used may or may
not produce estimates that are typical of those that would be produced us-
ing other random number sets. By running the model using multiple random
number streams and averaging the resulting impact estimates, we can reduce
stochastic simulation uncertainty. For the sample reforms run for this report,
the last line of Tables 1 and 2 shows the percent reduction in the standard
error of the reform estimate due to using 14 different random number sets for
each household. Although stochastic simulation uncertainty can be virtually
eliminated by using just a few different random number sets, the overall re-
duction in uncertainty that can be achieved depends on the degree to which
stochastic simulation uncertainty contributes to total posterior variance and
the magnitude of total posterior variance. For reforms 7 and 11, the use of
multiple random number sets would substantially decrease total uncertainty.

The particular AFDC calibration method is important. In develop-
ing the alternative method used to calibrate total AFDC participants and
benefits, Thurston and Zaslavsky were uncertain how best to do it, even after
having decided on a reweighting scheme over other methods. They tried mul-
tiple variations of the reweighting specification, and the results from these
variations nicely illustrate the idea of model specification uncertainty. The
alternative estimates for reform 1 ranged from 0.66 to 1.8 percentage points
below the 9.3 percent obtained using the official MPR calibration. Estimates
were sensitive to several factors, including the particular random number set
used when tabulating AFDC totals to develop the weighting factors. Obtain-
ing the best results required the use of reweighting factors developed from
the median number of AFDC eligibles.

The AFDC calibration experiments showed that when we try to obtain more
complete consistency between model totals and control totals, we obtain sub-
stantially different results for some reforms. These results suggest that more
research about the causes of discrepancies between survey and administra-
tive data might prove worthwhile. The error analysis results thus confirm
the puzzlement that many analysts have had about this issue.

Measures of sampling error can inadvertently capture stochastic
simulation error. If stochastic simulation error is not eliminated by running
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the model using multiple random number seeds, then measures of sampling
error also measure stochastic error. Experiments that varied the number
of MATH-CPS modules in the run sequence demonstrated this result. An

example best explains the phenomenon. Suppose that we used a very simple
imputation for shelter expenses in which shelter expenses are set equal to 0.3
times income, plus a normally distributed random number with zero mean:

shelter expense = 0.3 x income + Z

The random number, Z, is used to simulate variation in expenses that can-
not be captured by our simple 0.3-times-income model. This addition of a
random variation term is done for most equation-based imputations in the
MATH-CPS model.

Using our imputed shelter expenses, we can estimate average shelter expense
by calculating the mean shelter expense value on our database. Our estimate
of average shelter expenses is subject to sampling error; other samples with
different average income would give us different estimates of the average
shelter expenses. Sampling error for our average shelter expenses estimate is
proportional to the variance of shelter expenses, and inversely proportional
to the sample size. Note, however, that the variance of shelter expenses on
our database is caused by variance in both income and the random number
Z.

var(shelter expense) = 0.09 x var(income) + var(Z)

Using a resampling procedure to measure the sampling error of our estimate
for average shelter expenses implicitly assumes that both income and the
quantity Z were sampled. In reality, Z was not sampled, but assigned by
us. Thus, if we do not account for the stochastic simulation error caused by
our use of random numbers, our sampling error measure will capture some
stochastic simulation error in addition to sampling error. Model estimates
are a function of both the particular households in the sample and the ran-
dom numbers assigned to these households. By using a resampling method
(such as the jackknife), we are measuring sensitivity to both the particu-
lar households sampled and the random numbers that we assigned to those
households. This result is important for interpreting the standard errors pre-
sented in Tables 1 and 2 of the current MATH model output, since these
standard errors are estimated using a jackknife resampling procedure and
only one set of random number seeds.
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(3. Conclusions

The work presented in the report is a valuable contribution to understanding
the sources of uncertainty in MATH-CPS model estimates. The techniques
developed for this work are widely applicable to many of the modeling activ-
ities supported by FCS. Much of the methodology developed is generalizable
to the SIPP- and QC-based FSP models. The knowledge gained through this
error analysis will help to inform any error analysis work needed by FCS in
the future. For example, this work will likely inform the measurement of un-
certainty that will be important in using CPS and SIPP data for producing
state-level impact estimates.
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Table 1: Summary of Measurements of Five Sources of Uncertainty, Using Sample
Reforms 1-6

Sample Reform Number

1 2 i 3 I 4 I 5[ 6

Estimates for percent change in FSP benefits

overall 8.47 10.44 2.841 5.31t 26.06! 3.08
calibration procedure -0.82 -0.50 0.091 -0.36 -1.71 0.07
unemployment rate -0.08 0.80 -0.05 -0.05! -0.12 0.28

income allocation model 0.04 -0.43 -0.04 i -0.02 i 0.02 i -0.04interactions 0.02 -0.03i 0.00 0.01 0.021 0.00

Standard error of overall estimate, by co nponent
total 1.26 1.11 0.19 0.75 2.63 0.39

sampling 0.67 0.00 0.04 0.00 1.77 0.00
stochastic 0.53 0.35 0.12 0.59 0.66 0.23

calibrationprocedure 0.83 0.51 0.09 0.37 1.72 0.07

unemploymentrate 0.37 0.81 0.09 0.24 0.57 0.29
income allocationmodel 0.15 0.44 0.05 0.14 0.26 0.07

interactions 0.05 0.07 0.02 0.03 0.06 0.04

;tandard error of overall estimate, as a percent of estimate
total 15% 11% 7% 14% 10% 12%

sampling 8% 0% 2% 0% 7% 0%
stochastic 6% 3% 4% 11% 3% 8%

calibrationprocedure 10% 5% 3% 7% 7% 2%

unemploymentrate 4% 8% 3% 4% 2% 9%
incomeallocationmodel 2% 4% 2% 3% 1% 2%

interactions 1% 1% 1% 1% 0% 1%

Variance components, as a percent of total measured variance
total 100% 100% 100% 100% 100% 100%

sampling 29% 0% 5% 0% 45% 0%
stochastic 18% 10% 41% 62% 6% 36%

calibrationprocedure 43% _ 21% 22% 24% 43% 4%
unemploymentrate 9% ' 53% 23% 10% 5% 56%
incomeallocationmodel 1% 16% 7% 3% 1% 3%

interactions 0% 0% 1% 0% 0% 1%

Reduction in standard error of overall estimate when using multiple seeds

i 9%ol 5%] 25% 36%[ 3% _ 22%

Reform #1: Increase asset limits to $5,000; reduce shelter deduction cap by 50 percent; remove cap on dependent
care deduction

Reform #2: Increase earnings deduction to 50 percent

Reform #3: Remove cap on shelter deduction
Reform #4: Exclude entire value of first vehicle

Reform #5: Exclude all assets

Reform #6: Increase earnings deduction to 50 percent for AFDC households
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Table 2: Summary of Measurements of Five Sources of Uncertainty, Using Sample
Reforms 7-11

Sample Reform Number

7I 81 9] 10 11

Estimates for ep_e_ent change in FSP benefits
overall 0.31 0.22 0.30 0.17 0.29

calibration procedure -0.03 0.08! 0.06 -0.06 -0.05
unemployment rate -0.02 -0.06 :: 0.00 -0.15, -0.08

incomeallocationmodel -0.00 0.01i -0.00 -0.03 0.00

interactions 0.01 0.001 -0.00 0.02 0.01

Standard error of overall estimate, by component
total 0.32 0.17 0.19 0.32 0.56

sampling 0.00 0.13 0.16 0.18 0.00
stochastic 0.30 0.05 0.04 0.16 0.42

calibrationprocedure 0.06 0.08 0.07 0.06 0.10

unemploymentrate 0.08 0.06 0.04 0.16 0.34
incomeallocationmodel 0.07 0.02 0.02 0.09 0.11

interactions 0.02 0.01 0.02 0.02 0.03

Standard error of overall estimate, as a percent of estimate
total 105% 80% 63% 190% 193%

sampling 0% 60% 54% 109% 0%
stochastic 97% 21% 13% 96% 145%

calibrationprocedure 18% 36% 24% 39% 34%

unemploymentrate 27% 30% 13% 99% 117%
incomeallocationmodel 22% 9% 6% 57% 39%

interactions 7% 5% 7% 15% 11%

Variance components, as a percent of total measured variance
total 100% 100% 100% 100% 100%

sampling 0% 57% 74% 33% 0%
stochastic 86% 7% 5% 25% 56%

calibrationprocedure 3% 21% 14% 4% 3%
4% 27% 36%unemploymentrate 7% 14%_ ,

incomeallocationmodel 4% 1% 1% 9% 4%

interactions i 0% 0% 1% 1% 0%

Reduction in standard error of overall estimate when using multiple seeds

I 65%1 4%t 8°/oi 16% 33%

Reform #7: Asset limit = $2,150 for both elderly and non-elderly units
Reform #8: Shelter deduction = shelter expenses over 35% of gross income

Reform #9: Earnings deduction = 75% for units participating in AFDC-UP
Retbrm # IO: Earnings deduction = 34% for units on FSP for 6 months or less; otherwise, no earnings deduciton

Relbrm #11: Exclude $10,000 of first vehicle; reduce asset limit to $1,075 for non-elderly units on FSP Ibr more
than 6 months
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I Introduction

Microsimulation models are one of the main tools used to estimate the cost

and other impacts of proposed changes in Federal programs. In these mod-

els, behavior is simulated at the level of the individual unit, hence the name

microsimulation. By taking into account the specific characteristics of each

unit, microsimulation models have the potential to better estimate effects of

small changes in policy and program provisions, and their differential impact

among population subgroups, than can models that operate at a more aggre-

gate level (Citro and Hanushek, 1991). In addition, microsimulation models

can address questions such as who gains and who loses from a proposed policy

change.

Typically microsimulation models as currently implemented give point es-

timates with no estimates of variability. However there are many sources

of uncertainty in these models including: sampling, stochastic simulation,

choice of model parameters, model specification including calibration, and

macro effects (which can potentially affect any household) such as unem-

ployment.

A panel of experts convened by the Committee on National Statistics at the
National Research Council recommended in 1991 that validation studies of

microsimulation models be conducted by independent contractors. One type

of validation study recommended was a sensitivity analysis, in which outputs

from running a microsimulation model under changed sets of conditions axe

compared (Citro and Hanushek, 1991).

We use sensitivity analysis to model some of the uncertainties in the Micro

Analysis of Transfers to Households (MATH-CPS) model. The MATH-CPS

model is one of three microsimulation models currently used to estimate the

impacts of changes to the Food Stamp Program (FSP). Outputs of particular
interest from these models include comparisons of benefits received under

the current law with those received under a changed set of program rules.

We summarize uncertainties in these comparisons by estimating the relative

contribution of each error source to posterior variance.

We have modeled five sources of uncertainty in the MATH-CPS model, as

described in Section 6. A summary of the sources of uncertainty which we

modeled appears at the beginning of Section 7.1.



2 Sources of uncertainty in microsimulation
models

Microsimulation models use data from a base dataset, which is usually ob-
tained from survey data or administrative records. Often, not all variables
needed for the model are included in the base dataset. The other variables

needed may be estimated using information from a model or an auxiliary
dataset. In some microsimulation models, the data is aged to a future time.
Decisions are then simulated at the level of individual units under the cur-

rent set of laws as well as under one or more sets of proposed policy changes.
Finally, outputs of interest are aggregated within subgroups of interest.

There are many sources of uncertainty in microsimulation models. Sampling
uncertainty refers to uncertainty due to the fact that the data is based on
a sample of units. Sampling uncertainty arises from use of the base dataset
and from the auxiliary dataset, if the latter is used. In addition, model
parameters may be based on supplementary studies, which themselves are
subject to sampling uncertainty.

Stochastic simulation uncertainty arises when random numbers are used in
the model. Random numbers are often used to simulate decisions of individ-

ual units in the dataset. Stochastic simulation uncertainty also arises when
missing data are imputed, and may arise in statistical matching.

There are many underlying models implicitly or explicitly specified in mi-
crosimulation models. One example is the assumption that the database is
free of deficiencies. However there may be discrepancies between the database
and what is believed to be correct. For example, it may be known that some
percentage of the population receives a particular form of public assistance,
but the percentage in the database doesn't match this number. This leads to
uncertainty about how to correct the database deficiencies. Another example
is when a decision simulated for an individual unit in the database is modeled

to be a function of a set of predictor variables. An alternate model could be
plausible which specifies that the decision is a function of a different set of
predictor variables, where the two sets may contain the same, overlapping, or
totally different variables. We use the term model specification uncertainty
to denote uncertainty about which model most closely reflects reality.

Model specification uncertainty arises in nearly all aspects of microsimula-
tion modeling. During the database creation stage, statistical matching is
often used for imputation of missing values. In statistical matching, a typ-
ical model assumes conditional independence: conditional on the variables
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common to both datasets, the variables in the base dataset are assumed to
be independent of the variables in the auxiliary dataset. In an alternate
model, the partial correlation between the variables which are just in the

base dataset and the variables just in the auxiliary dataset, given the vari-
ables in both datasets, is assumed to have some non-zero value. This model
would almost certainly give a different matched dataset.

The partial correlation coefficient cannot be determined from the dataset.
Even if it was known, the resulting dataset from statistical matching is not
identical to the data that would have been observed if there was no missing
data. Whether or not the partial correlation coefficient is assumed to be 0,
using just one set of imputed values doesn't reflect the uncertainty about
the missing values. Use of multiple imputation, in which missing values
are imputed several times resulting in multiple datasets, can allow for an
estimate of the uncertainty due to the missing data (see Rubin, 1987, and
Rubin, 1986).

Model specification uncertainty may arise in other stages of the creation of
the base dataset. Aging of the dataset relies on a model, as does simulation
of individual decisions. In some cases, application of program rules relies on
a model.

Calibration is the process used to adjust the model in order to bring simulated
totals or percentages closer to a projected total or percentage. If the data
are calibrated, a model is specified for how the calibration is to occur. Cal-
ibration can be considered a type of model specification uncertainty. There
are two aspects of calibration: how certain one is about the projected totals,
and how to calibrate to these totals. Just as there can be many ways to spec-
ify a model, there can be many ways to specify how calibration can occur.
Different methods of calibration may lead to different model outcomes.

The specification of a model usually involves model parameters. We refer to
uncertainty about what the correct values of model parameters are as model
parameter uncertainty. As an example, suppose an individual decision to
participate in a public assistance program is modeled to be a function of a
set of categorical predictor variables that specify an array of cells, used for
table lookup. In the model implementation, an individual may be simulated
to participate if a random number is less than the value in the cell relevant
to that individual. There may be two plausible sets of values for the table
and uncertainty about which set is closest to reality. Since many model
specifications use model parameters, model parameter uncertainty may arise
at almost any stage of the microsimulation model.

Some possible changes in the state of the world, such as the change in the
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unemployment rate, changes in overall wage levels, etc., may be reflected in
changes in values of variables for many individuals in the file. We refer to
uncertainty about these changes as uncertainty due to macro effects. Macro
effects may potentially affect any individual in the file.

Finally, there is uncertainty involved in the choice of an outcome measure.
Microsimulation models give many outputs, often including several different
tables and many entries in each table. It may be of interest to have one
overall measure of the effect of the reform, which would be based on some
combination of cell outputs. These summary measures are called welfare
measures. The outputs can be combined in many different ways, with uncer-
tainty reflecting lack of consensus about how best to combine the outputs.
Different ways of combining outputs may be preferable depending on what
the purpose of the summary is. In theory, one measure may lead to the con-
clusion that the plan is beneficial as a whole, while another measure could
lead to the opposite conclusion. Uncertainty about welfare measures could
be estimated by the variability between different ways of summarizing the
effects of the reform (i.e. between different ways of combining cell outputs).
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3 Approaches and results of error analysis in
other studies

Citro and Hanushek (1991, p. 232) distinguish three approaches for valida-
tion of microsimulation models: external validation, sensitivity analysis, and
variance estimation. In external validation, model outputs which typically
simulate the effects of a changed policy, are compared with what actually
happened. Estimates of what actually happened are usually based on ad-
ministrative records, which themselves are subject to sampling variability.
There are several difficulties in carrying out an external validation, including
the possibility that the reform which was actually enacted was different from
the reform used in the microsimulation model, and that changes in macroe-
conomic conditions in the intervening time period may have been different
from what was modeled.

In a sensitivity analysis, different versions of model modules or different
choices of model structures are used, and model outputs are compared across
the different versions. The interest is in how sensitive the model outputs
are to the changed set of conditions. Sensitivity analysis by itself cannot
give information about which of the alternate versions are better, because
it doesn't give a true reference point. However, sensitivity analysis can help
guide future work by pointing out which model aspects need to be improved.

Citro and Hanushek (1991, p. 239) use the term "variance estimation" for
estimation of sampling variability. They note that there is sampling vari-
ability both in the base data set and in any auxiliary datasets which may
have been used for imputing missing variables, estimating model parameters,
estimating control totals, estimating behavioral responses, etc.

Cohen (1991a) discusses how resampling methods can be used to estimate
sampling variability in microsimulation models. He also mentions other po-
tential sources of uncertainty in microsimulation models (p. 246-247), in-
cluding choice of aging module, macroeconomic projections, and model pa-
rameters in regression. He suggests using a sensitivity analysis for different
modules and different macroeconomic projections by selecting two or more
versions of inputs, and combining this with bootstrap resampling (p. 250-
251).

Of the relatively small number of studies which have addressed the uncer-
tainty in or validity of microsimnlation models, some focused on external
validity, some focused on sensitivity analyses, and a few others addressed
stochastic and/or sampling variability. Cohen (1991b) reviewed 13 stud-

7



les of microsimulation model evaluations. Of these, nine included external
validation, eight included sensitivity analysis, and five gave suggestions for
improvements to the models.

3.1 External validation studies of the MATH-CPS model

Two of the studies reviewed by Cohen (1991b) did an external validation of
the MATH-CPS model: Doyle and Tripp (1989) and Beebout and Haworth
(1989). Beebout and Haworth compared model outputs with actual changes
which occurred after the 1977 Food Stamp Act was implemented. They
concluded that the MATH-CPS model underestimated the impact of the
Food Stamp Act by 1.8 to 12.8 percentage points (Beebout and Haworth,
1989, as cited in Cohen,1991b).

Doyle and Tripp (1989) evaluated the MATH-CPS model in two phases. In
Phase I they evaluated model results using an unaged file, whereas in Phase
II they evaluated the process of aging the database.

In Phase I, Doyle and Tripp compared outputs from the MATH-CPS model
using the March 1985 CPS database, with August 1984 administrative data
summaries, and with the MATH-SIPP model outputs using 1984 SIPP data.
They note that the comparison database is also subject to sampling and other
errors. Their results showed that many point estimates from the MATH-CPS
model were close to administrative totals, including the total number of par-
ticipants, total benefits paid, and the marginal distributions of participants
along some dimensions such as gross monthly income and household size.
However, they found that the distribution of simulated participants along
other dimensions did not match the administrative data very well. In par-
ticular, they found that the model simulated food stamp participants among
too many households with disabled non-elderly people, too many households
with elderly people, too many households with earners, too few households
with school-aged children, and too few non-elderly households on public as-
sistance (Doyle and Tripp, 1989, Ch. 3). These problems remain with the
MATH-CPS database with which we worked (Table 4). Doyle and Tripp also
found that the MATH-SIPP model did not match administrative data better

than the MATH-CPS model (p. 31).

Doyle and Tripp investigated a number of reasons for these discrepancies
(Ch. 4). One problem they found was that there were not enough food
stamp eligible households in some table cells (cross-classified by household
size, income, presence of elderly, and receipt of public assistance) from which
to draw participants. One of the reasons behind these discrepancies is that

8



poor single adult households with children are underrepresented in the CPS
(Ch. 3, p. 19).

3.2 Studies using sensitivity analyses

As part of the work of the Panel to Evaluate Microsimulation Models for
Social Welfare Programs, Cohen et al. (1991) did an illustrative validation
of TRIM2 for AFDC. Their goals included external validation and identifying
which modules have large effects on model outputs. They used a sensitivity
analysis for the latter, by using different versions of three modules. For two
of these modules (modeling undercoverage for households with particular
characteristics, and allocation of variables measured on an annual basis to
months) they used one alternate version (two versions total), while for the
third (static aging) they used three alternate versions.

Cohen et al. considered 16 different outputs for a program change that had
actually occurred. They used a factorial experiment, analyzing the outputs
with ANOVA. By taking the dependent variable to be the difference between
the simulated output and the observed value, they were able simultaneously
to do a sensitivity analysis and an external validation. They found that the
method of aging contributed most to total variability, followed by adjusting
the data for undercoverage. No one version of a module did clearly better
than another in replicating observed totals, nor did any one combination of
versions. They note that a more general model for validation would include
using replicate datasets, with replication being a random effect and the model
alternatives being fixed effects.

Atrostic and others at the Congressional Budget Office (CBO) considered
sensitivity analyses in their development of a model of health services spend-
ing and payment (Atrostic 1994 and 1995; see Atrostic and Bilheimer, 1993,
for a more detailed description of the model). The CBO model is based on
the March 1993 CPS, combined with the 1987 National Medical Expenditure
Survey (NMES). Since heMth care expenditures and health insurance premi-
ums are not part of the CPS dataset, statistical matching is used to impute
them from NMES. Match cells are created, and missing data for an individ-
ual is imputed based on the relevant match cell. In constructing the data
file for the model, they considered multiple models of statisticM matching to
impute these variables.

Atrostic (1994) examined three different models for imputing expenditures.
In two of these models, records within match cells are sorted by age, whereas
in the third model they are also sorted by income within match cell. Since
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expenditures are highly skewed, outputs of interest include the mean, stan-
dard deviation, and percentiles of the expenditure distribution. Outputs of
all three models replicated NMES distributions quite closely.

Atrostic also compared two models for jointly imputing expenditures and pre-
miums. In one model, both were imputed based on the same set of variables.
In the other, in addition to using the same set of variables, expenditures were
imputed based on premiums and vice versa. The results of these two models
were somewhat different. For example, the mean total health expenditure for
people with expenditures differed by $200, and the mean premium differed
by over $400.

In her 1995 paper, Atrostic describes strategies for choosing when to retain
more than one version of a model specification in the development of the
CBO model. Resource limitations prevented examining alternatives for every
aspect of model specification in a classical experimental design. Instead,
alternative model specifications were examined early on. In some cases the
decision was made to use a single model specification for aspects that did not
seem to contribute greatly to overall uncertainty, while retaining more than
one alternative model specification for other aspects.

One set of model choices involved whether to impute premiums and expen-
ditures jointly or separately. Their results suggested that they should be
imputed jointly, but partly due to feasibility considerations, they decided
to impute them separately. Another choice involved whether to match by
family size or by size of health insurance unit, and it was decided to match
using only health insurance unit size. For modeling what share of Federal
taxes will be used to pay for health care, three different models were retained.
Uncertainty about how state and local taxes are to be modeled led them to
develop two alternatives. Atrostic also discusses several models of calibra-
tion, including applying ratio adjustments, or using a raking algorithm. In
the CBO model they decided to apply only ratio adjustments for detailed
spending categories, cross-classified by detailed financing categories.

By retaining several model versions written during the development of a
microsimulation model, the CBO model will have a built-in mechanism for
doing a sensitivity analysis for a number of different alternatives, for what
we call model specification.
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3.3 Studies addressing stochastic simulation, calibra-

tion, or other sources of uncertainty

Kennickell and McManus (1994) use multiple imputation for item nonre-
sponse in the data from the 1983 and 1989 panels of the Survey of Consumer
Finances (SCF). The 1989 panel included panel cases based on the 1983 de-
sign as well as new cross-sectional cases (Heeringa et al., 1993, as cited in
Kennickell and McManus, 1994). Missing data rates varied widely between
variables, but for those households in the SCF in both 1983 and 1989, the
percent with missing data in both years was fairly small. For missing data
in the 1989 panel, software which imputes based on cross-sectional cases was
modified to include conditioning on variables in the 1983 data.

Kennickell and McManus examined how much variability was added as a
result of doing multiple imputation. They found that the coefficient of varia-
tion for the mean of a variable varied widely depending on what variable was
being considered. In general, the coefficient of variation was largest for asset
types held by fewer people, and smaller for aggregated measures such as total
assets. For the imputation of 1989 total family income and components of
financial assets changes, they examined how R2 decreased as variables used
in the imputation are dropped out. They compared this with and without
using 1983 data. For some variables the inclusion of 1983 data gave a much
larger/t 2, and for most variables R2 decreased substantially as the number
of excluded variables increased.

Doyle and Farley (1994) examined the sensitivity of results of the AHSIM
microsimulation model of health care reform to stochastic simulation. In the

AHSIM model, health expenditures are imputed in a 2-part model (Doyle
and Farley 1994, Farley and Doyle 1995). First, 10 probit models simulate
the probability of having an expenditure for each of 10 types of services.
A random uniform number is drawn and compared to the predicted probit
parameter to determine whether or not each person will be simulated to have
an expenditure. Conditional on having an expenditure of a given type, a
second set of 10 log-linear regressions impute the expenditure, and a random
normal error term is added to the predicted amount to give the simulated
expenditure for each person. Premiums are then imputed, based in part on
simulated expenditures.

Doyle and Farley ran the model 50 times with different random seeds. The
baselaw expenditures were calibrated to NMES-reported means. Conse-
quently, it is not too surprising that they found a small standard error for
the mean baseline expenditure, as well as for the mean reform expenditure.
In contrast, they found an extremely large standard error for the change in
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mean expenditure. This example shows how calibration can reduce the over-

all uncertainty of model outputs. If more than one method of calibration

is possible, the estimate of uncertainty does not include uncertainty about
calibration method.

Farley and Doyle (1995) considered different methods for imputing expendi-
tures and the effect of calibration on these methods. The standard method

was described above (Doyle and Farley, 1994). Other methods included draw-

ing the error terms for the log-linear model using two different non-parametric

approaches, and another method imputed total expenditures directly, i.e.

not categorized into type of expenditure. Since expenditures have a highly

skewed distribution, the distribution of expenditures into increments and

by percentiles was of interest, and several measures of comparing simulated

results under different imputations with actual expenditures (from NMES)
were used.

Farley and Doyle found that the distribution of simulated expenditures was

similar to actual expenditures under each imputation. In the standard method,
the distribution of expenditures was compressed and calibration to control

totals did not fix this. One of their non-parametric methods, which preserves

correlation among error terms for the same person among different services,

performed the best overall. Although this method did not do well at repli-

cating the distribution of expenditures at the top of the distribution, it most

closely replicated the overall expenditure distribution. They also concluded

that if total spending is of interest, the model which imputes total spend-

ing directly is preferable to the current method in which each expenditure is

imputed separately.

Pudney and Sutherland (1994) incorporated three sources of uncertainty in
the POLIMOD microsimulation model, a tax-benefit model for analyzing the

distributional effects of policy changes. They incorporated uncertainty due to

sampling, stochastic simulation, and parameter estimation. In addition they

compared outputs under three specifications of the model for employment

participation of women in the reform. They did not age their data, but

pointed out that the aging process could contribute greatly to uncertainty.

Pudney and Sutherland consider a very radical policy change, in which all

adults would be given an income, regardless of employment status, marital

status, or income level. They expected that this type of reform would induce

a large change in labor supply of women, and it is this aspect of behavior that

they targeted for model parameter uncertainty. They allow for 3 possible

states of employment: not working, working part time, and working full

time. The predicted participation state for each woman in the base policy is
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generally simulated using a multinomial logit model.

Use of a resampling method to estimate sampling variability was not compu-
rationally feasible in their case. Instead they estimated sampling variability
using asymptotic approximations.

Pudney and Sutherland compared outputs under three different models of
employment participation for women in the reform. In the first two, partici-
pation in the base policy is simulated from the multinomial logit. In the first
model, participation under the reform policy is simulated to be the same as
under the base policy, whereas the second allows for second round effects.
They compare this to a third model in which participation in the reform
policy is the same as the observed state in the base policy.

For each of the three employment participation models, and for the base pol-
icy, the reform, and the difference between policies, Pudney and Sutherland
calculated 11 model outputs each with a standard error. They assumed that
the standard error for the difference between reforms was the same as the

standard error for the reform policy totals. Consequently, they concluded for
example that the coefficient of variation for total net payment in the reform
is 10%, but is 160% for the change in net payments. Their results showed
that sampling is the largest contributor to uncertainty for most outputs, with
parameter uncertainty important for some outputs.

Pudney and Sutherland compared the relative importance of sampling, stochas-
tic simulation and model parameter uncertainty, addressed in a way that we
would consider each to be a random effect. However, without a Bayesian
approach they cannot compare the relative importance of these uncertainties
to what we would call the fixed effect of model specification, of employment
participation for women in the reform. Instead they give point estimates and
standard error estimates (based on the three random components) for the
outputs separately for each employment participation model.
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4 Our treatment of uncertainties

Some types of uncertainties, such as sampling and stochastic simulation un-

certainty, are due to a random effect and are most naturally summarized by

a variance estimate. Other types of uncertainty, such as model specification

and macro effects, can be called fixed effects. In this case particular levels are

interpretable, and the interest may be in the output resulting from particular

model specifications or particular realizations of a macro effect (Maxwell and

Delaney, 1990, ch. 10). For example, one may be interested in the simulated
model output if the unemployment rate was 2% less than the current rate.

Estimates of model parameters may be subject to sampling variability be-

cause the estimated model parameters are often based on supplementary

studies based on samples. However, in some cases the analyst is interested

in a particular value of the model parameter a priori. As an example, one

may be interested in what the output would be if all eligible households

participated in the Food Stamp Program (FSP).

Especially for fixed effects, the interest is often in model outcomes under par-

ticular model specifications, different macro assumptions, or different values

of model parameters. An analysis of model sensitivity, or of how much the

point estimate of the model output changes under alternative specifications,

is called sensitivity analysis. In sensitivity analysis we are also interested in

the variability of the estimated change in model outputs.

We use the term factor to denote any of the sources of uncertainty for which

the programmer can vary the input levels or possible realizations. One way
to estimate the contribution to variance of each error source is to run the

model multiple times, varying the level of any factor, using an appropriate

experimental design.

One simple and useful design is a full factorial design, in which the model is

run under all possible combinations of the levels of the factors. For example,

if the model uses factors A with n levels and B with m levels, there are nm

total model runs (Cochran and Cox, 1950, ch. 5). In this design, A is said

to be crossed with B. The effect of a particular factor can be estimated by

averaging the output over the levels of all the other factors.

In a nested design, factor A is nested in factor B if each level of A is associated

with only one level of B. For example, if a model uses rn levels of factor A

and n levels of factor B, then m/n distinct levels of A are run for each level

of B, giving a total of rn model runs (Snedecor and Cochran, 1980, ch. 16).

In our work we use a combination of nested and crossed designs.
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We use a Bayesian framework to interpret the importance of each error
source. In a Bayesian framework, parameters are considered to be random.
Before collecting data, we specify the distribution of each parameter by a
prior probability distribution. The prior distribution represents the uncer-

tainty about the parameter, and may reflect the range of values thought
to be plausible by a single analyst, or it may reflect disagreements between
different people. Ideally, the prior distribution should reflect the range of
disagreement about the parameter value among people with expert opinion
on the subject. Sometimes a flat prior is used, which gives equal prior proba-
bility to every possible value. A flat prior corresponds to a situation in which
there is no prior information about the parameter.

After the prior distributions axe specified, data is collected. In this case the
data are the results of running the MATH-CPS model multiple times, under
different levels of several factors. The prior distribution and the data are
then combined using Bayes Theorem to give the posterior distribution for
each parameter. Bayes Theorem says that the posterior distribution of the
parameter, given the data, is proportional to the sampling distribution of the
data times the prior distribution, 7r(0 [ x) cx f(x I O)_r(O).

Using a Bayesian framework makes it possible to compare uncertainties about
non-random elements such as the model specification, and random elements
such as sampling, in a unified way. Without a Bayesian approach, point esti-
mates of outputs can be compared under two different models or two different
calibration methods (see for example Pudney and Sutherland 1994). However
the degree to which model specification or calibration method contributes to
the total uncertainty of the estimate of interest compared to random ele-
ments such as sampling, cannot be ascertained. Using a Bayesian approach
makes it possible to consider both random and non-random elements as con-
tributors to posterior variance and estimate the relative importance of each
factor.

An estimate of the absolute size of each error source can be obtained from

running the MATH-CPS model multiple times, outputting the point estimate
of interest each time. The contributions of each factor to the variances of

the model outputs can be summarized using analysis of variance, which can
be easily applied in a full factorial experiment or a combined factorial and
nested experiment.

For both fixed and random factors, the main effect of a factor can be es-
timated by the difference in the average point estimate under one level of
the factor from the average point estimate, averaged over that factor. The
sensitivity of the model to the factor of interest is estimated by the main
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effect. The main effect of model specification, for example, gives an estimate
of the sensitivity of the point estimate to the model specified.

['or fixed effects, the sum of the variances of the interaction of a particular
fixed factor with each random factor (or the sum of variances of random
factors nested within the fixed factor), gives an estimate of the variance
associated with the main effect. For random factors, the variance of the main
effect can be estimated from the variance component for the corresponding
main effect.

We can also estimate the relative importance of each error source by looking
at the contribution of each error source to posterior variance. The percentage
of total posterior variance due to a particular factor gives an estimate of how
important that factor is relative to other factors. The Bayesian framework
makes it possible to compare the relative importance of both random and
non-random factors.

Assuming linearity of the estimate with respect to the parameter, we can get
a good estimate of the posterior parameter variance by using two values of
the parameter based on the prior distribution: one at one standard deviation
above the mean and the other at one standard deviation below the mean.

Although it could be difficult to fully specify a prior distribution for a pa-
rameter, it might be possible to specify a prior mean and standard deviation,
which is all that is needed to specify the two values.

There are two issues concerning calibration uncertainty: uncertainty about
the totals or percentages to which the model is calibrated, and uncertainty
about how to calibrate to these totals or percentages, i.e. uncertainty about
calibration method. When a microsimulation model doesn't incorporation
calibration, a particular total of interest will vary from run to run, due to
sampling, stochastic and other sources of error.

When calibrating to a total of interest, the variability of this total due to
sampling etc. is replaced with the prior uncertainty of the total. If the model
is adjusted in such a way that the total for each run always exactly hits the
same target, then effectively our prior uncertainty for the total is 0. If our
prior uncertainty about the total is smaller than the sampling variability for
the total, then we expect that the posterior variance of the total of interest
would be reduced.

There could be many plausible methods to calibrate to a known total, and
the posterior variance for the total should reflect this uncertainty. If cali-
bration is done in one way only, then the posterior variance only includes
variance within method of calibration, and the estimated uncertainty will be
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too small. By running a microsimulation model under at least two different
methods of calibration, the posterior variance correctly includes variance be-
tween methods of calibration, as well as variance within calibration method.

We can use the information from the estimated variance components and
their relative sizes as a guide to future simulations, future model changes, and
future data collection. If the simulation variability is quite large relative to
other components of posterior variance, this suggests doing more simulations
with more random seeds in order to reduce the variability of model outputs.
A large variance component for model specification uncertainty suggests more
work should be done to specify the model as correctly as possible for use in
future models. On the other hand, if sampling variability is large, perhaps
an effort should be made to collect a larger sample for use in future models.
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5 The MATH-CPS model

The Micro Analysis of Transfer to Households (MATH-CPS) model is the
most complex of the three food stamp microsimulation models written by
Mathematica Policy Research (MPR). The MATH-CPS model is based on
the Current Population Survey (CPS). In particular, the 1996 MATH-CPS
model, with which we work, is based on the March 1993 CPS.

Like the MATH-SIPP model, the model of intermediate complexity written
by MPR, the MATH-CPS model simulates eligibility and participation in
the food stamp program. Unlike MATH-SIPP, the MATH-CPS model also
simulates federal income and payroll taxes, which is not done in MATH-SIPP
(MPR, 1994a).

The MATH-CPS data is organized and processed by household. As is done
in the CPS, within each household, data is organized by family, and then
by person within family. Each household and person has a weight associated
with it, which is essentially the aged version of the March 1993 weights (MPR,
199qb).

5.1 Creation of the MATH-CPS database from the

Current Population Survey

The CPS consists of a multistage stratified sample of non-institutionalized
residents of the U.S. Each month approximately 71,000 households are se-
lected to be interviewed of which 57,000 households containing approximately
112,000 people aged 15 or older are actually interviewed. (U.S. Department
of Commerce, 1993a). Each household is interviewed monthly for four con-
secutive months, not interviewed for 8 months, then interviewed again for
four consecutive months. During any given month, the CPS sample con-
sists of 8 groups of households, each having entered the sample at a different
time. These 8 groups are called rotation groups. Each rotation group is a
probability sample of the population (U.S. Department of Commerce, 1978).

In the CPS, demographic data such as age, sex, and race are collected as are
data on employment, such as occupation and hours worked. In the March
CPS additional information is obtained, including work experience, employ-
ment history, and income, on an annual basis for the previous year.

For the March CPS, an additional 2500 Hispanic households are interviewed
and supplementary data are collected for members of the Armed Forces who
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live on a military base or with their families in civilian housing units. The
March CPS uses statistical matching and hot deck imputation to impute
missing values. Statistical matching links each record which contains a miss-
ing value to a donor record without a missing value for the variable in ques-
tion. Hot deck imputation imputes the missing value from the observed value
in the donor record (U.S. Department of Commerce, 1993a).

The resulting data is representative of the United States as a whole, of each
state, and of some other areas. The CPS is geared to producing national
estimates, and for some purposes is inadequate to produce sufficiently precise
estimates at the state level.

The CPS data is organized by household, then by family within household,
and finally by person within family. Each type of unit has a weight associated
with it. The calculation of weights for each person in the file is done in several
stages. The basic weight is the inverse probability of selection. This weight
is then adjusted for some special sampling situations and for non-interview
of sampled households, within cluster by residence, race, and rotation group
(U.S. Department of Commerce, 1978).

The next step in the calculation of weights uses two stages of ratio adjust-
ments to adjust the sample to represent the known distribution of the pop-
ulation. The first-stage ratio adjustment is based on residence category,
race, and region. The second-stage ratio adjustment is based on age-sex-race
groups (U.S. Department of Commerce, 1978). Further adjustments to the
weights are made to create the March CPS supplement weights, necessitated
by the addition of households into the sample, and by the need for husband
and wife to have the same weight.

Unlike the MATH-SIPP model, the MATH-CPS model ages the data, in this
case from 1993 to 1996. The data is first aged demographically by readjust-
ing person-level and household-level weights so that population counts by
age (16 categories), sex, and race (4 categories) agree with projected counts.
The projected counts are based on projections given in Table 2 in the Cur-
rent Population Reports, P-25-1104 (U.S. Department of Commerce, 1993b).
Then annual income variables are aged, by readjusting each type of wage ac-
cording to the educational class of the individual. Finally, the annual poverty
threshold is adjusted.

There are several problems in using the CPS data for food stamp microsimu-
lation models. First, eligibility for the food stamp program and other public
assistance programs depends on monthly rather than annual income, but the
CPS only collects data on annual income. Secondly, some variables needed
to determine eligibility for the food stamp program, such as financial and
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vehicular assets, and shelter, medical and deductible child care expenses, are
not part of the CPS data (MPR, 1994a). Finally, AFDC, SSI and GA ben-
efits, which affect eligibility for the food stamp program, are underreported
in the CPS (US Dept of Commerce, 1992).

5.2 MATH-CPS model modules

The MATH-CPS model consists of a series of modules which may be run
separately, or in conjunction with other modules. A very brief description of
each MATH-CPS model module is given in Table 3 (MPR, 1994a). More
details about each module may be found in Appendix 3.

The modules are ordered because some modules create variables which are

then used in subsequent modules. For example, eligibility for the food stamp
program is modeled in the FSTAMP module, and depends in part on whether
or not the household was simulated to participate in AFDC, SSI, or GA.
Participation in these three public assistance programs is simulated in the
PBLAST module. Participation in public assistance programs depends on
eligibility which is simulated in the PAPRAT module. The formation of pub-
lic assistance filing units, needed by PAPRAT, is done in the UNIT7 module.
These three modules in turn rely on earlier modules, such as ASSETS which
imputes financial and vehicular assets, and ALLOY which allocates yearly
earned income to months.

We are primarily interested in how a reform will affect changes in simulated
participation and modeled benefits in the food stamp program (FSP). Food
stamp eligibility and participation is simulated in the FSTAMP module,
which can be run either under conditions for the baselaw or for the reform.

This is the only MATH-CPS model which can be run under two different
conditions. In a typical MATH-CPS model run, we run the FSTAMP module
twice: first under the baselaw then under the reform.

Households which are eligible for the FSP under the baselaw, and which do
not receive AFDC, are simulated to participate in the FSP under the baselaw
with probabilities given in an array. These probabilities were derived in a
series of steps. The initial probabilities are given in a 64-ce11, 4-dimensional
array, indexed by gross income relative to the poverty level (4 classes), unit
size (4 classes), whether or not SSI or GA is received, and whether or not the
household has elderly members. These initial probabilities are the number
of participants (from the Food Stamp Integrated Quality Control Sample
(IQCS) data) divided by the number of eligibles (from running the MATH-
CPS model) (MPR, 1994a, ch 11). In some cells this initial probability is
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Table 3: MATH-CPS model modules

· MAKIO, MAKEHEAD, and MAKEMATH: converts CPS data into
MATH-CPS database

· CODECPS: recodes CPS data to MATH-CPS variables

· DEFSTA: creates status variables

· DEMAGE: demographically ages the data to 1996

· CSWORK: tabulates unemployed people and calculates unemployment
rate.

· ECONAGE: economically ages the data to 1006

· ALLOY: allocates yearly income to months

· ASSETS: imputes financial and vehicular assets

· CHILDEXP: imputes child care expenses

· MEDEXP: imputes medical expenses

· SHLTREXP: imputes shelter expenses

· UNIT7: creates filing units for public assistance (AFDC, SSI, GA)

· PBLAST: simulates means eligibility for public assistance

· PAPRAT: simulates participation in public assistance

· FSTAMP: simulates eligibility and participation in the FSP
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greater than one. The excess participants in these cells are allocated to other
cells in order to keep key marginal distributions as close as possible to the
estimated distributions. The key margins of interest include the distribution
of earnings by unit size and by poverty level (separately), and the percentage
of food stamp units with earnings, with elderly, and with children (aged 5~
17).

This 64-cell array is then expanded into 2 additional dimensions: the ratio of
the bonus value (simulated FSP benefit) to poverty line (with 6 classes), and
whether or not the household reported receiving food stamps. In order to
calibrate the results more closely to marginal totals, these participation rates
are then multiplied by a number ranging from .5 to 2, depending on whether
or not the unit has earners, and whether or not the unit receives SSI. (See
Martini (1991) for more details about the MATH-CPS participation decision,
and some suggestions for improvement.)

Simulated participation for an individual household under the reform de-
pends on the household's simulated participation under the baselaw. Any
household which participated in the FSP under the baselaw and is simulated
to receive a larger benefit under the reform, is modeled to participate in the
reform. Any household which was eligible for the FSP under the baselaw
but didn't participate, and would receive a smaller benefit under the reform
is modeled not to participate in the reform. There are only three household
categories for which different participation decisions under the reform and
the baselaw are possible:

1. Households which were not eligible for the FSP under the baselaw, but
are eligible under the reform.

2. Households which were eligible for, but did not participate in the FSP
under the baselaw, and are eligible for a larger benefit under the reform.

3. Household which were simulated to participate in the FSP under the
baselaw, and would receive a smaller benefit under the reform.

In these three cases, the participation decision in the reform is stochasti-
cally simulated. Since participation in the reform is highly correlated with
participation in the baselaw, the average difference between the two is kept
small. (See Pudney and Sutherland (1994) for a different way of keeping this
difference small.)

As mentioned earlier, the MATH-CPS database was created from running
each module once in sequence, using one initial random seed (which we will
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refer to as the MPR seed). The random seed generates a vector of random
numbers for each household. When we run a module using a changed set of
conditions, such as using a different seed, the variables relevant to that mod-
ule are in effect overwritten, whereas variables created under other modules
remain unchanged. If an early module is not run in a particular simulation,
subsequent modules use the values created from the initial MPR run of the
module, which uses the MPR seed.
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6 Sources of uncertainty in the MATH-CPS
model and our treatment of these uncer-
tainties

6.1 Stochastic simulation

Imputation is used to create variables not available from the CPS data. This

relies on use of random numbers. Random numbers are also used in generat-

ing individual error terms for regression equations, in simulating participation

in public assistance and the FSP, and in calibration.

With the exception of the CODECPS module, only the last 9 MATH-CPS

model modules (ALLOY through FSTAMP - see Table 3) make use of random

numbers. We moved the part of CODECPS which uses random numbers

to another module, and then only worked with the last 9 modules. A more

detailed description of how random numbers are used in each module follows.

In ALLOY, random numbers are used to allocate the start date for employ-

ment income, for people who were employed only part of the year. Since

the MATH-CPS model uses data from one month only, this would have an

impact on whether or not an individual was simulated to be employed in the

month of interest, and what the family income is for the simulated month,

for people employed part of the year.

Random numbers are used in the ASSETS module to give an error term

for six regression equations. These equations impute family financial and

vehicular assets, based on family earnings, size, race, education, etc. In

addition, total financial assets are calibrated by imputing 25% of households

with no assets and income less than 130% of poverty to have asset holdings.

CHILDEXP, MEDEXP, and SHLTREXP each impute individual error terms

for regression equations which model child expenses, medical expenses, and

shelter expenses respectively. CHILDEXP also imputes an error term for the

equation which models whether or not a family has child care expenses.

The UNIT7 module, which determines who is categorically eligible for AFDC,

SSI, and GA, does not use random numbers. PBLAST simulates eligibility

for AFDC, SSI and GA, based on household assets and income. Random

numbers are used to select some units to be new to AFDC. Any unit which

is new to AFDC may be eligible to receive a $30 earnings deduction for the

first 12 months that they are on AFDC and working. In addition, new AFDC

units receive a 1/3 earnings deduction (1/3 of the earnings remaining after
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other earnings deductions are given) for the first four months that they are
on AFDC and working.

In PAPRAT, participation in public assistance programs is simulated. Sim-
ulated participation probabilities are cell-based and depend on region, type
of public assistance, and whether or not the household reported receiving
welfare in the last calendar year. Any household which reported receiving
welfare, and for which the target number of participants in the relevant cell
is less than the number of eligible units for the public assistance program
in question, is simulated to participate. Otherwise, the household is sim-
ulated to participate if a random number is less than the appropriate cell
probability.

In the FSTAMP module, participation in the food stamp program under both
the baselaw and the reform, for certain household categories, is stochastically
simulated. For households which don't receive AFDC, the simulated partici-
pation decision was described in the section on MATH-CPS model modules.
All households which are simulated to receive AFDC are simulated to receive

food stamps.

A vector of random numbers is generated from a single random seed. The
MATH-CPS model is set up so that for a given household and a given seed,
the same random number will be used for a particular error term or simu-
lated decision, regardless of the number of random numbers needed for that
household prior to that point. We address stochastic simulation variability
by running the model under several different seeds.

In the MATH-SIPP model, we used antithetic variables (Hammersley and
Handscomb, 1964) to reduce stochastic variability. In that model, we found
that although the antithetic strategy did reduce stochastic variability, sam-
pling variability was very large relative to stochastic variability, so using
antithetic variables did not give much reduction to total variance. Based
on the MATH-SIPP work, and because of the additional programming effort
required to implement the antithetic strategy, we decided not to use anti~
thetic variables for our work with the MATH-CPS model. Use of antithetic

variables might be worthwhile for future work with the MATH-CPS model
however.

6.2 Sampling

Since the CPS is based on a sample of households, there is sampling uncer-
tainty inherent in any point estimate produced from the MATH-CPS model.
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We used a grouped jackknife (Wolter, 1985) to estimate sampling variability.
We estimated sampling variability under two different jackknife groupings:
systematically leaving out every kth record with a different starting point
in each run, or leaving out one rotation group in each run. If records are
ordered randomly, the systematic jackknife leaves out random groups.

There are several advantages to using rotation group to define the jackknife
replicate. Each rotation group is a probability sample of the population, and
thus replicates the entire sampling scheme. Therefore the jackknife gives a
proper estimate of variability taking into account the various kinds of strat-
ification and clustering built into the CPS sampling scheme. When leaving
out one rotation group, the remaining 7 rotation groups in the run are also
a probability sample of the population.

By systematically dropping out every kth record, we are assured that if there
is any stratification in the order of the records, we retain this stratification
in the jackknife sample. One possible advantage to using the systematic
jackknife is that we can obtain more degrees of freedom for estimates of
sampling variability.

6.3 Model parameters

Model parameters are written into the code in many MATH-CPS modules.
Demographic aging and economic aging of wages both use model parameters.
Model parameters are used in the regression equations used to impute assets,
child care expenses, medical expenses and shelter expenses. The modeled
probabilities of participating in different types of public assistance programs
(AFDC, GA, or SSI) can be thought of as model parameters. Finally, the
array of probabilities of participating in the food stamp program, both under
the base plan and under the reform (under certain conditions) are model
parameters.

One way to address model parameter uncertainty is to pick two values of
the parameter (or vector of parameters) from the prior distribution, ideally
at -t- one standard deviation from the mean. When we modeled parameter
uncertainty in the MATH-SIPP model, we picked two arbitrary values for the
parameter, for the purpose of illustrating this method. We made changes to
the program in such a way that these values can easily be modified. We
expected that someone with more subject knowledge about the parameters
could easily modify these values accordingly.

We were interested in how sensitive the MATH-CPS model is to changing
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the parameters governing participation in the FSP under the baselaw. One
disadvantage of the current set of parameters is that the MATH-CPS model
does not simulate enough participants as compared to the target number of
participants. We developed an alternate way to derive these parameters. We
don't claim that our method is better, only that it is different, and that the
difference in model outputs under these two methods would be of interest
because the choice between the methods is arbitrary. We had planned to
implement our changed set of parameters in the MATH-CPS model, but
decided that other sources of variability were more important to address.
Further description of this method can be found in Appendix A.5.

6.4 Model specification

Models are used, either implicitly or explicitly, in many different MATH-CPS
modules. There may be a disagreement as to what model would be the most
useful, and no model is likely to be entirely correct. A plausible alternative
model might give a different outcome. Some examples of model specification
in the MATH-CPS model follow.

Model specification uncertainty arises in the aging of wages, and in the im-
plicit assumption that income from wages is distributed evenly across weeks
worked, and that weeks worked are contiguous. Model specification also
arises in the use of regression models to impute missing data, in particular
data for assets, child care expenses, medical expenses, and shelter expenses.
The assumption here is that a regression model is the appropriate model to
specify the missing data, and that the correct variables are in the model.

The probability of participating in public assistance is modeled as a func-
tion of region, type of public assistance, and whether or not the household
reported receiving welfare in the last calendar year. The probability of par-
ticipating in the food stamp program is modeled as a function of several
variables, as described in Section 5.2. In both cases, a particular parsimo-
nious specification is assumed.

The assignment of weights to person and household records is based on im-
plicit models, as described in Section 5.1. Likewise, the creation of food
stamp units in a household relies on a model. If one person in a household
receives food stamps, all other individuals in the household are modeled to
receive food stamps as well, with the exception of individuals excluded by
food stamp program rules (MPR, 1994a).

We now consider model specification uncertainty associated with the dis-
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tribution of income across months worked. The current MATH-CPS model

allocates earned income evenly across all weeks worked. This may be realistic
in many situations. However, for some individuals it is reasonable to think
that income may have been earned at different rates during different weeks.
Examples include people who work overtime on a seasonal basis, people who
change jobs during the year, and school teachers who make extra money in
the summer.

There are many ways in which income could be allocated unevenly across
months worked. For example we could draw from a Dirichlet distribution to
determine the percentage of earned income to allocate to each month worked.
Alternatively we could draw from a Beta distribution, or from a Uniform[.25,
.75] distribution, and allocate half the months to have earnings of the first
random number times the mean, and the other half to have earnings of (2 -
first random number) times the mean. A faster way of achieving a similar
result is to work with the simulation month, and for the people affected,
multiply their simulation month income by a Uniform[.5, 1.5] or Uniform[O,
2] random number.

An uneven allocation of earned income should have the effect of simulating
some different people to be eligible for AFDC and for the food stamp prograzn
in any given month. If an individual's average earned income is just above
the cutoff for eligibility for AFDC or the food stamp program, the individual
would be income-ineligible for AFDC or the food stamp program under the
current model. However the individual would have some chance of being
income-eligible under the alternate model specification. As the modeled dis-
parity between income received in different weeks increases, more individuals
with average earned income just above the cutoff would have some chance
to be income-eligible for AFDC or the food stamp program under the model
of uneven income allocation. On the other hand, if an individual's average
earned income is just below the cutoff and is eligible for AFDC or the FSP
under the current model, there would be some chance that the individual
would become income-ineligible under alternate model.

Our alternate method of income allocation only involved households below
poverty level. For all such households, we multiplied the simulation month
earned income by a Uniform[.5, 1.5] random number.

6.5 Calibration

Calibration is used in the MATH-CPS model in order to make many simu-
lated totals come closer to projected totals (see Table 4 for some examples).
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Because a model must be specified in order to do this, calibration can be
considered a type of model specification. Here we first describe the specifics
of how and where calibration is used in the MATH-CPS model. Calibra-

tion of AFDC participants was thought to be particularly important, and we
targeted this aspect of calibration for error analysis. After describing where
calibration is used, we discuss an alternate calibration method for AFDC
participants.

In addition to calibration of AFDC and food stamp participation, calibration
is used in 4 modules: ASSETS, CHILDEXP, MEDEXP, and SHLTREXP.
In each of these modules, a linear transformation is used to adjust the prob-
ability that a household will have the particular deduction (or asset), and to
adjust the amount of the deduction (or asset).

In the ASSETS module, calibration is used for both financial and vehicular
assets. Under the original, non-calibrated run of the MATH-CPS model,
too few households were modeled to have financial assets, and the average
financial asset was too large. The equations which simulate financial assets
are now calibrated by randomly selecting 25% of households with income less
than 130% of poverty and no assets to have asset holdings. Also the estimated
amount of each household's assets is reduced by 20%. For vehicles, "negative
adjustment factors" are applied to the equation that estimates number of
vehicles, and the value of the first vehicle is reduced by 20% whereas the
value of subsequent vehicles is reduced by 10% (MPR, 1994a).

In the CHILDEXP module, regression equations are used first to simulate
whether or not a household has child care expenses, and then to model what
the child care expense is, given that the household has such an expense. Un-
calibrated simulations modeled too few households with child care expenses,
and an average child care expense that was too large. To adjust, .5 is added
to the simulated probability that a household has child care expenses, and
the simulated child care expense is reduced by 5%.

Uncalibrated results for the MEDEXP modules showed that too many house-
holds had medical expense deductions, and that the average deduction was
too large. The equation for imputing medical expenses is calibrated by mul-
tiplying the simulated expense by .50, and subtracting $50.

Similarly, uncalibrated results from the SHLTREXP module indicated that
too many households had shelter expense deductions and that the average
deduction was too large. The equations are calibrated by first multiplying
shelter expenses by 1.2. Then $100 is subtracted from shelter expenses for
rented households with income less than 50% of poverty, and $50 is sub-
tracted from shelter expenses for rented households with income between 50
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Table 4: Some baselaw target quantities of interest in the MATH-CPS model,
and the extent to which they are achieved.

MATH-CPS Fraction

Quantity Target result oftarget

Weighted number of units
participating in FSP 10,864,000 9,204,000 .85
Weighted total
benefits for FSP 2,029,742,000 1,679,354,000 .83
Weighted number of units
participating in AFDC-Basic 4,630,000 4,268,000 .92
Weighted total
benefits for AFDC-Basic 1,850,402,000 1,502,918,000 .81
Weighted number of units
participating in AFDC-UP 307,000 231,000 .75
Total weighted
benefits for AFDC-UP 180,236,000 104,172,000 .58

Percentage of FSP
households with AFDC 40 37.0 .93

Percentage of FSP
householdswithSSI 19 23.2 1.22

Percentage of FSP
households with GA 8 6.0 .75

Percentage of FSP
householdswith earners 20 23.1 1.16

Percentage of FSP
households with elderly 15 21.7 1.45
Percentage of FSP
householdswith children(5-17) 43 41.5 .97
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and 100% of poverty.

Calibration is also used to adjust the probabilities of participating in AFDC
and in the food stamp program. We targeted participation in AFDC for
development of an alternate calibration method. The MATH-CPS model
simulates too few units to participate in the food stamp program and too
few units to participate in AFDC (Table 4).

To come closer to the target number of food stamp participants, the MATH-
CPS model takes some households which are eligible for the food stamp
program but don't report receiving food stamps, and simulates them to par-
ticipate. This is done by adjusting the simulated participation probabilities.
For households which are eligible for food stamps and which don't receive
AFDC, the simulated participation decision was described previously. The
probabilities for participation were calibrated in the process of adjusting the
participation probabilities for individual cells in the 64-cell matrix. This
adjustment process was done to keep marginal totals as close as possible to
projected totals. For households which are eligible for food stamps and which
are simulated to receive AFDC, the participation probabilities are adjusted
so that all such households are simulated to receive food stamps.

In order to calibrate AFDC participation to be closer to projected totals, the
MATH-CPS model simulates participation for all families which are eligible
for AFDC but don't report receiving them. Even though all eligible AFDC
families are simulated to participate in AFDC, the simulated participation
levels are substantially below the targeted participation levels.

The disadvantage to the calibration method used in the MATH-CPS model
to increase participation in AFDC and the food stamp program is that the
eligible non-reporting households, which are now modeled to participate, may
be unlike the reporting households. An alternative calibration method is to
readjust household weights, up-weighting people who report receiving food
stamps, and/or up-weighting people who report receiving AFDC. We are
interested in how much the estimated outcomes of interest are changed by
an alternate, but also plausible, method.

We have addressed the calibration of AFDC totals by up-weighting AFDC-
eligible families. As an alternative, we could have up-weighted only families
which report receiving AFDC. This would have up-weighted fewer families
by a larger amount. The justification for up-weighting these families could
include the following:

1. There may have been a lower response rate in the CPS for AFDC
recipients than for other households.
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2. There may have been a deficiency in the CPS sample which resulted in
too few AFDC households in the sample.

3. Households may appear to be poorer when applying for AFDC than
they appear to be in the CPS.

The MATH-CPS model processes two categories of AFDC separately: AFDC-
Basic and AFDC-UP. Families which receive AFDC-Basic are primarily fam-
ilies with a single mother. AFDC-Basic families also include families consist-
ing of a married couple in which one is disabled. AFDC-UP families are
those containing two parents, but in which the principal earner is either un-
employed or underemployed. The AFDC-Basic and AFDC-UP families are
mutually exclusive.

For both AFDC categories, the MATH-CPS model simulates too few families
and a total benefit which is too small, relative to the targets. The simulated
benefits are farther from the target than the number of participating families,
for both categories. (See Table 5, which differs slightly from Table 4 because
they were produced using different seeds.) Our strategy to meet both the
targeted number of families a_d the total benefits is to up-weight families
which receive large benefits more than families which receive small benefits.
We worked separately with AFDC-Basic and AFDC-UP families.

Our original method for re-weighting was to divide AFDC-Basic (and sepa-
rately AFDC-UP) families into two groups: a low AFDC benefit group and
a high AFDC benefit group. We sorted the relevant families by AFDC ben-
efit, and for each possible cutoff between low and high benefit groups, we
calculated the two weighting factors that would be needed in order to make
both the total number of participants and the total benefits hit the targets.
We calculated these factors by solving the following two equations for a and
b:

a + t,Y2 = c (Y,+ Y2)
aBl + bB2 = cl(Bl + B2)

where

a = calibration weighting factor for the low benefit group
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b = calibration weighting factor for the high benefit group

Y1 - weighted number of households in the low benefit group

Y2 = weighted number of households in the high benefit group

B1 = weighted sum of AFDC benefits in the low benefit group

B2 = weighted sum of AFDC benefits in the high benefit group

e_ = the weighting factor needed to make the total

number of AFDC participants match the target

cz = the weighting factor needed to make the total

sum of AFDC benefits match the target

While any cutoff between low and high benefit group could be possible (as-
suming neither a nor b were negative or infinite), we were initially interested
in not down-weighting either group, and in keeping both weighting factors
fairly close to each other. When we found that grouping AFDC recipients
into two classes was not particularly satisfactory, we extended this to three
classes. We did this by picking a weighting factor for the low benefit group,
then picking the cutoff between the medium and high benefit groups. We
describe how we decided on the cutoffs in more detail in the Section 8.3. Za-

slavsky (1988), discusses re-weighting to create new household records from
Census data in order to calibrate to several targets, while minimizing the
distance between individual weighting factors. His method takes into ac-
count more features of individual households and would have produced a less
coarse calibration method than what was used here, but was too complicated
to implement here.

6.6 Macro effects

We looked at uncertainty due to the macro effect of unemployment rate.
Under the present MATH-CPS model, the simulated unemployment rate is
based on the 1992 unemployment rate, which was 6.41% (using the MPR
seed).

There are a number of ways to implement a changed unemployment rate. The
simplest method, which is the least realistic, is to randomly "un-employ" say
2% of the individuals in the file. A second method which could be used

either to decrease or increase the simulated unemployment rate, is to up-
weight people who are employed during the simulation month and down-
weight people who are unemployed in the simulation month (or vice versa if
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Table 5: Public Assistance Eligibility and Participation Summary in the

MATH-CPS model, with families reporting AFDC listed separately from

modeled participating families who didn't report receiving AFDC.
PUBLIC ASSISTANCE ELIGIBILITY AND PARTICIPATION SUMMARY

Participants

Unweighted Weighted Weighted
All states Units Units Benefits

Total AFDC-Basic

(ADCTYPE 1-3,5-8)

Reporters 1,733 2,926,019 $1,110,239,837

Non-reporters 787 1,318,124 $ 389,087,788

Total 2,520 4,244,143 $1,499,327,625

Target 4,630,000 1,850,402,000

fraction of target 0.92 0.81

AFDC-UP

(ADCTYPE 4)

Reporters 46 ?0,3?9 $ 35,520,374

Non-reporters 61 93,617 $ 37,660,307

Total 107 163,996 $ 73,180,682

Target 307,000 180,236,000

fraction of target 0.53 0.41
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we wanted to simulate a higher unemployment rate).

We implemented a third method, which could be used either to decrease
or increase the unemployment rate. Under this method we find individuals
who are unemployed for part of the year and employed for part of the year,

but who are unemployed (or employed) during the simulation month. To
decrease the unemployment rate we switch the simulation month for some
individuals in the situation just described, so that the simulation month for
these people are ones in which they were employed. The implicit model
here is that changes in unemployment rate are mainly due to changes in the
employment status of people who are occasionally employed.

When we switched the simulation month for all such people who were un-
employed during the simulation month but employed during another month,
using our seed file we got a 1.28% unemployment rate. We implemented a
4.27% unemployment rate by switching the simulation month for 40% of the
people in the situation described.

We could have simulated a higher employment rate by switching the sim-
ulation month for people who were employed during the simulation month
but unemployed during another month. When we switched the simulation
month for all such people to a month in which they were unemployed, us-
ing our seed file got an unemployment rate of 15.76%. This represents the
maximum unemployment rate that can be attained by this approach.

Since it is unlikely that anyone would want to simulate either an unemploy-
ment rate as low as 1.28% or as high as 15.76%, the number of people who
are employed part of the year is not a limiting factor in using this method-
ology. If such an extreme unemployment rate was actually of interest, the
assumption underlying this methodology - that a different unemployment
rate was due to part-year employees - would not be a realistic assumption
and a different method of simulating an extreme unemployment rate would
be needed.

6.7 Food stamp unit size

The MATH-CPS model considers the food stamp unit to be the entire house-
hold, with the exception of people excluded based on food stamp regulations.
In some cases the food stamp unit is actually a smaller subset of the house-
hold, and this error may have a large effect on the outcome of interest. Many
alternate model specifications are possible. We have discussed an Mternate
model in which the person with the largest income in each household is taken
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out. Another model is to take out the oldest person in each household in one
run of the MATH-CPS model, and to take out the youngest person in each
household in another run. Although we discussed ways to address uncertainty
in food stamp unit size, we did not implement this in this project.
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7 A method of quantifying uncertainties in
the MATH-CPS model

7.1 Simulation experiment design

We have looked at a total of five sources of uncertainty in the MATH-CPS
model:

1. Sampling, which we estimate by using a grouped jackknife, either leav-

ing out random groups (systematic sampling) or leaving out one rota-

tion group.

2. Stochastic, which we estimate by running the model under different
random seeds.

3. Model uncertainty due to calibration of AFDC totals. We run the
model under the current method of calibration as well as under a dif-

ferent method which up-weights households eligible for AFDC.

4. Model uncertainty due to method of allocating earned income to months

worked. We run the model using the current method which allocates

this income evenly, as well as under a method which allocates income

unevenly.

5. The macro effect of unemployment. We run the model using the un-

employment rate in the current model (6.4%), and under an unemploy-
ment rate of 4.3%.

Estimates of both the total posterior variance and the relative contribution

of each source of error to posterior variance depend on:

1. What the outcome of interest is.

2. What reform is being considered.

3. Which MATH-CPS model modules are being run.

Some of the main outputs of interest are point estimates output by the

MATH-CPS model in "Summary Comparisons of Impacts on Food Stamp

Program" (see Table 6). The estimand of particular interest to users of the

MATH-CPS model is the percent change in benefits under the reform. This is
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the difference in total benefits under the reform as compared to the baselaw,
divided by the total benefits under the baselaw. For the remainder of this
paper we consider the percent change in benefits as the outcome (estimand)
of interest.

Table 6: Output table showing entries for which variances were calculated

TIBLE 1

SUg!IR! ¢OgPlEl$OIS OF IRPACT$ OI FOODSTAHP PIODIAE

¥eigh_ed

}li6iblss Participants B.a®fits
.............................................................................................................

Plan lo. Units Z Chg Porsons % Chg Units Z Chg P*rsons Z Ch_ Dollars Z Chg
...................................................................................................................................

Btselaw 14.828,090 Ii 35.410,571 lA 9.134.833 lA 24.259.753 lA 1,664.207.908 DA

..................................................................

PLil 999 16,710,040 22.$9 40,828,749 15.27 10,157,D{2 11.30 27,281,138 12.{5 1,823,672,382 9.58

...................................................................................................................................

Our experiments can be grouped into four categories:

1. Experiments with uncertainty due to sampling and stochastic simula-
tion in which we vary the number of MATH-CPS model modules being
run.

2. Experiments with uncertainty due to sampling and stochastic simula-
tion, for runs using all 10 MATH-CPS model modules.

3. Experiments which address uncertainty due to sampling, stochastic
simulation, and calibration, also run using all 10 modules.

4. Experiments which incorporate all five sources of uncertainty, using all
10 modules.

We estimate components of variability by running the MATH-CPS model
many times, under changed sets of conditions. The levels of each condition
under which we wish to run the model are specified by an external file. We
use the term experiment to denote a series of MATH-CPS model simulations
considered as one group.

Our approach to variance estimation consists of four steps:

1. Write a variance components model for the population.
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2. Write the expected mean squares in the simulation experiment ANOVA
in terms of the variance components in the model.

3. Solve for the estimated variance components.

4. Calculate posterior variances for quantities of interest, using the esti-
mated variance components.

In most of our experiments we used the design of seed nested in jackknife.
We use a nested design rather than a design which would cross seed with
jackknife for several reasons:

1. Based on earlier work with the MATH-SIPP model, we expected stochas-
tic variability to be small relative to sampling variability.

2. We were not interested in the main effect of seed because seed has no

meaning except in relation to a particular sample.

3. A nested design gives a more precise estimate of the variance component
for seed because more seeds are used.

4. A nested design also gives a more precise estimate of overall means,
since more seeds are used.

5. Under the assumption that stochastic simulation uncertainty is small,
the estimate for sampling variability in a nested design should be suf-
ficiently precise. (If this assumption is not met, a crossed design gives
a better estimate of sampling variability.)

Our general notation for simulation results is yjscei -- an estimate of some
quantity using

· jackknife replicate j (j = 1, 2,... J)

· seed s (s = 1,2,...S)

· calibration level c (c = -1, 1)

· (un)employment level e (e = -1,1)

· income allocation method i (i = -1, 1)
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We may use a subset of these subscripts, omitting those which are not varied
in a particular experiment.

W ' I
Eh h_h3 .... --Eh WhY_Cei

The percent change in benefits can be written as Eh_hy,_,c_ ,
where h indexes households, Yhjscei---- the benefit simulated to be received

by household h under the base plan, and Y_jsz,i = the benefit simulated to
be received by household h under the reform plan. Here we assume weights
are fixed, although they may vary in different runs which would necessitate
additional subscripts.

Our output from a jackknife replicate or rotation group can be written as

Y2 _hEj tOhYhiscei

7.2 A model for the influence of observations

We develop a model for the mean _0,which applies directly to linear functions
of ?, c'5_. Through the Taylor linearization, the model applies to a nonlinear
function of ?, f(:_). The Taylor expansion tells us that the jackknife variance
estimator which gives an approximately unbiased estimate of the variance of
a mean, also gives an approximately unbiased estimate for a function of a
mean, such as the percent change in benefits which is a ratio of means.

In general,

f(y) _ f(yo) + (5_- yo) = co + c'y
Yo

In the case of a ratio, Yj_¢i --- f(c'_), _1 = Eh whyhj_¢i -- Eh 'WhYhjscei and
tJ2 = Y'_hwaYhjscei. If we expand this using the Taylor expansion we have

!/2

For the experiments in which we model all five sources of uncertainty (which
we will refer to as the 5-factor case), we use the following decomposition for
Yjscei:
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J
Yjscei -- ri(J-l) Eh6j (_ "_ _H(h) 2F /_JH$(jhs)

+c(_c + _Hc(hc) + _J.sc(jh_c))
+e(_e + _HF(he) + _3.Sr(jh_e))
+i(/_I + _"_(hO + _J"SI(jhsO)
+ce(_Cr + /3HCr(h_e)+ I_J.SCE(jhsce))
+ci(/?CI + /_.CI(hci) + _3.SCI(jh_))
+ei(_EI + _HEI(hei) -it' _JHSEl(jhsei))

+cei(t3c_I +/_HCEI(hc,i) + fiJHSCEI(jh,_,i)))

n is the number of records in the dataset (n=58971), and J is the number of
jackknife replicates. Recall that c indexes calibration, e indexes unemploy-
ment rate and i indexes method of income allocation, where c, e, i are 1 to
indicate the new model, and -1 to indicate the standard model.

The notation is simpler for the experiments for which we considered uncer-
tainty due to sampling, stochastic simulation, and one fixed factor such as
calibration method (which we will refer to as the 3-factor case). In this case,

J
YJ,c = n(J-_) EheJ(/3 + _,(h) + I_JHStjh_)+ C(/_C+ _HC(hc)+ _JHSC(jh,_))).

For experiments involving just sampling and stochastic uncertainty (the 2-
factor case),

J
Yjs = ri(J-l) _hej(_ Jr- fill(h) qt_/_JHS(jhs))

The grand mean/_, the calibration effect _c, the unemployment effect/_E,
the income effect /_I, and the 2-way and 3-way interactions of cMibration,
unemployment and income are fixed effects of interest. All other effects axe
modeled to have mean zero since they are defined as deviations from the
main effect across the entire population of households (for household, i.e.
sampling effects) or the entire distribution of random numbers (for seed, i.e.
stochastic simulation effects).

We define variances for each of the random effects, as shown below:
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/_n(a) a_ main household effect
2 seed nested in jackknife/_JHs(ja_) %

/_HC(hc) a_c calibration x household
2 calibration x seed/_Jmsc(jh_c) %c

/_/_E(a,) a_, unemployment x household
2 unemployment x seed_JHsr(ja,e) %,

]_HI(hi) tl_i income allocation x household
2 income allocation x seed_JHSI(jhsi) O'si

13HCE(ac,) a_c, calibration x unemployment x household
]_JHSCE(jhsce) asce2 calibration x unemployment x seed
_iHCi(hci) a2ci calibration x income allocation x household
[_JHSCI(jhsci) asci2 calibration x income allocation x seed
_HEl(hei) a_e i unemployment x income allocation x household
]_JHSEI(jhsei) asei2 unemployment x income allocation x seed
fiI-ICEI(hcei) aacei2 calibration x unemployment x income allocation x household
_JHSCEl(jhscei) ascei2 calibration x unemployment x income allocation x seed

tr_ could be interpreted as a between-household variance component, incor-
porating any design effects that are captured by the jackknife replication

2 could be interpreted as the mean stochastic variability for house-scheme. %
hold. Each of the variance components for the interactions can be interpreted
as the variance for the contrasts associated with each fixed main effect and
interaction.

For convenience of notation in calculating expected mean squares for the
simulation experiment outputs, we define "variances" for the fixed effects

2 rr_, 2 2 2 and 2 for the other fixed(a 2 for the calibration effect, %, ace, O'ci, aei ace/
effects), but since these are fixed effects, these latter "variances" don't have
any meaning in our model for the outcomes of a simulation experiment.

There are at least three questions we might wish to answer from the MATH-
CPS experiment outputs:

1. What is the estimate of and posterior variance of the grand mean,
I

2. What is the estimate of and posterior variance of each of the fixed

effects, V(fic [_c), V(fiz [ /_E), V(fit ] j_l), V(J_CE [ ]3CE), V(]_CI ]
_CI), V(fiEI I fiEI), and V(]_CE I I /3CEt)?

3. What is the estimate of and posterior variance of the true overall effect?
For the 2-factor case, the posterior variance of the true overall effect
is V(/_ ] /_), which is just the posterior variance of the grand mean.
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For the 3-factor case, the posterior variance of the true overall effect is
V(/3 + c/_c lB, Bc), and for the 5-factor case, this quantity is

V(/3 + c13c+ et3E+ i_l + ce_cE + ci/_cl + eij3cl + cei/3cE; ]
B,Be, BcE,Bc,,)E,,B E,)

Recall that c, e, and i indicate indicates which values of/3c, /3z, and
_3t are correct respectively.

We are interested in each of these quantities under what we call a "full run"
of the MATH-CPS model, as well as under a "single run" of the model.
A full run corresponds to running the model many times as we do here,
using a full factorial x nested design. We would also like to know how
the total posterior variance, and the relative contributions of each source of

uncertainty to posterior variance, would change if the sampling and stochastic
simulation parts of the model were to be run only once, but the model would
be run under each level of the fixed effects . In this case, we would have
to use estimates of the variance components from a full run. A single run
would give a larger posterior variance than a full run, since it would be
impossible to average estimates of the sampling and stochastic elements over
multiple runs. By running the model more times, the variance components
for stochastic simulation error and stochastic error crossed with fixed effects

are reduced, while the variance components for sampling, fixed effects, and
sampling crossed with fixed effects are not. Running the model multiple times
decreases the total posterior error, and decreases the relative importance of
stochastic error.

7.3 Estimation of quantities of interest

Having written a variance components model for the population and defined
quantities of interest, we now discuss how to estimate these quantities from
a full run. We can calculate the expected mean square for each factor in
the model. To do so it is helpful to first calculate each applicable mean of y,
which we show below for the 3-factor case. We use a dot subscript to indicate
an average over the corresponding factor.

J

n(J 1) hEj

J 1

yj._ = /3 + c_c + n(J - 1) Y_.(/Sm(n)+ C_Hc(h_)+ _ Y](_JHSO,,) + cl_aYSC(jh,_)))hEj sEj
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1
y..c= +c/o + - +

n h

1

4 nS(d - 1) _ _ _-](/_a_/s(ja_)+ c]_JHSC(jhsc))j aej sEj
J

YJ" = _ + n(J- 1) Y](_H(h) -4-I?JHS(j5_))hEj

J

YJ" -- fi + nS(J- 1) Y]"_(_'q(a) +]3Jys(jh_))hEj sEj

1

y... = _ + i _/_H(a) + nS(J- 1) Y_.Y]_-'_./3JHS(jn,)TI h j hEj sEj

Calculation of expected mean squares for the ANOVA are not presented
here, but we present the results for the 2-factor, 3-factor, and 5-factor case
in Appendix A.2. Once we know the expected mean squares, we can get
estimates for each variance component of interest using the methods of mo-
ments (MOM) estimators. The MOM estimator equates expected and ob-
served values, allowing us to solve algebraically for each variance component.
Each variance component estimate is a linear function of the ANOVA mean
squares and constants.

For the 2-factor case, Tables 28, 29, and 30 give the ANOVA sums of squares,
expected mean squares, and estimators of variance components respectively
for the nested design. We also give the same three results for a crossed design,
in Tables 31, 32, and 33.

For the 3-factor case, Tables 34, 35 and 36 give the sums of squares, expected
means squares, and variance estimators respectively. For the 5-factor case we
show the sums of squares in Table 37, the expected mean squares in Table 38,
and the estimators of variance components in Table 39.

The estimator for the grand mean/_ is the average over all conditions: y.. for
the 2-factor case, y... for the 3-factor case, and y..... for the 5-factor case. In
each case,

1 1

ti h j sEj hEj

_-- /_ .it_/_H(.) '+/_JHS(...)
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with sampling variance
2

n nS(J- 1)'

The estimator of the calibration effect,/_c, is half the difference of the average
effect when one calibration method is used from the average effect when the

other calibration method is used, or the difference of the average under one
level of calibration from the grand mean. For the 3-factor case, tic = y..1-y....
For the 5-factor case,/_c = Y..1..- Y...... In both cases,

1

n h j s6jh6j

= _c +/3nc(.c) +/_anSC(...c)

with variance
2

v(o Io): +
n nS(J- 1)'

For the 5-factor case, the estimators and variances for each of the main,
2-way interactions and 3-way interactions are given in Table 7.

We put fiat and independent priors on /_, tic, /3E, fiI, riCE, flCt, riel, and
_CEI. With a fiat prior and under the assumption that the estimators are
unbiased, the posterior means of each of these quantities equal their sample
means:

= E(31 )

E(flI 181) = E(t_I Ifil)

E(_cs l /_CE) ---- E(/_cz [ /_CE)
E(]_CI [ ]_GI) : E(_c'i [ t_ci)

E(/_E, ]/_E,) : E(/_EI I fiEI)

E(/_CEI [ ]_CEI) = E(/_CEI [ fiCEI)

Also with a fiat prior, the posterior variances of/_ and of each fixed effect
equal their sampling variances:
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Table 7: Estimators and variances for calibration, unemployment, and in-
come allocation effects and their 2-way and 3-way interactions
Effect Estimator Value Posteriorvariance

/_c )c = Y..c..- Y..... ftc + fHc(.c) V()C }fc)
2

0'$c

+faHSC(...c) = cr2_n+ nS(J-l)
fE l), = y..._.-y..... fE + f,m._) v()E IrE)

2
O'se

fJHSE(..._) = _n + ss(s-l)
fi )i = y...._-y..... f, + fsi(.,) v()_ I_,)

+fJnsl(...O = i + nS(J-l)

flee )CE = Y.._,.- ,O..c,. = flee + $HCE(._,) V()CE I fCE)
2

O'sc e

= Y..c,.- Y.._..- Y...,.+ Y..... "_fJHSCE(...ce) ---- O'_cen '4- nS(J-l)

fCI _CI = Y.._.i - Y..,.i fct q- _HCl(.ci) V(_cI l fcI)
2

dYsc i
-- Y..c.i -- Y..c.. -- Y....i + Y ..... +fiJHSCt(...ci) ---- cretin + nS(J-l)

fei )Et = y..._,- _..._, rE, + f_E_(._,) v()E_ IRE,)
2

O'se i
-----Y...ei -- Y...e. -- Y....i q- Y..... +fZHSEI(...ei) ---- Or2ein -}- nS(J-I)

rUE, _CEI = Y..cei - Y..c¢i ---- fCEI q- fHCEIt.cei) V()CEI [ fCE')
2 2

ffscel
Y..cei -- Y..ce. -- Y..c.i -- Y...ei -'[-f JHSCEI(...cei) ---- O'hcein -_- nS(J-l)

+ Y.._.. + Y...,. + Y....i - Y .....
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V(_lS) = V()l_)
v(;3_Igc) = v(_c I_)

v(3; I)_) = v(); I;3,)
v(_ I_) = v(_ I_c_)
V(_cII_C,) -_' V(_cII_Cl)
V(fi_tI_I) = V(_EI I/_E/)

We put fiat priors on c, e, and i which represents our uncertainty about
which method of calibration is correct, which unemployment rate is correct,
and which method of income allocation is correct:

1 with probability .5c = -1 with probability .5

1 with probability .5e = -1 with probability .5

i = _' 1 with probability .5
[ -1 with probability .5

Note that the prior means of c, e, and i are all 0, while the prior variances are
all 1. We want to calculate the posterior variance of the true overall effect,
using the correct calibration method, the correct unemployment rate, and the
correct income allocation method, conditional on our estimates. For the 2-
factor case, this quantity is just V(fi I/_). For the a-factor case, the posterior
variance of the true overall effect given our estimates is V(fi + cftc {/_,/_c),

and for the S-factor case, this quantity is V(? + c/3c + erie + ifil + cefilCE+
ci_c, Jr- ei_E, nt- cei_CE, ] _,_C,_E,_I,_CE,_CI,_E,,_CE,)

Below we show this calculations for the 3-factor case. The calculation for the

S-factor cases is similar. Note that for each of the fixed factors (calibration,
unemployment rate, and income allocation method) the posterior variance
incorporates the variability of the point estimates under the different levels
of each fixed effect (i.e. the square of the difference in point estimates under
one level from the grand mean), as well as uncertainty about which levels are
correct.
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v(_+_/_I_,_)

=v{E(_+_ I_,_,_)I_,_}+E{v(_+_ i_,_,_)i_,_c}

= vO + c_ I_,_c)+ s {vO I_)+ c'vOcI_))}

=3fy(c) + VOl_)+ v(_ I_c)E(c2)

= _c_+ vOI _)+ v(_cI_c)

)(¢ ,2 0%c '_(To

: _C'2 -'[' + nS(J-I) "It- "4- nS(J-I)/

We can see that the posterior variance of the true overall effect has five parts:
uncertainty due to calibration, sampling, stochastic simulation, calibration
x sampling, and calibration x stochastic, respectively. For a single run of
the MATH-CPS model, the posterior variance is:
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8 Results from the MATH-CPS model

We present results first for experiments using sampling and stochastic simu-

lation uncertainty, using a varying number of MATH-CPS modules. Next we

discuss experiments also involving just sampling and stochastic simulation

uncertainty, but using all 10 MATH-CPS modules. In these experiments we

try to pinpoint the absolute and relative size of these two sources of uncer-

tainty for the main reform we considered. Next we present experiments which

in addition involve uncertainty due to calibration. Finally we give results for

experiments involving all five sources of uncertainty, in which we compare

different reform plans.

For the first three categories of experiments (i.e. all except those involving

all five sources of uncertainty), we use the same reform plan. The reform

plan we used differs from the baselaw in three ways:

1. The asset limit is increased to $5000 (versus $3000 for households with

elderly, and $2000 for households without elderly in the baselaw).

2. The dependent care cap for the continental US is removed.

3. The shelter cap is reduced by 50%.

Increasing the asset limit should result in more participants. Removing the

dependent care cap should give some gainers (people who are better off under

the reform), and reducing the shelter cap should give some losers (people who

are worse off under the reform).

8.1 Effect of number of modules on stochastic variabil-

ity

We did five experiments which incorporated stochastic and sampling variabil-

ity. In all five experiments we used a jackknife with 20 jackknife replicates,

and 4 seeds nested in each jackknife (Table 8).

In our first experiment we just worked with the FSTAMP module under the

reform. In this case, the percent change in benefits has uncertainty only due

to the total benefits under the reform, since the total benefits in the baselaw

remains constant in each run, in this case. We found (Tables 40 and 8) that
sampling variability was extremely important compared to stochastic simula-

tion uncertainty, with sampling accounting for 99.889% of the total posterior
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Table 8: Summary results for experiments varying the number of MATH-
CPS model modules run. Experiments incorporate sampling and stochastic
simulation uncertainty.
Modules FSTAMP

FSTAMP baselaw 8 9 10
baselaw and reform modules modules modules

/_ 9.827 9.738 9.932 9.234 9.215

0.s0s .699 .47 0 0

/n 0.233 .218 .233 .714 .709

singlerun: .838 .732 .528 .714 .709
fullrun: .805 .700 .479 .082 .081
% var due to seed

singlerun: 7.763 8.894 17.794 100.0 100.0
full run: 0.111 0.128 0.284 100.0 lO0.O

variance of the mean. This is not too surprising, because the simulated par-
ticipation decisions for the reform for several types of households do not rely
on random numbers.

In the next experiment, we ran the FSTAMP module twice, first under the
baselaw and then under the reform. We expected stochastic simulation to be
a more important contributor to posterior variance than it had been in the
previous experiment because the simulated participation decision under the
baselaw for many households relies on random numbers. It turned out that
the estimate of the variance component for seed was similar, and sampling
variability accounted for 99.872% of the total variability (Tables 41 and 8).
Although the baselaw participation rate is more dependent on random seeds,
the difference in reform versus baselaw participation rate appears not to
depend much on the simulated baselaw values.

We then ran the MATH-CPS model using all modules which contain stochas-
tic variability, from ALLOY through the 2 FSTAMP modules (10 modules
in all, since FSTAMP was run twice). Not too surprisingly, the estimate for
the variance component for stochastic simulation was much larger (Tables 44
and 8).

The method of moments (MOM) estimators for the variance components
were described in Section 7.3. The MOM estimator for a_ is proportional to
MS(jackknife) minus MS(seed). Since each mean square is estimated with
uncertainty, it is possible to get a negative MOM estimate for a_, and this
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occurred in the experiment just described. When a variance estimate is neg-
ative, the estimate is typically truncated to zero since variances must be
non-negative. Because we continued to work with the same jackknife repli-
cates and seeds throughout many of the remaining experiments, we continued
to get negative estimates for a_,. In the next section we discuss a better es-
timator of a 2.

In order to pinpoint the module which most of the stochastic variability was
coming from, we did 2 additional experiments. In the fourth experiment,
we ran 8 modules, omitting only ASSETS and ALLOY. The result was that
sampling variability was very large relative to stochastic simulation uncer-
tainty (Tables 42 and 8). In the fifth experiment we ran 9 modules, omitting
only ALLOY. The result of this experiment was that sampling variability
was tiny compared to stochastic uncertainty (Tables 43 and 8). Thus it
appears that the ASSETS module is the primary source of stochastic simula-
tion uncertainty which is reasonable since the reform we considered involved
a change in asset limits. For a reform which doesn't involve assets, the AS-
SETS module may not be such an important source of stochastic simulation
uncertainty.

The ASSETS module incorporates stochastic simulation uncertainty for 2
types of operations: adding an error term to each of 6 regression equations,
and calibration of financial assets, by simulating some households to have
asset holdings. It would be relatively easy to narrow down the precise part
of the ASSETS module which contributes the most to stochastic variability,
by using different random seeds for parts of the ASSETS module only.

Table 8 shows an unexpected result which needs some explanation. As more

modules are run, V/6'_/n decreases. One possible explanation for this follows.

Recall that if a module is not run in an experiment, this is equivalent to
running that module under one seed, the MPR seed. Suppose a module
contributes a lot to stochastic variability, as is the case for the ASSETS
module. If this module is run under only one seed, then the variability we

see resulting from that module is incorporated into the estimate of a_,. As
an extreme case, suppose the result of that module would be the same for
each household if there was no stochastic element, so there is no sampling
variability at all. Now suppose a stochastic element is added to each house-
hold, such as imputing a random subset of households to receive $10 in asset
income or adding an error term to a regression equation, but that we do
this under only one seed. When later modules are run under different seeds
but the earlier module (say ASSETS) is run under only the one seed, then
the between-household variability introduced by that one seed appears to be
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part of sampling variability. When we later run that module under differ-
ent seeds, this variability is correctly attributed to stochastic simulation and

2
contributes to the estimate of ers .

This points out the importance of doing multiple runs of all parts of a mi-
crosimulation model in which stochastic variability is used, if the relative
importance of each error source is desired. We note that in the case of the
MATH-CPS model, there are earlier components of the model which used
stochastic simulation but which we cannot access, such as imputing missing

2 will be underestimates of the true stochastic sim-data. Thus estimates of rrs
ulation uncertainty, and estimates of _ will in general overestimate of the
true sampling variability.

All subsequent experiments are run using all 10 MATH-CPS model modules.

8.2 Estimates of sampling and stochastic uncertainty

As pointed out in Section 7.1, we used a nested design in part because we
expected stochastic simulation uncertainty to be small relative to sampling
variability, and under this assumption a nested design gives an adequate
estimate for rr_. Since this assumption turned out to be false when running
all 10 modules, we can use a crossed design to help get a better estimate of
a_.

In the nested design the estimator of a_ is

&_ = j MS(JK) - (J- 1)&2 (1)

In the crossed design the estimator of a_ is

1 (ri(J-1)2MS(JK)_3.2 ) (2)3

The crossed design estimates a] with smaller variability than the nested
2 has the same expectation in (1)design, for the following reason. Since ers

and (2), the second term in (1) has larger expectation. Also a_ has the same
expectation in both designs, so the first term in (1) must also have a larger
expectation than in (2). Since MS(JK) has (J - 1) degrees of freedom in
both designs, but the estimator of a_ in (1) involves subtracting two pieces
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each larger in expected magnitude than the two pieces in (2), the estimator
for a_ in the nested design has larger variability than in the crossed design.

Although the crossed design is to be preferred for estimating a_, the crossed
2

design doesn't estimate a s as well as the nested design. The crossed design
uses only S seeds whereas the nested design uses SJ seeds. In the crossed
design, each household is simulated under S seeds, whereas in the nested
design each household is simulated under S(J - 1) seeds.

In the ANOVA table corresponding to a crossed design, there are sums of
squares for jackknife, seed, and jackknife crossed with seed. Since we use
the same model throughout, when running this 2-factor experiment we only
have variance components for sampling and seed. Thus the crossed design

2
gives two estimators for as, one from MS(seed) and the other from MS(JK x
seed). In both designs, the estimate of cr_ involves subtracting the estimate

2 (see Table 29 and Table 32). Thus the crossed design also gives twoof a s
2 which could be used.estimators for rr_since there are two estimates of a s

We ran several experiments using the nested design, as well as several exper-
iments with the crossed designs. The former are summarized in Table 9, and
the latter in Table 10. For the nested design, we used a jackknife leaving out
every 20th record, and in other experiments leaving out every 19th record.
We also ran experiments in which we jackknifed rotation group. For each
type of jackknife group, we ran two experiments: one using what we call
seed set A, and the second using what we call seed set B. These seed sets are
exchangeable, having been generated in the same way. For the crossed design
we also used two seed sets, for a jackknife leaving out every 20th record and
for a jackknife of rotation group.

2 is es-The results from the nested experiments (Table 9) indicate that a s

timated well. In all six experiments _2/n ranged from .709 to .750. In
W

contrast, cr_ was not estimated well. _/n ranged from 0 to .561. The
estimate of a 2 is directly proportional to MS(JK) minus MS(seed), and as
can be seen from Table 9, in each experiment these two mean squares were
similar in size.

2
In the crossed designs (Table 10), a, was not estimated as well as in the

nested designs. Estimates of _/n ranged from .423 to 1.026 when the mean

square for seed was used, and from .655 to .758 when the mean square for
seed crossed with jackknife was used. Consequently, since the estimator for

estimates for VF_n are also quite variable,(72 involved subtracting as,2 the

ranging from 0 to .525. There is some evidence from these experiments
that the estimated sampling error is smaller when jackknifing rotation group
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Table 9: Summary results from experiments using stochastic and sampling
variability, from a nested design. Note that rr_ is proportional to MS(JK)
minus MS (seed).
JK group random rotation
number of

JK groups 20 20 19 19 8 8
number of seeds

perjackknife 4 4 4 4 10 10
seedset A B A B A B

9.215 9.118 9.256 9.080 9.273 9.131
MS(JK) .404 .624 .399 .667 .432 .717
MS(seed) .530 .626 .541 .594 .584 .616

,/a_ln 0 0 0 .561 0 .249

_/a_2]n .709 .771 .716 .750 .715 .734

single run: .709 .771 .716 .936 .715 .775
full run: .081 .088 .084 .568 .08,5 .264
% var due
to seed

single run: 100 100 100 64.15 100 89.7
full run: 100 100 100 2.43 100 11.07
Reference:
Tablenumber 44 45 46 47 50 51
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Table 10: Summary results from experiments using stochastic and sampling
variability, from a crossed design. (1) refers to estimates using MS(seed). (2)
refers to estimates using MS(JK x seed)
JK group random rotation
number of

JK groups 20 20 8 8
number of
seeds 4 4 10 10
seedset A B A B

/_ 9.609 8.876 9.507 8.942

a_o'_/n .525 0 .167 .118

(1)

(2) .455 0.288 .164 .165

%21n .423 1.026 .646 .841

(1)

(2) .674 .713 .655 .758

single run (1): .674 1.026 .667 .849
full run (1): .527 .118 .184 .155
single run (2): .813 .769 .675 .776
full run (2): .461 .299 .181 .188
% var due
to seed

single run (1): 39.34 100 93.73 98.05
full run (1): 0.85 100 17.59 41.85
single run (2): 68.68 85.98 94.13 95.46
full run (2): 2.81 7.47 18.63 23.10
Reference:
Table number: 48 49 52 53
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Table 11: Summary results from experiments using stochastic and simulation
variability, from a combination of a nested and a crossed design. The nested

2 while the crossed component is used forcomponent is used to estimate as,
MS(JK).
JKgroup random rotation
Number of

JKgroups 20 20 20 20 8 8 8 8
Number of
seeds 4 4 4 4 l0 10 10 10
Seed set

forMS(JK) A A B B A A B B
Seed set

for a_/n A B A B A B A B

X/a'_/n from
nested design .709 .771 .709 .771 .715 .734 .715 .734

4a'_/n from
combination .441 .414 .290 .248 .136 .125 .183 .176

% var due to
seed in

single run: 72.10 77.62 85.67 90.62 96.51 97.18 93.85 94.56
full run: 3.29 4.36 7.29 11.28 28.31 33.00 17.90 19.90

single run: .835 .875 .766 .810 .728 .745 .738 .755
full run: .448 .423 .301 .263 .161 .153 .202 .197

rather than random group.

We can use a combination of the nested and crossed designs to estimate a_
with better precision. We can calculate MS(JK) from the crossed design, then
using (2), subtract the estimate of a_ based on the nested design. We did
this using the experiments described above. For each of the four experiments

2 from a nested design (Table 11). Forusing a crossed design, we subtracted a s
each experiment we first subtracted the corresponding estimate of _r_using
seed set A, then using seed set B.

The estimates of qa_/n were much less variable using this combination de-
sign than they had been under either the crossed design alone, or the nested
design alone. Since a_ differs very little from run to run compared to MS(JK),
the estimates of a_ were fairly sensitive to the seed set used for estimating

MS(JK), but not very sensitive to the seed set used for '2/7 s .
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Table 11 shows that the estimated sampling error from jackknifing rotation
groups is smaller than when jackknifing random groups. This indicates that
rotation groups are much more like each other, and each is more representa-
tive of the population than are random groups drawn from the CPS sample.

Table 11 also indicates that if the MATH-CPS model were to be run only once
2

(and estimates of rr_and as were obtained from another source), stochastic
error is a more important contributor to posterior uncertainty than is sam-
pling error. When the MATH-CPS model is run several times, as we have
done here, the relative importance of stochastic error diminishes.

The fact that stochastic variability is so large relative to sampling variability
when running all 10 modules of the MATH-CPS module in a single run,
gives hope for producing more precise model estimates. Variability due to
stochastic simulation can be reduced by using more seeds and multiple runs
(a relatively easy process), whereas to reduce sampling variability it would
be necessary to increase the sample size.

Uncertainty due to sampling could be reduced by combining samples from
more than one year, effectively increasing the sample size by a factor of two
or more. No sample will be exactly representative of a future year for which
simulation results are desired, and a sample which consists of a mixture of
years would not be representative of any single year. Differential weighting
of different years could be used if it was believed that one year was more
representative of what the future year of interest will be. For example if
the unemployment rate in one sample year was high but was low in another
sample year and it was believed that the unemployment rate would rise, one
might upweight the records from the sampled year with high unemployment
relative to the sampled year with low unemployment. Another approach
would be to upweight individual households based on particular character-
istics, as we did with households which receive AFDC. In this case having
samples from multiple years is advantageous since there is a richer mix of
households in a multiple year sample than there is from a single year sample.

For particular estimands and reforms in which sampling variability is an im-
portant contributor to posterior variance, combining samples from multiple
years might be worth considering. If on the other hand sampling variability
is not an important contributor to posterior variance, the cost of processing
twice as many records and making different aging adjustments to the dif-
ferent years may outweigh the benefits of combining samples from different
years.

Using multiple year samples could be problematic if eligibility rules for the
FSP, AFDC, etc. or other provisions differed in the different years. In this
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case one would have to simulate participation in these programs under the

baselaw. This would increase the stochastic error compared to using a single

sample year.

The relative importance of stochastic variability in the MATH-CPS model

also sheds new light on our results for the QC and MATH-SIPP models

(Zaslavsky and Thurston, 1994, and Zaslavsky and Thnrston, 1995). In the

MATH-SIPP model we found sampling variability to be quite important.

It is possible that some of what we labeled as sampling variability in these

models was actually stochastic variability at the database creation stage or at

an earlier part of the model development. More widespread use of multiple

imputation for missing data would help to resolve this matter, and would

be feasible if built into the original creation of the survey datasets used by
microsimulation models.

8.3 Estimates of calibration uncertainty

We analyzed outputs of 5 MATH-CPS model experiments involving calibra-

tion. In the first experiment, we divided the AFDC-eligible families into two

groups: low benefit families and high benefit families. We will refer to this as
the 2-cell calibration scenario. We based the calibration on results from run-

ning the MATH-CPS model using all households and the MPR seed. For each

possible cutoff between low and high benefit families (separately for AFDC-

Basic and AFDC-UP), we calculated weighting factors which would apply to

the low and high benefit groups. Most cutoffs required down-weighting the

low benefit families (Figure 1 and Figure 2 in Appendix 1). However we de-

cided to pick a cutoff in which no AFDC family was down-weighted. For the

AFDC-Basic families, this meant the high benefit families were up-weighted

by 3.801, whereas the high benefit AFDC-UP families were up-weighted by

11.026. In both cases, the low benefit families had a weighting factor of about

1 (Table 12). In order to keep the sum of total household weights on the file

constant, non-AFDC households were down-weighted accordingly.

Eligibility and participation for AFDC is determined at the family level.

Sampling and weighting apply to households. This was problematic for

households which contained more than one family because not all families

within a single household received the same type of AFDC. In some house-

holds, one family received AFDC and another did not. Consequently we did

not exactly meet the control totals for all four targets, but were off by at
most 5%.

In the first experiment these weighting factors were applied to MATH-CPS
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Table 12: Details of 2 cell calibration method, based on one seed and the full
sample

benefit benefit number of weighting
class cutoffs households factors

AFDC-Basic low 11-820 2346 1.0013

households high 821-1625 92 3.8057
AFDC-UP low 10-900 137 1.0032

households high 901-1057 6 11.0258
Non-AFDC all households 56390 .9956

model runs in which we jackknifed random groups and used different seeds.
Since eligibility for AFDC depends on a particular seed and the total number
of eligible families depends on the particular jackknife group, the weighting
factors we developed based on the full sample and the MPR seed meant that
the AFDC control totals were not exactly met in any individual run. Also
the total sum of weights on the file varied from run to run.

We ran the MATH-CPS model 40 times with the standard MPR calibration,
and 40 times with our alternate calibration method as described above. Each

of the 40 runs used 10 jackknife samples with 4 seeds nested. The estimated
calibration effect from this design was -.329. A negative calibration effect

means that the estimated percent change in benefits is smaller when using
our alternate method of calibration as compared to the standard MPR cali-
bration. Calibration accounted for 47.07% of the total variability (Tables 54
and 13).

The disadvantage of the particular 2-cell calibration scenario we used is that
the up-weighting effectively only applies to a few households. Only 6 house-
holds which receive AFDC-UP (4%), and 92 households which receive AFDC-
Basic (4%) were up-weighted. Consequently we decided to look at the class
of calibrations involving 3 groups of households in each of the two AFDC
categories. We will call these 3-cell calibration scenarios. A summary of all
5 calibration experiments can be found in Table 13.

In the first of the 3-cell calibration scenarios, we based the calculation of
the weighting factors on results from running the MATH-CPS model using
all households and the MPR seed, as we had for the 2-cell calibration sce-
nario. We decided to down-weight low benefit households in both groups.
The 148 lowest benefit AFDC-Basic households (comprising 9% of AFDC-
Basic households) were given a weighting factor of .75, while the 6 lowest
benefit AFDC-UP households (4% of the AFDC-UP households) were given
a weighting factor of .50. Looking at all possible cutoffs between the medium
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Table 13: Summary results from calibration experiments. Each experiment
used 10 MATH-CPS model modules and was run under reform 1.

Jackknife

group random rotation
Number of

resamples 10 10 10 10 8
Numberofseeds 4 4 4 4 4
Number of

benefitgroups 2 3 3 3 3
Weighting factors one one each median of each
developedfrom run run run 80 runs run

/_ 8.954 8.816 8.475 8.466 8.420

/_c -.329 -.488 -.829 -.839 -.900

SE(+ lB,
single run: 0.768 0.801 1.035 1.044 1.116
full run: 0.480 0.502 0.842 0.848 0.953
% var due to
calibration

(main effect)
single run: 18.40 37.11 64.24 64.58 65.09
full run: 47.07 94.51 97.01 97.93 89.22
Tablenumber 54 55 56 57 58
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Table 14: Details of 3 cell calibration method, based on one seed and the full

sample

benefit benefit number of weighting
class cutoffs households factors

AFDC-Basic low 11-100 148 0.7500

households medium 101-442 1419 1.0003

high 443-1625 871 1.4374
AFDC-UP low 10-100 6 0.5000

households medium 101-600 94 0.7490

high 601-900 44 2.7872
Non-AFDC all households 56389 0.9938

and high benefit households in both AFDC groups, we decided on one which

used weighting factors of 1.00 for the medium benefit AFDC-Basic house-

holds, and .75 for the medium benefit AFDC-UP households. This meant

that the 871 high benefit AFDC-Basic households (36%) had a weighting

factor of 1.44, and the 44 high benefit AFDC-UP households (31%) had a

weighting factor of 2.79 (Table 14). Compared to the 2-cell calibration sce-

nario, a much larger number of high benefit households in each AFDC group

were up-weighted, and by a smaller amount. This means that results of this

3-cell calibration scenario do not rely so heavily on a very few households.

Results from this experiment gave an estimated calibration effect of-.488 for

the full run. Calibration accounted for 94.51% of the variability for the full

run (Tables 13 and 55).

We also checked to see what effect these methods of calibration had on the

other target quantities. As can be seen from Table 15, calibration using

either the 2 cell method or the 3 cell method generally brought other totals or

percentages of interest closer to the targets. In particular, the percentage of

FSP households with AFDC was very close to the target when our method of

calibration was used, as was the percentage of FSP households with children

aged 5-17. This is to be expected, since up-weighting AFDC households

relative to non-AFDC households should increase the proportion of AFDC

households in the FSP, and since AFDC families have children, this also

increases the number of households with children in the FSP. It is encouraging

to note that these numbers were quite close to the target numbers.

In our third calibration experiment, we decided to re-calibrate each run of

the MATH-CPS model. This meant the weighting factors were recalculated

for each jackknife sample and seed under which we ran the model, so that

the 4 AFDC control totals would be met for that particular run (as much as
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Table 15: Comparison of baselaw targets and microsimulation estimates us-
ing two different calibration methods

Quantity Target standard our calibration with

calibration 2 groups I 3 groups
Weighted number of units
participating in FSP (xl000) 10,864 9,204 9,532 9,657
Weighted total benefits
for the FSP (xl000) 2,029,742 1,679,354 1,792,352 1,812,331
Percentage of FSP
households with AFDC 40 37.0 39.4 40.3

Percentage of FSP
householdswithSSI 19 23.2 22.7 22.5

Percentage of FSP
householdswithGA 8 6.0 5.9 5.9

Percentage of FSP
householdswith earners 20 23.1 23.0 22.3

Percentage of FSP
households with elderly 15 21.7 21.2 20.7
Percentage of FSP households
with children (5-17) 43 41.5 43.5 43.6

possible, considering the problem of multiple families within a household).
We fixed the weighting factors for the low benefit groups at .75 and .50 for
AFDC-Basic and AFDC-UP households respectively, as they had been in
the previous experiment. Weighting factors for the medium and high benefit
groups were calculated to meet the AFDC control totals. Our expectation
was that this would reduce total variability since we would have eliminated
variability between runs due to different AFDC control totals.

This experiment also involved 80 runs of the MATH-CPS model, 40 under
the standard MPR calibration method, and 40 under our calibration method.
Again, the 40 runs were based on 10 jackknife samples and 4 seeds nested
in each. Results from calibrating each run apparently indicated the opposite
of what we expected. For the full run, the estimated calibration effect was
-.829, with calibration accounting for 97.01% of the variability (Tables 13
and 56). Estimates of the calibration effect for individual runs are positively
correlated with the weighting factors for the AFDC-Basic groups.

A closer look at the individual weighting factors for each run shows that
in general the weighting factors are larger than they were in the previous
experiment. For AFDC-Basic households, the weighting factors calculated
on the basis of the one MPR seed and all households were lower than any
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Table 16: Details of 3 cell calibration method when calibration is done sep-
arately for each run

benefit benefit number of weighting
class cutoffs households factors

AFDC-Basic low 11-100 119 to 154 .750
households medium 101-442 1209 to 1311 1.085 to 1.197

high 443-1625 753 to 813 1.484 to 1.659
AFDC-UP low 10-100 I to l0 0.500
households medium 101-600 60 to 99 0.712 to 1.596

high 601-900 23 to 41 2.659to 5.149
Non-AFDC all households 0.988to .990

of the weighting factors calculated in 40 runs using jackknife samples and
different seeds. For AFDC-UP families, the weighting factors based on the
MPR seed and full sample were near the low end of the weighting factors
calculated from the 40 runs (Table 16).

Since the 40 calibrated runs of this latest experiment were based on the same
set of 10 jackknife samples and 4 seeds nested in each as the 3 cell calibration
scenario in which calibration was done only once, there is a natural pairing of
runs. We expected that individual estimates of the calibration effect would be
positively correlated, and we found this to be the case (Figure 3 in Appendix
1). Figure 3 in Appendix 1 also shows that the estimated calibration effect
based on the MPR seed and the full sample was smaller than any individual
calibration effects for the 40 runs.

These results suggested a fourth experiment involving calibration. We wanted
to compare results of calibrating each run with an experiment in which the
weighting factors were only calculated once, but in which the weighting fac-
tors were near the center of the distributions of weighting factors generated
from calibrating each run. The fourth experiment used the median weight-
ing factors from the experiment in which each run was calibrated separately
(Table 17).

Results for the fourth experiment were extremely similar to the third ex-
periment, in which calibration was done for each run. For the full run, the
estimated calibration effect was -.839 (as compared to -.829), with calibra-
tion accounting for 97.93% of the total variability (as compared to 97.01%)
(Tables 13 and 57). A plot of estimated calibration effects for each run when
calibration is done once versus when calibration is done each time (Figure 4)
shows a positive correlation, with about equally many points above and many
points below the line of equality.
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Table 17: Comparison of weighting factors in 3 cell calibrations based on the
MPR seed versus the median of 40 runs

weighting factors weighting factors
benefit from frommedianof
class onerun 80runs

AFDC-Basic low .750 .750
households medium 1.000 1.142

high 1.437 1.566
AFDC-UP low .500 .500
households medium .749 1.102

high 2.787 3.819
Non-AFDC all households .994 .989

The final experiment involving calibration used a jackknife of rotation groups
instead of random groups, and involved calibrating each run. Results of this
experiment are quite similar to results of the analogous experiment using
a jackknife of random groups. The estimated calibration effect is -.900 (as
compared to -.829), with calibration accounting for 89.22% of the posterior
variance (Tables 13 and 58).

In conclusion, simulation results using the MPR seed are outlying with re-
spect to the estimate of the calibration effect. Otherwise, the estimates from
other seeds are quite consistent.

8.4 Estimates of five sources of uncertainty

We ran the MATH-CPS model incorporating all five sources of uncertainty
to determine the absolute and relative sizes of each source of uncertainty. In
all cases we used a jackknife of rotation group to estimate sampling variabil-
ity. To simplify the experiments we used two seeds nested in each rotation
group to estimate stochastic variability, although the results from Section 8.2
suggest that a combination of the crossed and nested design could improve
estimates of sampling effects, a_, cr2hc, etc.

We used the calibration method based on dividing each of the two types of
AFDC (AFDC-Basic and AFDC-UP) into three groups. We did not calibrate
each run separately, since results from calibration experiments indicated that
calibrating each run separately gave results very similar to runs which were
not calibrated separately.

We used two unemployment rates, 6.4%, and 4.3%, as described earlier. We
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used two methods of allocating earned income to months, also as described
earlier.

8.4.1 Results from reform 1, using 2 seed sets

We did 12 complete (five-factor) MATH-CPS model experiments. The first
two were done using the original reform (reform 1). The first run used seed
set A, and the second run used seed set B. The other 10 MATH-CPS model
runs were done using different reforms.

As in experiments involving only stochastic and sampling variability (Section
8.2), cr_ was not well estimated in the full MATH-CPS run (Table 18, and

59 and 60). In the first reform using seed set A, _n was .674,Tables

using seed set B, _/&_/n was 0. Using seed set A, N/_a/n was .530,whereas

which is somewhat smaller than estimates from other experiments, whereas

using seed set B, _/&_/n was .787, about the same as previous estimates.

Due to the very different estimates of a_ in the two runs of the first reform, the
estimated relative importance of sampling and stochastic error to posterior
variance were quite different. Sampling accounted for 35% of the posterior
variance from a full experiment (29% from a single run) using seed A, but
0% using seed B. Stochastic uncertainty accounted for 1.5% of the posterior
variance using seed A (18% from a single run), but 6% under seed B (48%
from a single run). Although the estimated calibration effect was slightly
smaller using seed set B, calibration accounted for a greater percent of the
posterior variance using seed B (92% for a full run) than using seed A (51%
for a full run). For a single run, these numbers reduced to 43% for seed A
and 49% for seed B.

Calibration was the only fixed effect that accounted for more than 2% of the
posterior variability for this reform. Uncertainty about the unemployment
rate and about method of income allocation were not important contributors
to total posterior variance.

We compared the original reform (reform 1) with 10 other reforms (summa-
rized in Table 19). These reforms are grouped into two sets: reforms 1-6
and reforms 7-11. Reforms 1-6 were run first, and results from these reforms
suggested that another set of reforms be run which might have more uncer-
tainty. We present results from these two sets of reforms separately. The
reforms were run using only seed set A.
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Table 18: Summary results from the full 5-factor model under reform 1, using
two different seed sets.

seed set A seed set B

_'_/n .674 0.0

.530 0.787
/_ 8.468 8.203
/_c -.821 -.796

posterior SE:
singlerun 1.259 1.136
fullrun 1.145 0.832

% var due to sampling
(main effect):
singlerun 28.660 0.0
fullrun 34.638 0.0
% var due to seed

(main effect):
singlerun 17.717 47.920
fullrun 1.529 6.392

% var due to calib

(main effect):
singlerun 42.555 49.120
fullrun 51.431 91.732
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8.4.2 Results from reforms 1-6

In reform 2, the earnings deduction is 50%, as compared to 20% in the
baselaw. We expected that for this reform, the unemployment rate and pos-
sibly the method of income allocation should be a more important contributor
to posterior variance than under the original reform.

In reform 3, the shelter deduction cap is eliminated. This reform and others
involving changes in shelter deduction are frequently analyzed at MPR.

Reforms 4 and 5 both affect the treatment of assets. Since both vehicular and

financial assets are imputed in the MATH-CPS model, we expected stochastic
uncertainty to be important in these reforms. In reform 4, the first vehicle
is not counted as an asset, so people cannot become ineligible for the food
stamp program due to the value of their first car. Under the baselaw, any
amount above $4600 in the value of the first car is counted as an asset.

Reform 5 is an extreme asset reform in which asset limits are eliminated com-

pletely. This means that households which are eligible for the food stamp
program based on other criteria, are still eligible despite having any amount
of assets. This reform has been run at MPR many times, not as a realis-
tic option, but to determine how many people are kept off the food stamp
program because of their assets.

In reform 6, the earnings deduction is increased to 50% (as compared to 20%
in the baselaw), but only for FSP households which participate in AFDC.
This reform is similar to reform 2 in which the 50% earnings deduction applies
to all households. Reform 6 is an example of a type of reform that may be
requested under the new welfare block grants, in which the FSP benefits
for families applying for TANF (Temporary Assistance to Needy Families)
benefits can be based on net income as calculated from TANF applications
(Super et al, 1996). In applications for AFDC (the current cash welfare
program for families with children), earnings deductions are often more than
the 20% allowed under the FSP. In AFDC, earnings deductions vary by length
of time on the program, and IQCS data indicate that for AFDC, earnings
deductions total about 50% on average (U.S. House of Representatives, 1994).

Detailed results from running the first set of reforms are shown in Tables 59,
61, 62, 63, 64, and 65. The results are summarized in Tables 20, 21, and 22.
Table 20 shows estimates of the fixed effects, Table 21 compares sampling
and stochastic error, and Table 22 gives the relative contributions to posterior
variance from important sources of uncertainty.

The point estimate for percent change in benefits (/_) varied greatly from
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Table 19: Description of reforms under which the full MATH-CPS model was
run

Reform

number Description

Baselaw (used as reference for all reforms)
Asset limit for elderly households = $3000
Asset limit for non-elderly households = $2000
Dependent child care cap for 48-states:

for children under 2 years = $200
for children 2 years and over = $175

Shelter cap multiplier = 1
Earnings deduction = 20%
Value of first vehicle over $4600 counted as asset

1 Asset limit for elderly households = $5000
Asset limit for non-elderly households = $5000
No dependent child care cap for 48-states
Shelter cap multiplier -- 0.5

2 Earnings deduction = 50%
3 No shelter deduction cap
4 Value of first vehicle not counted as asset
5 No asset limit

6 Earnings deduction = 50% for AFDC households only

7 Asset limit for elderly households = $2150
Asset limit for non-elderly households = $2150

8 Shelter deduction -- shelter expenses over 35% of gross income
9 Earnings deduction = 75% for AFDC-UP households only

10 Earnings deductions = 34% for households on FSP for
6 months or less

No earnings deductions for households on FSP for
more than 6 months

11 Value of first vehicle over $10,000 counted as asset
Asset limit = $1075 for non-elderly households on FSP for

more than 6 months
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Table 20: Estimates of main, 2-way and 3-way effects in MATH-CPS model
reforms 1-6. All are run jackknifing rotation group, with 2 seeds nested. An
asterisl_ indicates the effect is more then 2 SE's above 0 in the full run.

reform number

1 [2 13 ]4 15 16
/_ 8.468 * 10.435 * 2.838 * 5.314 * 26.056 * 3.081 *

/)c -.821 * -.502 * .086 * -.355 * -1.705 * .070 *

BE -.081 .803 * -.049 -.047 -.123 .279 *
/_I .037 -.425 * -.040 * -.019 .018 -.039 *

/)cE .017 * -.026 * -.008 .007 * .016 .007 *
/_cI -.003 .027 * .003 .001 .001 -.004

_Eir .004 -.033 -.002 .002 .002 .001

/)CZI .000 .003 * .000 .000 .001 .000

Table 21: Estimates of simulation and sampling variability in MATH-CPS
model reforms 1-6. All are run jackknifing rotation group, with 2 seeds
nested, using seed set A.

reform number

1 I2 13 14 15 16
/) 8.468 10.435 2.838 5.314 26.056 3.081

x/fr2/n 0.674 0.0 0.044 0.0 1.774 0.0

0.530 0.349 0.124 0.587 0.659 0.232
Posterior SE:

single run 1.259 1.110 0.193 0.745 2.633 0.385
full run 1.145 1.051 0.145 0.476 2.548 0.300

Coefficient of variation

singlerun: .149 .106 .068 .140 .101 .125
fullrun: .135 .101 .051 .090 .098 .097

% var due

to sampling
(main effect):
single run: 28.660 0.0 5.512 0.0 45.403 0.0
fullrun: 34.638 0.0 9.133 0.0 48.481 0.0

% var due
to seed

(main effect):
single run 17.717 9.898 41.005 62.195 6.259 36.204
full run 1.529 0.789 5.192 10.857 0.477 4.265
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Table 22: Percentage of posterior variance in a full run due to major sources
of error in MATH-CPS model reforms 1-6. All are run jackknifing rotation
group, with 2 seeds nested, using seed set A.

reform number

1 I 2 I 3 14 I 5 I 6
sampling (J) 34.638 0.000 9.133 0.000 48.481 0.000
seed (S) 1.529 0.789 5.192 10.857 0.477 4.265
calibration (C) 51.431 22.766 35.247 55.545 44.777 5.492
unemployment (E) 0.497 58.354 11.614 0.956 0.233 86.843
income (I) 0.103 16.337 7.683 0.153 0.005 1.696
C x E 0.022 0.062 0.272 0.021 0.004 0.055
C x I 0.001 0.065 0.037 0.000 0.000 0.016
E x I 0.001 0.099 0.023 0.001 0.000 0.002
C x E x I 0.000 0.001 0.000 0.000 0.000 0.000
E x J 9.671 0.000 28.994 22.516 4.335 0.000
I x J 1.191 1.004 0.000 6.626 0.915 0.000

reform to reform, as expected (Table 20). Reform 5, which eliminates asset
limits, resulted in an estimated 26% percent change in benefits. Reform 3, in
which the shelter deduction cap is eliminated, gave less than a 3% change in
benefits. In all cases the estimated percent change in benefits was positive,
indicating a larger simulated total benefit under the reform than under the
baselaw.

Calibration was the only fixed effect which was significant for all reforms, by
which we mean that/_c is more than 2 standard errors away from 0. For all
reforms except for the two reforms involving earnings deductions (reforms 2
and 6), the calibration effect was the only significant and large effect, and
except for reform 6, it was estimated to be larger than any other fixed effect.
For most reforms, /_c was negative indicating that the percent change in
benefits is smaller when using our method of calibrating AFDC totals as
compared to the standard MPR method of AFDC calibration. This means
that for the reforms with a negative/_c, the total reform benefits are closer to
the total baselaw benefits when AFDC families are up-weighted. For reform
6, in which a 50% earnings deduction only applies to AFDC families, the
difference in benefits is larger when AFDC families are up-weighted.

Only in reforms 2 and 6, in which the earnings deduction is 50% instead of
20% under the baselaw (for AFDC families only, in reform 6), were uncer-
tainty about the unemployment rate and uncertainty about method of in-
come allocation important contributors to posterior variance. As expected,
a reform which increases the earnings deduction is sensitive to what the pro-
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jected unemployment rate is, and to the distribution of earned income over
the year. Under reform 2, _c was -.502, _E was .803, and/_I was -.425, all

three of which were statistically significantly different from zero. In reform
6, _c was .070, fie was .279, and flI was -.039.

As can be seen from Table 21, a_ is not well estimated from the nested design,
nor is the percentage of posterior variance due to sampling variability. The

estimated magnitude of stochastic standard error in a single run (_/-n) was
quite large for the two asset reforms (reform 4 and reform 5). The original
reform (reform 1) also had large stochastic uncertainty relative to reforms
2, 3 and 6, which is not surprising since the original reform also involves an
increased asset limit, while reforms 2, 3, and 6 do not. In reform 5 in which
a_/n is large,/_ is also very large, and the relative importance of stochastic
uncertainty is quite small. In contrast, for reform 4, in which vehicles are
not counted as assets, stochastic uncertainty accounts for over half the total
uncertainty in a single run, and over 10% of the uncertainty in a full run. For
this reform in particular, multiple runs of the model using different seeds are
especially worthwhile. Running the model under multiple seeds decreased
the posterior standard error by one third.

The estimated posterior standard error varied quite a bit between the differ-
ent reforms. For a full run, the posterior SE ranged from 0.145 for reform
3 to 2.548 for reform 5. As a percentage of the point estimate, however,
the standard error was remarkably similar across reforms. The coefficient of
variation (the ratio of the posterior standard error to/_) ranged from 5.1%
to 13.5% in the full run (6.8% to 14.9% in a single run).

In Table 22, which compares the relative importance of major sources of
uncertainty, we can see that calibration method is an important contributor
to posterior uncertainty for all reforms except for reform 6. For reforms 1
through 5, calibration accounted for from 23% to 56% of the total variance
when using a full design (only 5.5% for reform 6). Using a full design, unem-
ployment accounted for most (87%) of the uncertainty under reform 6, more
than half (58%) of the uncertainty under reform 2, 12% of the uncertainty
under reform 3, and was negligible under the other reforms. Uncertainty
about income allocation method was important for reforms 2 and 3, but not
for the other reforms.

Surprisingly, the interaction of employment with jackknife was an important
contributor to posterior variance for several reforms, accounting for up to
29% of the total posterior variance. This means that with the available data
it is hard to estimate the effect of a changed unemployment rate on the
percent change in FSP benefits, but that the possibility exists that the effect
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is quite large.

8.4.3 Results from reforms 7-11

Like each reform in the first set, each reform in the second set is either

an actual reform analyzed by FCS or a hypothetical reform with provisions

similar to those typically analyzed by FCS. However, the reforms in the

second set were selected because we thought the uncertainty in the estimates

from these reforms would be substantially larger than from the first set of
reforms.

In reform 7 the asset limit for all households is $2150 which is slightly more

than the present $2000 for non-elderly households, and less than the present

$3000 for elderly households. We expected that stochastic simulation uncer-

tainty would be large in this reform since assets are imputed.

Reform 8, like reform 3, incorporates a change in shelter deduction. In reform

8, the shelter deduction is the shelter expenses over 35% of gross income. We

expected that this reform would have larger uncertainty than reform 3 since

it relies on gross income, which in turn depends on employment status.

Reforms 9 and 10, like reforms 2 and 6, involve earnings deductions. In

reform 9, the earnings deduction is 75%, but just for AFDC-UP households.

In reform 10, the earnings deduction is 34%, but just for households on the

FSP for 6 months or less, and the earnings deduction is 0% for households on

the FSP for more than 6 months. With all earnings deduction reforms, we

expect error due to uncertainty about the unemployment rate to be relatively

large. Since relatively few households are on AFDC-UP, we expect sampling

uncertainty to be relatively large in reform 9.

In reform 11 the first $10,000 of the value of the vehicle is not considered an

asset, and the asset limit for non-elderly households on the FSP for more than

six months is reduced to $1075. We expect stochastic simulation uncertainty

to be large in this reform due to imputation of financial and vehicular assets.

Detailed results from running the second set of reforms are shown in Ta-

bles 66, 67, 68, 69, and 70. Summaries are given in Tables 23, 24, and 25.

Table 23 shows estimates of the fixed effects, Table 24 compares sampling

and stochastic error, and Table 25 gives the relative contributions to posterior

variance from important sources of uncertainty.

The percent change in benefits under the second set of reforms was estimated

much less precisely than under the first set. The point estimates for percent
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Table 23: Estimates of main, 2-way and 3-way effects in MATH-CPS model

reforms 7-11. All are run jackknifing rotation group, with 2 seeds nested. An
·_o,,_,,o, indicates the effect is more then 2 SE's above 0 in the full run.

reform number

7 18 19 110 111

/_ 0.308 * 0.215 0.302 0.166 0.291 *

/_c -.028 .077 * .056 * -.057 * -.047

/_r -.022 -.058 * .000 -.154 * -.076

/_I -.002 .010 -.003 -.030 .004

/_cE .002 .002 .002 .004 .005

/_cI .000 -.001 -.003 .006 * -.001

/SEz .004 .000 -.001 .009 .004

J_CEI .000 .000 -.001 .001 .000

Table 24: Estimates of simulation and sampling variability in MATH-CPS

model reforms 7-11. All are run jackknifing rotation group, with 2 seeds

nested, using seed set A.
reform number

7 I 8 I9 [10 [11

/_ 0.308 0.215 0.302 0.166 0.291

dS'_ln 0.0 0.130 0.163 0.182 0.0

0.299 0.045 0.040 0.159 0.422
Posterior SE:

single run .323 .172 .189 .315 .563
fullrun .114 .165 .174 .266 .378

Coefficient of variation

single run: 1.049 .800 .626 1.898 1.935
full run: .370 .767 .576 1.602 1.299

% var due

to sampling

(main effect)'

single run: 0.0 57.016 74.448 33.273 0.0
full run: 0.0 62.003 87.303 46.520 0.0

% var due
to seed

(main effect):

single run 85.709 6.910 4.519 25.415 56.145
full run 49.626 0.537 0.379 2.538 8.888
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Table 25: Percentage of posterior variance in a full run due to major sources

of error in MATH-CPS model reforms 7-11. All are run jackknifing rotation

group, with 2 seeds nested, using seed set A.
reform number

7 [8 19 10 [11

sampling (J) 0.000 62.003 87.303 46.520 0.000

seed (S) 49.626 0.537 0.379 2.538 8.888

calibration (C) 6.076 22.059 10.480 4.645 1.549

unemployment (E) 3.848 12.493 0.000 33.500 4.019

income (I) 0.031 0.382 0.034 1.273 0.010
C x E 0.033 0.015 0.012 0.025 0.016

C x I 0.000 0.002 0.029 0.044 0.000

E x I 0.109 0.000 0.001 0.111 0.011

Cx E x I 0.001 0.000 0.002 0.000 0.000

E x J 0.000 2.001 0.000 2.821 74.165

I x J 24.080 0.000 0.000 6.772 5.821

change in benefits for reforms 7-11 were all positive and all smaller than

those for reforms 1-6. The impacts for reforms 7-11 (less than half a percent,

compared to 2.8 to 26 percent in reforms 1-6) are more typical of the impacts

estimated by FCS on a routine basis.

As anticipated, the posterior standard errors for reforms 7-11 were much

larger relative to the point estimates than was the case with reforms 1-6.

The coefficients of variation ranged from .37 to 1.60 for a full run (.63 to 1.94

for a full run), which is substantially larger than for the first set of reforms.

In addition, the large standard errors relative to the point estimates means
that in all five reforms, in a single run, we cannot be very certain whether

the percent change in benefits is positive or negative. The approximate 95%

posterior intervals for percent change in benefits included 0 for all five reforms

in a single run, and for all but reform 7 in a full run.

Stochastic simulation uncertainty was particularly large for reforms 7 and 11,

the two reforms which involve assets. In reform 7, _/n = .299, which was

almost equal to/_ = .308. In reform 11, _/n = .422 which was much larger

than/3 = .291 (Table 24). Thus stochastic variability alone was of about the

same magnitude as the point estimate for these two reforms. In a single run,

stochastic simulation accounted for 86% of the posterior variance for reform

7, and 56% of the posterior variance for reform l l. Under the full design,

these numbers were reduced to 50% and 9% respectively. In reform 11, the

major contribution to posterior variance was the employment x jackknife
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interaction, accounting for 74% of the posterior variance.

Due to the extremely large stochastic simulation uncertainty in reforms 7
and 11, it is not surprising that none of the fixed effects (/_c,/_s, etc.) were
significantly different from 0. These were the only two reforms out of all 11
reforms in which there were no significant fixed effect.

In reforms 8, 9, and 10, the calibration effect was more than 2 standard errors
from 0. Calibration accounted for 5% of the posterior variance in the full run
in reform 10, 10% in reform 9, and 22% in reform 8. The relative importance
of calibration for the second set of reforms is substantially smaller than for
the first set of reforms (except for reform 6 in which uncertainty about the
unemployment rate was very important). This is at least in part due to the
large absolute and relative importance of stochastic variability in reforms 7
and 11, and sampling variability in reforms 8, 9 and 10.

In reform 9, sampling accounted for 87% of the posterior variance. This
is not surprising since this reform only involves AFDC-UP households, and
there are very few such households in the dataset. Sampling accounted for
62% of the posterior variance for reform 8, and 47% for reform 10.

Reforms 8, 9 and 10 involve earnings in some way, and household earnings
are affected by the employment status of people in the household. In reform
8, the shelter deduction depends on gross income, whereas reforms 9 and 10
involve earnings deductions. The unemployment effect,/_E was significantly
different from 0 in reforms 8 and 10. In reform 10,/_E was almost as large in
magnitude as _ (/_E = -.154, and _ --.166). In no other reform was a fixed
effect nearly so close in magnitude to the point estimate.

8.4.4 General comparisons of all 11 reforms

The eleven reforms we considered are summarized briefly in Tables 26 and
27. Of the reforms we considered, four involved asset limits (reforms 1, 5, 9
and 11). In reforms 1 and 5 the asset limit was increased as compared to the
baselaw, whereas in reforms 9 and 11 the asset limit was decreased for some
subset of households. The increase in stochastic simulation variability, which
we expected for asset imputations, was very large only in the reforms in which
the asset limit was smaller in the reform than in the baselaw. There may be
relatively few households with imputed assets over the baselaw limits which
are otherwise eligible for the FSP. If this is so, we expect sampling variability
to be large in reforms with an increased asset limit, and in fact this is what
we found.
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Table 26: Estimates of the standard error and coefficient of variation in M111

MATH model reforms. Numbers are for a single run, with full run numbers
parentheses.

% var due to

Ref /3 CV seed (main effect) reform about
1 8.47 .15 ( .14) 17.72 (1.53) asset limits, other
2 10.44 .11 (.10) 9.90 ( 0.79) earnings deduction (all hhs)
3 2.84 .07 (.05) 41.01 ( 5.19) shelter deduction
4 5.31 .14 (.09) 62.20 (10.86) first vehicle
5 26.06 .10 (.10) 6.26 ( 0.48) asset limits
6 3.08 .13 (.10) 36.20 ( 4.27) earnings deduction (AFDC)
7 0.31 1.05 (.37) 85.71(49.63) asset limits
8 0.22 .80 (.77) 6.91 ( 0.54) shelter deduction
9 0.30 .63 (.58) 4.52 ( 0.38) earnings deduction (AFDC-UP)

10 0.17 1.90 (1.60) 25.42 ( 2.54) earnings deduction
11 0.29 1.94 (1.30) 56.15 ( 8.89) first vehicle, asset limits

Table 27: Percentage of posterior variance in a full run due to major sources
error in all 11 MATH model reforms.

Ref J S C E I ExJ
1 34.64 1.53 51.43 0.50 0.10 9.67
2 0.00 0.79 22.77 58.35 16.34 0.00
3 9.13 5.19 35.25 11.61 7.68 28.99
4 0.00 10.86 55.55 0.96 0.15 22.52
5 48.48 0.48 44.78 0.23 0.01 4.36
6 0.00 4.27 5.49 86.84 1.70 0.00
7 0.00 49.63 6.08 3.85 0.03 0.00
8 62.00 0.54 22.06 12.49 0.38 2.00
9 87.30 0.38 10.48 0.00 0.03 0.00

10 46.52 2.54 4.65 33.50 1.27 2.82
11 0.00 8.89 1.55 4.02 0.01 74.17
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Earnings deductions were involved in four reforms: reforms 2, 6, 9 and 10.
As noted earlier, with the exception of reform 9 which involved only a few
households on AFDC-UP, uncertainty about the unemployment rate was a
major contribution to posterior variance for these earnings deduction reforms.

Two reforms, reforms 4 and 11, involve vehicular assets. In both, the ratio
of stochastic variability to _ was relatively large. Although stochastic error
was relatively large, it was the employment x jackknife interaction which
was a surprisingly important source of uncertainty in these reforms. We
hypothesize that there is a small number of people who are unemployed part
of the year and have expensive cars, and due to small numbers, these people
are not evenly distributed across rotation groups.

One possible explanation for the large employment x jackknife interactions
is that the difference in unemployment rate has a very different effect on the
percent change in FSP benefits for different people. When averaging very
different effects (possibly also differing in sign) over many people, this would
give a small estimated effect, with a large standard error, which is generally
what we found.

Another possible explanation is that people who are unemployed part of the
year tend to be clustered in certain small areas, thus comprising a relatively
large percentage of the sample in some rotation groups but not in other
rotation groups.

Whether incorporation of multiple seeds into the MATH-CPS model would
be useful depends on what the outputs of interest are, and on what reform
is of interest. If the model is run under one seed only, our best estimate of
the percentage of posterior variance due to seed, for the estimand of percent
change in benefits, ranged from 4.5% (reform 9) to 85.7% (reform 7). For
the reform in which seed was apparently most important (reform 7), the
posterior standard error decreased from 0.32 to 0.11 when multiple seeds
were used. Thus using multiple seeds can give a substantial reduction in the
posterior standard error for some reforms. We note that using multiple seeds
is beneficial particularly for reforms involving assets, and these reforms could
be tested using the MATH-SIPP model in which assets are not imputed.

Using multiple seeds seems most useful when a close examination of one or a
few estimands is of interest. However, averaging results over multiple seeds
for all entries of tables may produce inconsistent table results. For example,
in the gainer/loser table, one estimand is the ratio of the average change in
benefits to the average benefit under the base plan. Since both numerator
and denominator vary with seed, the average of the ratios will not necessarily
agree with the ratio of the averages. We suggest that table entries be initially
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produced from a single seed, but that adding the capacity to average over
multiple seeds in the MATH-CPS model would be worthwhile, if feasible.
Multiple seeds could then be used for estimands of particular interest, and
could be used to determine which estimands and which reforms have large
stochastic variability.
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9 Conclusions

We now summarize the implications of the results described in Section 8,

grouped by the set of experiments to which they apply. In all cases we

considered uncertainty in the estimated percent change in benefits under an
alternate reform.

In the first set of experiments we incorporated sampling and stochastic error

using reform 1, and varied the number of MATH-CPS model modules run.

Our conclusions from this set of experiments are:

1. For the main reform we considered (reform 1), the ASSETS module,

which imputes financial and vehicular assets, appears to be the primary

source of stochastic simulation uncertainty in the MATH-CPS model.

2. If one wants to estimate the relative sizes of sampling and stochastic

variability, it is important to run all parts of a microsimulation model

which use random numbers, under different sets of random numbers.

If parts of the model which use random numbers are not run under

different random numbers, the resulting estimate of sampling variability

will include variability due to stochastic simulation.

In the second set of experiments, we ran all 10 MATH-CPS modules using

reform 1, and investigated more thoroughly the absolute size and relative im-

portance of sampling and stochastic simulation uncertainty. Our conclusions

from these experiments are:

1. The estimate of sampling error in the MATH-CPS model cannot be

well determined using a design in which seed is nested in jackknife. An

estimator for the sampling error based on both a nested and a crossed

design gives a more precise estimate of the sampling error than either

the nested or crossed design by itself.

2. Based on estimates using a nested and crossed design, stochastic simu-

lation uncertainty is a much more important contributor to total pos-

terior variance than sampling variability when the MATH-CPS model

is run only once, for the estimand of percent change in benefits under
reform 1.

3. Running the MATH-CPS model many times using different seeds and

different jackknife replicates resulted in a sizeable decrease in the un-

certainty of the percent change in benefits under reform 1, and would

probably reduce the uncertainty in other model outputs as well.
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4. Our estimate of uncertainty due to stochastic simulation is probably too
small because we could not model stochastic simulation uncertainty in
the creation of the database, such as in imputation of individual missing
values in the CPS dataset.

5. The estimate of sampling variability when jackknifing rotation groups
was noticeably smaller than when jackknifing random groups, consis-
tent with expectations for the stratified CPS design. This suggests
that individual rotation groups are more representative of the popula-
tion than random subsamples of similar size.

In the third set of experiments, we considered the absolute and relative im-
portance of uncertainty due to calibration of AFDC totals in addition to
sampling and stochastic simulation uncertainty. We estimated the percent
change in benefits using reform 1, in model runs in which all 10 MATH-CPS
model modules were run. Our conclusions from these experiments are:

1. The difference between the standard calibration method for AFDC to-

tals and our method which re-weights households was a much more
important contributor to total posterior variance than either sampling
or stochastic variability for the reform we used.

2. The particular way in which the households are re-weighted (in our
case, by dividing households into two groups or into three groups) had
a substantial impact on the estimate of the calibration effect, and there-
fore also on the estimated contribution of calibration to total posterior
variance.

3. If calibration is done based on results from one run of the MATH-CPS

model, it is important that the one run be representative of other runs
that could be done. Representativeness can be checked by comparing
results using several different seeds.

4. A comparison of results from calibrating each run separately to results
when calibration is done based on one representative run shows no
major reduction in variability when calibration is done for each run.

5. The estimand of interest, the percent change in food stamp benefits
under the reform, is only indirectly affected by the number of partic-
ipants and benefits received in AFDC. Had our estimand been more
closely related to the levels that were calibrated, calibration of each
run could have given a reduction in total variability.
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6. The estimated calibration effect was similar whether jackknifing rota-
tion groups or jackknifing random groups. This is not surprising since
we expect the effect of up-weighting AFDC-eligible households on food
stamp benefits to be similar across groups of households.

In our fourth and final set of experiments, we compared the effects of dif-
ferent reforms on the percent change in benefits. In these experiments we
incorporated five sources of uncertainty: sampling, stochastic simulation,
calibration of AFDC totals, unemployment rate, and method of allocating
income to months. Our conclusions from these experiments are:

1. The absolute and relative importance of each source of uncertainty
varied substantially among the reforms we examined.

2. Of the three fixed effects we considered, uncertainty about the unem-
ployment rate and about method of calibrating AFDC totals were more
important sources of uncertainty than was the method of allocating an-
nual earned income to months.

3. For the reforms we considered which involved a large change in earnings
deduction for many households, uncertainty about the unemployment
rate was a very important contributor to posterior variance.

4. For several of the other reforms we considered, uncertainty about the
unemployment rate could be very important, but its importance could
not be well estimated.

5. For reforms which involved decreasing the asset limit, stochastic simu-
lation uncertainty was a major contributor to posterior variance.

6. Our estimates of posterior standard errors give a lower bound for the
true standard error in the MATH-CPS model, since there are many
sources of error which we could not model. Although it is impossible
to estimate the size of the true error, we find it encouraging that for
some reforms the estimated standard errors from our experiments still
allowed us to get useful point estimates. For other reforms the un-
certainty was very large relative to the point estimates, and for these
reforms it is not possible to accurately determine whether the reform
would increase or decrease total benefits.

7. The estimates of absolute and relative sizes of each error source from

our experiments are not likely to generalize to results for other reforms
or other estimands. In order to estimate the absolute and relative size

of error sources for a different estimand, different reform or different
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microsimulation model, it would be advisable to perform an experi-
ment such as we conducted, on the particular estimand, reform, and
microsimulation model of interest.
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A Appendices

A.1 Figures

Figure 1: Two-cell calibration weighting factors for AFDC-Basic.

o_ H

H=highbenefithouseholds H
L=lowbenefithouseholds H

H

H

oLo- j H_

_) HHHI HHHH-Il-Ill
® " L'J.I.

iljll. LLLLLLLILL_ L L L ,-,. L

0 - LLEJ.LLILU_I_

L fLL_L

,L

I I I I I I

0 2O0 400 600 800 1000

Monthlyhouseholdbenefit

89



Figure 2: Two-cell calibration weighting factors for AFDC-UP.
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Figure 3: Comparison of calibration effect, when calibration is done once
using MPR seed, to calibration of each run.
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Figure 4: Comparison of calibration effect, when calibration is done once

using weighting factors based on the median of 80 runs, to calibration of
each run.
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A.2 ANOVA tables, expected mean squares, and vari-
ance estimates

Table 28: Sums of squares from ANOVA using a nested design, for experi-
ments with sampling, and stochastic simulation uncertainty.

ANOVA table
Source df SS

Jackknife J - 1 S_.i(yj. _ y..)2

Seed in jackknife J(S - 1) E.i Es(Y.i, - yj.)2

Table 29: Expected mean squares from ANOVA using a nested design, for
experiments with sampling and stochastic simulation uncertainty.
Source E(MS)
Jackknife J Ser_)((J- 1)er+

J 2

Seed -(J--0 er,

Table 30: Variance components estimators from a nested design, for experi-

ments with sampling and stochastic uncertainty.

Variance IComponent Estimate

tr_ = -}{ "aa--t-_ MS(jackknife) - (J - 1)_2 }

__ ri(J-l? {MS(jackknife)- MS(seed)}-- JS

A2 ,q_-l)MS(seed)(73
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Table 31: Sums of squares from ANOVA using a crossed design, for experi-
ments with sampling, and stochastic simulation uncertainty.

ANOVA table
Source df SS

Jackknife J - 1 S _j(yj. - y..)2

Seed S - 1 J E_(Y._ - y..)2

Jackknife x seed (J- 1)(S- 1) _j_s(Yjs--.Ojs) 2

= Ej Z_(yj_- yj.- y._+ y..)2

Table 32: Expected mean squares from ANOVA using a crossed design, for
experiments with sampling and stochastic simulation uncertainty.
Source E(MS)

J (_ + s_)Jackknife ,qJ-1p

JO- 2Seed _

d 2

Jackknife x seed .(J-1)_%

Table 33: Variance components estimators from a crossed design, for exper-
iments with sampling and stochastic uncertainty.

Variance I

Component Estimate

&_ = ½ {- Ja_Z_f/tMS(jackknife)_ b2}

ct,l*2 = _MS(seed)

A2 _{J-1)_MS(JK x seed)O'8, 2 _ d
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Table 34: Sums of squares from ANOVA for experiments with sampling,
stochastic simulation, and calibration uncertainty. The design is seed nested
in jackknife, crossed with calibration.

ANOVA table
Source df SS

Jackknife J - 1 2SY_j(yj..- y...)2

Seed in jackknife J(S - 1) 2 _j _s(Yjs. -- Yj..)2

Calibration 1 JS Ea(Y.., - y...)2

Calibration x jackknife J - 1 S Ej _,(Yj., - _0j.a)2

Calibration x seed J(S - 1) Ej E, E_(Yjs, - _j,,)2

Table 35: Expected mean squares from ANOVA for experiments with sam-
pling, stochastic simulation, and calibration uncertainty. The design is seed
nested in jackknife, crossed with calibration.

ANOVA table

Source E(MS)
Jackknife 2J ttJ_ 1)a 2 + Srr_)

2J -2

Seed ri(J-Z-l)° s

Calibration n(_"-l)2J_ta2,c + S(J - 1)rr_c--1-nS(J -- 1)a2)

Calibration x jackknife 2J ti J_ 1)a_c + Sa2)ri(J-l)2 k_

2J -2

Calibration x seed .(T_l)osc
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Table 36: Variance components estimators for experiments with sampling,
stochastic simulation, and calibration uncertainty. The design is seed nested
in jackknife, crossed with calibration.

Variance

Component Estimate

,_(3-1)"{MS(jackknife) - MS(seed)}= 2Js

A2 ,_(_j1)MS(seed )0' s

5._c _ ,_(J-l? {MS(calib x jackknife)- MS(calib x seed))-- 2JS

A2 '_(_:l)MS(calib x seed)_r8¢ ----
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Table 37: Sums of squares from ANOVA for experiments with sampling,
stochastic simulation, calibration, unemployment, and income allocation un-
certainty. The design is seed nested in jackknife, crossed with calibration
crossed with unemployment crossed with income allocation method.

ANOVA table
Source df SS

Jackknife (J) J- 1 8SEj(yj ...._ y.....)2
Seed in jackknife (S) J(S- 1) 8EiEs(yjs.. ' _ yj....)2
Calibration (C) 1 4JSEc(y..c..- y.....)a

C x J J - 1 4S Ej Ec(yj.c.. - _j.c..)2
C x S J(S-1) 4EiEsE_(yjs_..-_jsc..) 2
Unemployment (E) I 4JSE_(y...e. - y.....)2

E x J J - 1 4S Ej EJy3..e.- _j.._.)2
E x S J(S-1) 4EiE. Ec(y.._.-_.._.) 2
Income (I) 1 4JS]_i(y....i- y.....)2
I x J J - 1 4S E3 E_(yj..._ - _j...i)2
I × S J(S- 1) 4EiEsE_(yjs..i-_js..i) 2
C × E 1 2JSE_E_(y.._.- _..ce.)2
C x E x J J- 1 2$EjEcE_(yj._e.- _j.c_.)_
C x E x S J(S-1) 2EiE, E_E,(yjs_,.-_js_.) 2
C x I 1 2JS E_ Ei(y..c.i - y.._.i)2

C × I x J J- 1 2SEj ]_I];(yj._._- _j.c.i)2
C x I x S J(S- 1) 2Iii E. E,E_(yjs_._- _js_.i)2
E × I 1 2JS E_ Ei(Y..._i - _..._i)2

E × I x J J- 1 2SEj E_ Ei(Yj.._i- _j.._i)2
E x I × S J(S - 1) 2E i E_ E_ Ei(yjs_.i - _js_.i)a
C × E × I 1 JSE_E_ Ei(y..c_i- _.._i)2
C × E × I × J J- 1 S Ej E_E_ Ei(yj._i- _j._i) 2

C × E x I × S J(S-1) Ey Es E_E_Ei(y3_c_i- y3s_i) 2
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Table 38: Expected mean squares from ANOVA for experiments with sam-
pling, stochastic simulation, calibration, unemployment, and income alloca-
tion uncertainty. The design is seed nested in jackknife, crossed with cali-
bration crossed with unemployment crossed with income allocation method.

ANOVA table

Source E(MS)
Jackknife (J) sa 1)o._ + Sa_)_(a-l? ((J -
Seed (S) sa _2_(--Y_-l)%

Calibration (C) ,_(a_al)ss¢'sc(-2+ S(J- 1)al,, + nS(J - 1)a_)
C x Z n(J-l? (( J -- 1)O.L+ $a_c)
C x S 82 _2

Unemployment(E) _(y:ffto._,,sa, 2 + S(J- 1)a_ + nS(J- 1)o._2)
E x J sa Sa_e)_(_((J - 1)o._2,+
E x S sa _2.(---J_-l)%,
Income (I) sa 2 2n(J__l)(o.si Jr S(a-- 1)o.hi q- nS(J- 1)o.?)

IxJ sa 2 2,_(a-l? ((J - 1)a,i + So.hi)
I x S sa _2_(-7'2_-1)%i

sa , 2 S(J- 1)4,, +nS(J 1)o._,)C X E n(f__l)[o.sc , q- --

CxExJ sa 2 2 (j_lV((a- 1)o.,c,+
8J _2

C x E x S _(--y__l)o,_,
C x I sa , 2 S(j 1)a_d nS(J 1)a_,),,(--7___l)_a _d + - + -
C x I x J sa 2 Sa2d,_(-TrYV-l?((J - 1)a._i + )
C x I x S 8a _2,_(a_1-----5%d

sa , 2 S(j 1)o._, nS(J 1)o.2i)E x I n(_l) [o.sei q- -- nt- --

"J- 1)o.L+E x I x J n(J_l)2k\
E x I x S sa _2

n (J_ l-------_O sei
CxExI sJ 2 2,(y--l) (o._i + S(J- 1)o.h_,i+ nS(J- 1)o._d)
CxExlxJ sa 2 2.(_i((J - 1)o.._.i + So'&d )
C x E x I x S sa _2

n( J_ l-------_O scei
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Table 39: Variance components estimators for experiments with sampling,
stochastic simulation, calibration, unemployment and income allocation un-
certainty. The design is seed nested in jackknife, crossed with calibration
crossed with unemployment crossed with income allocation method.
Variance

Component Estimate

rr__ -- '_(J-_)_sas{MS(J)- MS(S)}
^ 2 __ n(J-1) MS(S)(Ts -- 8.1

__ ri(J-l? {MS(C x J)- MS(C x S)}a_ - aJs
', _(?MS(Cx s)O'sc ----

A _ ri(J-l? _Mqtp. J) MS(E x S)}O'_e -- 8dS t .... ,_ X --

A2 n(Jj1)MS(E X S)O'se

n(J-l? {ms(I x J)- ms(I x S))a_i = 8as
.3 - _?IMS(t × S)q si

a_ceA _- ,(a-1)_sjs{MS(C x E x J)-MS(C x E x S)}
'_ '?)MS(CxExs)O'sc e ----

a'_c_ _ ri(a-l? {MS(C x I x J)- MS(C x I x S)}-- 8dS

^2 -- n(zj1)MS(C x I x S)O'sc i

^ n(a-l? J'M_tF,cr_ei = sas L.... ,_x Ix J)-MS(Ex I x S)}
_2 -- '(Jj1)M$(E X t x S)O'se i

^ 2 ri(J-l? _fM,q(('_ahc_i = sJs _..._ x E x I x J)-MS(C x E x I x S)}
-3 - _(sa_OMS(C x E x I x S)Orscei -- .
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A.3 Tables of results from individual experiments

A.3.1 Experiments using fewer than 10 MATH-CPS model mod-
ules

Table 40: Results from running just the FSTAMP reform part of the MATH-
CPS model incorporating sampling and stochastic variability, using a jack-
knife of 20 random groups and 4 _eeds nested under reform 1.
[ fullrun singlerun

/_ 9.827

n 0.805

0.233
SE(/_ I/_ ) .805 .838
95% interval (8.217, 11.438) (8.152, 11.503)
% var due to:

sampling 99.889 92.237
seed 0.111 7.763

Table 41: Results from running the FSTAMP baselaw and reform parts of the
MATH-CPS model incorporating sampling and stochastic variability, using
a jackknife of 20 random groups and 4 seeds nested under reform 1.
I fullrun singlerun

j_ 9.738

_n 0.699

0.218
SE(/3 [/_) .700 0.732
95% interval (8.339, 11.137) (8.274, 11.203)
% var due to:

sampling 99.872 91.106
seed 0.128 8.894
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Table 42: Results from running 8 modules of the MATH-CPS model incor-
porating sampling and stochastic variability, using a jackknife of 20 random
groups and 4 seeds nested under reform 1.

full run single run

/_ 9.932

_/n 0.479

'_ 0.223
SE(/_ ]/?) .479 .528
95% interval (8.973, 10.891) (8.876, 10.988)
% var due to:

sampling 99.716 82.206
seed 0.284 17.794

Table 43: Results from running 9 modules of the MATH-CPS model incor-
porating sampling and stochastic variability, using a jackknife of 20 random
groups and 4 seeds nested under reform 1.

full run single run

9.234

_/n 0.0

_/o'_/n 0.714
SE(_ I/_) .082 0.714
95% interval (9.071, 9.398) (7.807, 10.662)
% var due to:

sampling 0.0 0.0
seed 100.0 100.0
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A.3.2 Experiments with sampling and stochastic uncertainty

Table 44: Results from running 10 modules of the MATH-CPS model, using
a jackknife of 20 random groups, 4 seeds nested, seed set A, and reform 1.

full run single run

/_ 9.215

Xf_-/n 0.0

0.709
SE(_ [/3) .081 .709
95% interval (9.053, 9.378) (7.800, 10.634)
% var due to:

sampling 0.0 0.0
seed 100.0 100.0

Table 45: Results from running 10 modules of the MATH-CPS model, using
a jackknife of 20 random groups, 4 seeds nested seed set B, under reform 1

full run single run

/_ 9.118

_/n 0.0

0.771
SE(_I_) .088 .771
95% interval (8.941, 9.295) (7.576, 10.661)
% var due to:

sampling 0.0 0.0
seed 100.0 100.0
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Table 46: Results from running 10 modules of the MATH-CPS model, using
a jackknife of 19 random groups, 4 seeds nested, seed set A, and reform 1.

full run single run

/_ 9.256

/n 0.0

y/_ 0.716
SE(/_ I/_) .084 .716
95% interval (9.087, 9.425) (7.824, 10.688)
% var due to:

sampling 0.0 0.0
seed 100.0 100.0

Table 47: Results from running 10 modules of the MATH-CPS model, using
a jackknife of 19 random groups, 4 seeds nested, seed set B, under reform 1.

full run singlerun

/_ 9.080

n 0.561

0.750
SE(_I_) .568 .936
95% interval (7.945, 10.215) (7.208, 10.953)
% var due to:

sampling 97.575 35.85
seed 2.425 64.15

Table 48: Results from running 10 modules of the MATH-CPS model, using
a jackknife of 20 random groups, 4 seeds crossed, seed set A, under reform 1.

I fullrun singlerun
using using using using
MS(seed) MS(JK*seed) MS(seed) MS(JK*seed)

/_ 9.609 9.609

_n 0.525 0.455

0.423 0.674
SE(/3 I/_ ) 0.527 0.461 .674 .813
95% interval (8.554, 10.664) (8.686, 10.532) (8.260, 10.957) (7.983, 11.235)
% var due to:

sampling 99.154 97.195 60.665 31.317
seed O.846 2.805 39.335 68.683
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Table 49: Results from running 10 modules of the MATH-CPS model, using

a jackknife of 20 random groups, 4 seeds crossed, seed set B, and reform 1.
fullrun singlerun

using using using using
MS(seed) MS(JK*seed) MS(seed) MS(JK*seed)

/3 8.876 8.876

n 0.0 0.288

1.026 0.713
SE(/3I/¢) 0.118 0.299 1.026 .769
95% interval (8.641, 9.112) (8.278, 9.475) (6.824, 10.929) (7.338, 10.415)
% var due to:

sampling 0 92.535 0 14.023
seed 100 7.465 100 85.977

Table 50: Results from running 10 modules of the MATH-CPS model, using

a jackknife of 8 rotation groups 10 seeds nested, seed set A, and reform 1.
full run single run

/3 9.273

n 0.0

0.715
SE(/_ I/3) .085 .715
95% interval (9.102, 9.444) (7.842, 10.703)
% var due to:

sampling 0.0 0.0
seed 100.0 100.0

Table 51: Results from running 10 modules of the MATH-CPS model, using

a jackknife of 8 rotation groups 10 seeds nested, seed set B, and reform 1.
full run single run

/3 9.131

n 0.249

0.734
SE(/3 I/_ ) .264 .775
95% interval (8.603, 9.658) (7.580, 10.681)
% var due to:

sampling 88.935 10.3
seed 11.065 89.7
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Table 52: Results from running 10 modules of the MATH-CPS model, using
a jackknife of 8 rotation groups, 10 seeds crossed, seed set A, and reform 1.

ful run singlerun

using using using using
MS(seed) MS(JK*seed) MS(seed) MS(JK*seed)

/_ 9.507 9.507

_[n 0.167 0.164

0.646 0.655
SE(/3 I/_) 0.184 0.181 .667 .675
95% interval (9.139, 9.875) (9.144, 9.870) (8.173, 10.841) (8.157, 10.857)
% var due to:

sampling 82.415 81.366 6.275 5.871
seed 17.585 18.634 93.725 94.129

Table 53: Results from running 10 modules of the MATH-CPS model, using
a jackknife of 8 rotation groups, 10 seeds crossed, seed set B, and reform 1

I fullrun singlerun
using using using using
MS(seed) MS(JK*seed) MS(seed) MS(JK*seed)

/3 8.942 8.942

_/n 0.118 0.165

_/_ 0.841 0.758
SE(/ 0.155 0.188 0.849 0.776
95% interval (8.631, 9.253) (8.565, 9.319) (7.244, 10.640) (7.391, 10.493)
% var due to:

sampling 58.15 76.902 1.946 4.54
seed 41.85 23.098 98.054 95.46
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A.3.3 Experiments with sampling, stochastic and calibration un-
certainty

Table 54: MATH-CPS model results, calibrating AFDC totals based on
weighting factors from the MPR seed, separating households into 2 groups. A
jackknife of 10 random groups was used with 4 seeds nested. The experiment
uses seed set A, and is run under reform 1.

[ full run single run

/_ 8.954 (.349) 8.954 (.684)

_c -0.329 (.020) -0.329 (.119)

_/a_/n 0.334

0.596
SE03 + c/ftc I/3, j3c) .480 .768
95% interval (7.994, 9.915) (7.418, 10.490)
% var due to:
sampling 48.482 18.954
seed 4.281 60.253
calib 47.067 18.400

calibx sample 0.0 0.0
calib x seed 0.170 2.393
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Table 55: MATH-CPS model results, calibrating AFDC totals based weight-
ing factors from the MPR seed, separating households into 3 groups. A jack-
knife of 10 random groups was used with 4 seeds nested. The experiment
uses seed set A, and is run under reform 1.

I fullrun singlerun

/_ 8.816 (.105) 8.816 (.632)

/_c -0.488 (0.052) °0.488 (.066)

o.o
0.632

SE(fi + cftc [ fi, ftc) 0.502 0.801
95% interval (7.812, 9.821) (7.214, 10.419)
% var due to:

sampling 0.00 0.00
seed 4.401 62.208
calib 94.507 37.106

calib x sample 1.074 0.421
calib x seed 0.019 0.265

Table 56: MATH-CPS model results, calibrating AFDC totals on each run,
separating households into 3 groups. A jackknife of 10 random groups was
used with 4 seeds nested. The experiment uses seed set A, and is run under
reform 1.

full run singlerun

/3 8.475 (.101) 8.475 (.606)
/_c -0.829 (.105) -0.829 (.127)

o.o
0.606

SE(fi + cftc I/_,/_¢) 0.842 1.035
95% interval (6.791, 10.159) (6.405, 10.545)
% var due to:

sampling 0.00 0.00
seed 1.437 34.257
calib 97.014 64.242

calib x sample 1.528 1.012
calib x seed 0.021 0.489
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Table 57: MATH-CPS model results, calibrating AFDC totals based on me-
dian weighting factors, separating households into 3 groups. A jackknife of
10 random groups was used with 4 seeds nested. The experiment uses seed
set A, and is run under reform 1.

full run single run

/_ 8.466 (.103) 8.466 (.615)

/_c -0.839 (.066) -0.839 (.087)

00
'_'-_ 0.615

SE(_ + c_c [/_,/_c) 0.848 1.044
95% interval (6.771, 10.161) (6.378, 10.553)
% var due to:

sampling 0.00 0.00
seed 1.463 34.728
calib 97.933 64.579

calib × sample 0.592 0.390
calib x seed 0.013 0.303

Table 58: MATH-CPS model results, calibrating AFDC totals on each run,
separating households into 3 groups. A jackknife of 8 rotation groups was
used with 4 seeds nested. The experiment uses seed set A, and is run under
reform 1.
I fullrun singlerun

/_ 8.420 (.292) 8.420 (.646)

/_c -.900 (. 113) -.900 (. 133)

0.270
0.587

SE(/3 + cftc I/?,/_c) 0.953 1.116
95% interval (6.514, 10.327) (6.188, 10.652)
% var due to:

sampling 8.018 5.850
seed 1.353 27.634
calib 89.220 65.090

calib x sample 1.389 1.013
calib x seed 0.020 0.413
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A.3.4 Experiments with five sources of uncertainty

Table 59: MATH-CPS model results under reform 1 using 5 sources of un-
certainty, and seed set A. A jackknife of 8 rotation groups was used with 2
seed nested.

full run single run

/_ 8.468 (.689) 8.468 (.858)

ftc -.821 (.101) -.821 (.106)

/_e -.081 (.357) -.081 (.366)
/_l .037 (.126) .037 (.140)

/_cz .017 (.006) .017 (.024)

-.oo3(.005) -.oo3(.OLO)
/_E, .004 (.032) .004 (.042)

/_cz, .000 (.007) .000 (.008)

.674

.530
SE(true mean I estimates) 1.145 1.259
95% interval (6.177, 10.758) (5.949, 10.986)
% var due to:

sampling (J) 34.638 28.660
seed (S) 1.529 17.717
calib (C) 51.431 42.555
C x J 0.763 0.632
C x S 0.007 0.076

unemployment (E) 0.497 0.411
E x J 9.671 8.002
E x S 0.038 0.442

Income (I) 0.103 0.085
I x J 1.191 0.985
I x S 0.022 0.257
C × E 0.022 0.018
C x E x J 0.000 0.000
C x E x S 0.003 0.035
C x I 0.001 0.001
C x I x J 0.001 0.001
C x I x S 0.000 0.005
E x I 0.001 0.001
E x I x J 0.071 0.059
lv,x I x S 0.005 0.055
C x E x I 0.000 0.000
C x E x I x J 0.004 0.003
C x E x I x S 0.000 0.000
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Table 60: MATH-CPS model results under reform 1 using 5 sources of un-
certainty, and seed set B. A jackknife of 8 rotation groups was used with 2
seed nested.

full run singlerun I

/_ 8.203 (.210) 8.203 (.787)

/_c -.796 (.028) -.796 (.104)

_E -.095 (.028) -.095 (.104)

/_I .035 (.019) .035 (.070)
_CE .023 (.011) .023 (.016)

_ct -.001 (.003) -.001 (.010)
.008(.005) .008(.020)

/_cE, -.001 (.002) -.001 (.002)

o.o
-_ 0.787

SE(true mean I estimates) 0.832 1.136
95% interval (6.540, 9.867) (5.931, 10.476)
% var due to:

sampling(J) 0.000 0.000
seed (S) 6.392 47.920
calib(C) 91.732 49.120
C x J 0.000 0.000
C x S 0.112 0.842

unemployment(E) 1.319 0.706
E x J 0.000 0.000
E x S 0.112 0.842

Income(I) 0.173 0.093
I x J 0.000 0.000
I x S 0.050 0.374
C x E 0.077 0.041
C x E x J 0.016 0.009
C x E x S 0.001 0.010
C × I 0.000 0.000
C x I x J 0.000 0.000
C x I x S 0.001 0.008
E x I 0.009 0.005
E x I x J 0.000 0.000
E x I x S 0.004 0.031
C x E x I 0.000 0.000
C x E x I x J 0.000 0.000
C x E x I x S 0.000 0.000
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Table 61: MATH-CPS model results under reform 2 using 5 sources of un-
certainty, and seed set A. A jackknife of 8 rotation groups was used with 2
seed nested.

full run single run

/_ 10.435 (.093) 10.435 (.349)

-.502(.053) -.502
.803(.024) .803(.090)

/_, -.425 (.107) -.425 (.129)
/3cz_ -.026 (.004) -.026 (.014)

/_cI .027 (.007) .027 (.010)
/_E, -.033 (.044) -.033 (.048)

/_CEl .003 (.000) .003 (.000)

o.o
0.349

SE(true mean [ estimates) 1.051 1.110
95% interval (8.333, 12.537) (8.215, 12.655)
% var due to:

sampling(J) 0.000 0.000
seed(S) 0.789 9.898
calib (C) 22.766 20.409
C x J 0.249 0.223
Cx S .006 0.077

unemployment (E) 58.354 52.313
E x J 0.000 0.000
E x S 0.052 0.657

Income(I) 16.337 14.646
Ix J 1.004 0.900
I x S 0.036 0.458
C x E 0.062 0.055
C x E x J 0.000 0.000
C x E x S 0.001 0.015
C x I 0.065 0.058
C x I x J 0.004 0.004
C x I x S 0.000 0.005
E x I 0.099 0.088
E x I x J 0.171 0.153
E x I x S 0.003 0.036
C x E x I 0.001 0.001
C x E x I x J 0.000 0.000
C x E x I x S 0.000 0.002
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Table 62: MATH-CPS model results under reform 3 using 5 sources of un-
certainty, and seed set A. A jackknife of 8 rotation groups was used with 2
seed ne_ted.

full run single run

2.838(.055) 2.838(.131)

/_c .086 (.008) .086 (.031)

/_E -.049 (.078) -.049 (.079)

/_I -.040 (.008) -.040 (.031)
/_cr -.008 (.012) -.008 (.014)

/_c, .003 (.009) .003 (.009)

,002(.002)-.002(.007)
.ooo(.ooo) .ooo(.OOl)

_/a_/n 0.044

0.124
SE(true mean [ estimates) 0.145 0.193
95% interval (2.548, 3.128) (2.452, 3.224)
% var due to:

sampling(J) 9.133 5.152
seed(S) 5.192 41.005
calib (C) 35.247 19.883
C x J 0.000 0.000
C x S 0.324 2.558

unemployment (E) 11.614 6.551
E x J 28.994 16.356
E x S 0.065 0.515

Income (I) 7.683 4.334
I x J 0.000 0.000
I x S 0.324 2.557
C x E 0.272 0.153
C x E x J 0.710 0.401
C x E x S 0.020 0.156
C x I 0.037 0.021
C x I x J 0.344 0.194
C x I x S 0.003 0.024
E x I 0.023 0.013
E x I x J 0.000 0.000
E x I x S 0.015 0.122
C x E x I 0.000 0.000
C x E x I x J 0.000 0.000
C x E x I x S 0.001 0.005
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Table 63: MATH-CPS model results under reform 4 using 5 sources of un-
certainty, and seed set A. A jackknife of 8 rotation groups was used with 2
seed ne_ted,

full run single run

/_ 5.314 (.157) 5.314 (.587)
/_c -.355 (.081) -.355 (.085)

/_E -.047 (.227) -.047 (.233)

/_, -.019 (.124) -.019 (.137)

.007(.003) .007(.012)
Ecl .001 (.009) .001 (.010)
/_E, .002 (.021) .002 (.024)

/_ce, .000 (.003) .000 (.004)

o.o
0.587

SE(true mean I estimates ) 0.476 0.745
95% interval (4.361, 6.266) (3.824, 6.803)
% var due to:

sampling(J) 0.000 0.000
seed (S) 10.857 62.195
calib (C) 55.545 22.729
C x J 2.854 1.168
C x S 0.022 0.126

unemployment (E) 0.956 0.391
E x J 22.516 9.214
E x S 0.100 0.572

Income(I) 0.153 0.063
I x J 6.626 2.711
I x S 0.117 0.670
C x E 0.021 0.009
C x E x J 0.000 0.000
C x E x S 0.005 0.027
C x I 0.000 0.000
C x I x J 0.034 0.014
C x I x S 0.001 0.003
E x I 0.001 0.000
E x I x J 0.182 0.075
E x I x S 0.005 0.031
C x E x I 0.000 0.000
C x E x I x J 0.005 0.002
C x E x I x S 0.000 0.000
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Table 64: MATH-CPS model results under reform 5 using 5 sources of un-
certainty, and seed set A. A jackknife of 8 rotation groups was used with 2
seed nested.

I full run singlerun

/_ 26.056 (1.783) 26.056 (1.893)
/_c -1.705 (0.218) -1.705 (.223)

/_E -.123 (.532) -.123 (.556)

gl .018(.245) .018(.256)

/_CE .016 (.009) .016 (.032)

_c, .001 (.011) .001 (.017)

/_EI .002 (.011) .002 (.042)

_CEI .001 (.007) .001 (.008)

_/a_/n 1.774

aV/_,2/n 0.659
SE(true mean [ estimates) 2.548 2.633
95% interval (20.960, 31.153) (20.790, 31.322)
% var due to:

sampling(J) 48.481 45.403
seed(S) 0.477 6.259
calib(C) 44.777 41.935
C x J 0.727 0.681
C x S 0.003 0.036

unemployment(E) 0.233 0.218
E x J 4.335 4.060
E x S 0.031 0.407

Income(I) 0.005 0.005
I x J 0.915 0.857
I x S 0.007 0.090
C x E 0.004 0.004
C x E x J 0.000 0.000
C x E x S 0.001 0.015
C x I 0.000 0.000
C x I x J 0.002 0.001
C x I x S 0.000 0.002
E x I 0.000 0.000
E x I x J 0.000 0.000
E x I x S 0.002 0.026
C x E x I 0.000 0.000
C x E x I x J 0.001 0.001
C x E x I x S 0.000 0.000
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Table 65: MATH-CPS model results under reform 6 using 5 sources of un-
certainty, and seed set A. A jackknife of 8 rotation groups was used with 2
seed nested.

full run single run

/3 3.081 (.062) 3.081 (.232)

.070(.006) 0.070(.023)
/_r .279 (.018) 0.279 (.069)
/_/ -.039 (.016) -.039 (.059)

/_CE .007 (.003) .007 (.011)

/_c, -.004 (.015) -.004 (.016)

/_EI .001 (.025) .001 (.029)

.ooo(.ooo) .ooo(.003)
o.o
0.232

SE(true mean]estimates) 0.300 0.385
95% interval (2.482, 3.680) (2.311,3.851)
% var due to:

sampling(J) 0.000 0.000
seed(S) 4.265 36.204
calib(C) 5.492 3.330
C x J 0.000 0.000
C x S 0.041 0.347

unemployment (E) 86.843 52.653
E x J 0.000 0.000
E x S 0.378 3.211

Income (I) 1.696 1.028
I x J 0.000 0.000
I x S 0.279 2.365
C x E 0.055 0.033
C x E x J 0.000 0.000
C x E x S 0.009 0.075
C x I 0.016 0.010
C x I x J 0.243 0.147
C x I x S 0.003 0.021
E x I 0.002 0.001
E x I x J 0.657 0.399
E x I x S 0.019 0.160
C x E x I 0.000 0.000
C x E x I x J 0.000 0.000
C x E x I x S 0.002 0.014
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Table 66: MATH-CPS model results under reform 7 using 5 sources of un-
certainty, and seed set A. A jackknife of 8 rotation groups was used with 2
_¢ed_ nested.

full run single run

/_ .308 (.080) .308 (.299)

/_c -.028 (.039) -.028 (.048)

/3E -.022 (.021) -.022 (.080)

/_, -.002 (.057) -.002 (.067)
/3CE .002 (.005) .002 (.017)

.ooo(.oo3) .ooo(.004)
/_E, .004 (.004) .004 (.014)
/_CEI .000 (.000) .000 (.001)

o.o
_nn 0.299

SE(true mean I estimates) 0.114 0.323
95% interval (0.081, 0.535) (-0.338,0.954)
% var due to:

sampling (J) 0.000 0.000
seed (S) 49.626 85.709
calib (C) 6.076 0.750
C × J 11.102 1.370
C x S 0.477 0.823

unemployment (E) 3.848 0.475
E x J 0.000 0.000
E × S 3.533 6.101

Income(I) 0.031 0.004
I x J 24.080 2.971
I × S 0.752 1.298
C × E 0.033 0.004
C × E × J 0.000 0.000
C × E × S 0.166 0.286
C × I 0.000 0.000
C × I × J 0.058 0.007
C × I × S 0.006 0.010
E × I 0.109 0.013
E × I × J 0.000 0.000
E x I × S 0.103 0.178
C × E × I 0.001 0.000
C × E x I × J 0.000 0.000
C x E x I x S 0.001 0.002
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Table 67: MATH-CPS model results under reform 8 using 5 sources of un-
certainty, and seed set A. A jackknife of 8 rotation groups was used with 2
seeds nested.

full run single run

.215 (.130) .215 (.137)
/_¢ .077 (.002) .077 (.009)

-.058(.023) -.058(.026)
Et .010 (.005) .010 (.017)

.002(.002) .002(.003)
_c, -.001 (.004) -.001 (.004)

/_'Et .000 (.009) .000 (.009)

_CEt .000 (.001) .000 (.001)

_/o'_/n 0.130

_/o'2/n 0.045
SE(true mean [ estimates) 0.165 0.172
95% interval (-0.115, 0.544) (-0.129, 0.558)
% var due to:

sampling (J) 62.003 57.016
seed (S) 0.537 6.910
calib(C) 22.059 20.284
C x J 0.000 0.000
C x S 0.023 0.291

unemployment (E) 12.493 11.488
E x J 2.001 1.840
E x S 0.033 0.421

Income (I) 0.382 0.351
I x J 0.000 0.000
I x S 0.078 0.999
C x E 0.015 0.014
C x E x J 0.010 0.009
C × E x S 0.002 0.020
C x I 0.002 0.002
C x I x J 0.055 0.050
C x I x S 0.000 0.003
E x I 0.000 0.000
E x I x J 0.302 0.278
E x I x S 0.001 0.015
C x E x I 0.000 0.000
C x E x I x J 0.006 0.005
C × E x I x S 0.000 0.002
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Table 68: MATH-CPS model results under reform 9 using 5 sources of un-
certainty, and seed set A. A jackknife of 8 rotation groups was used with 2
seeds nested.

full run single run

/_ .302 (.163) .302 (.168)
/_c .056 (.012) .056 (.045)

/)E .000 (.010) .000 (.038)

/J, -.003 (.005) -.003 (.019)
/_CE .002 (.004) .002 (.015)

/_c, -.003 (.013) -.003 (.014)

/3e, -.001 (.009) -.001 (.010)

/_cz_ -.001 (.004) -.001 (.005)

_/_/n 0.163

0.040
SE(true mean I estimates) 0.174 0.189
95% interval (-.047, 0.651) (-0.076, 0.680)
% var due to:

sampling (J) 87.303 74.448
seed (S) 0.379 4.519
calib(C) 10.480 8.937
C x J 0.000 0.000
C x S 0.465 5.555

unemployment(E) 0.000 0.000
E x J 0.000 0.000
E x S 0.337 4.023

Income(I) 0.034 0.029
I x J 0.000 0.000
I x S 0.082 0.974
C x E 0.012 0.010
C x E x J 0.000 0.000
C x E x S 0.052 0.616
C x I 0.029 0.024
C x I x J 0.517 0.441
C x I x S 0.006 0.073
E x I 0.001 0.001
E x I x J 0.245 0.209
E x I x S 0.007 0.081
C x E x I 0.002 0.002
C x E x I x J 0.050 0.042
C x E x I x S 0.001 0.016
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Table 69: MATH-CPS model results under reform 10 using 5 sources of
uncertainty, and seed set A. A jackknife of 8 rotation groups was used with
2 seeds nested.

full run singlerun

/3 .166 (.187) .166 (.241)

/3c -.057 (.026) -.057 (.030)

/_z -.154 (.046) -.154 (.058)

/_I -.030 (.071) -.030 (.090)
_CE .004 (.006) .004 (.007)

/_¢, .006 (.002) .006 (.007)

/3E_ .009 (.014) .009 (.020)

/_¢z, .001 (.003) .001 (.004)

X__rr_/n 0.182

0.159
SE(true mean I estimates) 0.266 0.315
95% interval (-0.367, 0.699) (-0.464, 0.796)
% var due to:

sampling (J) 46.520 33.273
seed (S) 2.538 25.415
calib(C) 4.645 3.322
C x J 0.918 0.656
C x S 0.023 0.231

unemployment (E) 33.500 23.961
E x J 2.821 2.018
E x S 0.142 1.422

Income (I) 1.273 0.911
I x J 6.772 4.843
I x S 0.331 3.319
C x E 0.025 0.018
C x E x J 0.049 0.035
C x E x S 0.001 0.014
C x I 0.044 0.031
C x I x J 0.000 0.000
C x I x S 0.004 0.044
E x I 0.111 0.079
E x I x J 0.244 0.174
E x I x S 0.021 0.215
C x E x I 0.000 0.000
C x E x I x J 0.014 0.010
C x E x I x S 0.001 0.006
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Table 70: MATH-CPS model results under reform 11 using 5 sources of
uncertainty, and seed set A. A jackknife of 8 rotation groups was used with
2 seeds nested.

full run singlerun

/? .291 (.113) .291 (.422)

ftc -.047 (.083) -.047 (.088)

/_E -.076 (.326) -.076 (.331)
/_, .004 (.093) .004 (.113)

/_¢E .005 (.016) .005 (.019)

/)¢, -.001 (.011) -.001 (.013)
get .004 (.006) .004 (.021)

.000(.003) .000(.003)
o.o

a_,2/n 0.422
SE(true mean I estimates ) 0.378 0.563
95% interval (-0.465, 1.048) (-0.835, 1.417)
% var due to:

sampling(J) 0.000 0.000
seed(S) 8.888 56.145
calib(C) 1.549 0.699
C x J 4.791 2.162
C x S 0.047 0.299

unemployment(E) 4.019 1.814
E x J 74.165 33.463
E x S 0.170 1.073

Income (I) 0.010 0.004
I x J 5.821 2.627
I x S 0.221 1.397
C x E 0.016 0.007
C x E x J 0.172 0.078
C x E x S 0.006 0.036
C x I 0.000 0.000
C x I x J 0.085 0.038
C x I x S 0.002 0.013
E x I 0.011 0.005
E x I x J 0.000 0.000
E x I x S 0.022 0.139
C x E x I 0.000 0.000
C x E x I x J 0.005 0.002
C x E x I x S 0.000 0.001
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A.4 Overview of relevant MATH-CPS modules

DEMAGE - demographically ages MATH-CPS file

DEMAGE adjusts family and person-level weights "using multiplicative fac-
tors'', so that population counts by age, race and sex agree with projected
counts. The user can specify whether or not weights are to be adjusted. Also
the user can specify the simulation year, and give a 16 x 8 array of popula-
tion projections (16 ages by 8 race/sex categories). The output is family and
person weights after aging.

ECONAGE - adjusts annual income variables for economic and
population growth

Each type of wage is "aged", according to the educational class of the indi-
viduM. Educational classes are less than HS, HS, more than HS. Also annual
poverty threshold is adjusted.

ALLOY - allocates income to month

For people who worked part of the year, ALLOY first calculates the number
of weeks worked. The start date for employment is assigned at random. The
period of employment is assigned to start at that time, and continue until
the number of weeks of employment is exhausted. Earnings are assigned
uniformly across the period of employment.

Weeks for unemployment and not in labor force are then assigned. A random
number determines whether unemployment or not in labor force follows em-
ployment (if the person was both unemployed and not in labor force during
parts of the year).

ASSETS - imputes financial and vehicular assets

Six regression equations are used for imputing family financial and vehicular
assets. The dependent variables modeled are: (1) family financial assets (the
X's include family earnings, whether or not the family owns their house, and
size, race, and education of the head, etc); (2) family car count (based on
many of the same variables and others); (3) value of first family car; (4)
ratio of equity to value for the first family car; (5) average value of remaining
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family cars; (6) average equity of remaining family cars. In each case a
random error is added to the equation.

The household's assets affect eligibility for public assistance. About 50%
of income-eligible FSP households have countable assets, averaging $12,000.
21% have vehicular assets averaging $4,000. Assets make 26% of the income-
eligible households asset-ineligible for food stamps. Also, 17% of AFDC
families have assets, with an average of $330 in total (financial plus vehicular)
assets.

Calibration is used for financial and vehicular assets. For financial assets,
25% of households with income less than 130% of poverty and no assets are
randomly selected to get $10 in asset income. The estimated amount of
assets is reduced by 20%. For vehicles, "negative adjustment factors" are
applied to the equation that estimates number of vehicles, and the value of
the first vehicle is reduced by 20% whereas the value of subsequent vehicles
is reduced by 10%.

CHILDEXP - imputes child care expenses to families

The first regression equation models whether or not the family has child care
expenses. The second equation models the expense, conditional on the family
having child care expenses.

The model for whether or not a family has child care expenses, models a
"no" if there are no children under 15, and "no" if the guardian is not
working. Otherwise, the family has a child care expense if -e _< X/3 +
additive calibration factors, where the X's include sex, race, marital status,
age category, and education of the guardian, number of people in the fam-
ily, average age of children by category, log of earned and income, whether
the household rents or not, number hours the guardian works per week, and
log(guardian's hourly earnings).

The expenses, for family with expenses, are equal to min((wks per month
[worked?] in previous year x exp xp+_,433) x multiplicative factors), ad-
justed to simulation year dollars. Here X's include guardian's presence, race,
age category, education category, log(unearned income), whether the house-
hold rents or not, hourly earnings for guardian and for spouse, and guardian's
hours worked per week.

Child care expenses affect eligibility for AFDC and FSP. About 5% of FSP
households have a child care expense deduction, with an average deduction
of $164.
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Both equations are calibrated..5 is added to the first equation. Estimated
expenses are calibrated to be 5% less.

UNIT7: Defines filing units for SSI, AFDC, and GA

This subroutine carries out rules to determine who is categorically eligible
for public assistance.

PBLAST: Simulates means eligibility for SSI, AFDC, and GA

Means eligibility, simulated through PBLAST, depends on monthly income,
computed through ALLOY. The user can affect this with parameters which
govern the definition of countable income and assets, eligibility limits, max-
imum and minimum payments, etc. At the users option, some units are
selected to be "new" to the AFDC program. The new units may be eli-
gible for $30 and 1/3 earnings deductions. These units are selected using
MTHRND.

PAPRAT: chooses units to participate in public assistance, from
among eligible units

Participation in public assistance (PA) is simulated in a hierarchical fash-
ion with the following precedence: AFDC-UP, AFDC-Basic, SSI-disabled,
SSI-aged, and GA. Thus for example if there is an eligible AFDC unit in
the household, then the AFDC participation probability is used, and if the
household is simulated to participate in AFDC then the eligible SSI and GA
units will also be simulated to participate.

Participation probabilities depend on region (usually CA, NY, TX, and
other states - different for general assistance), type of public assistance, and
whether or not the household reported receiving welfare in the last calendar
year. Any household which reports receiving welfare and in which the target
number of participants is less than the number of eligible units (for the par-
ticular PA program) is modeled to participate. Otherwise the household is
modeled to participate if U_ < a(region, PA type), where a [i.e. the partic-
ipation probability] is determined iteratively during database development,
and is modified during program development to meet control totals. Reforms
use the same probabilities, unless otherwise specified by the user.
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According the the output tables, all SSI reporters, all AFDC eligible house-

holds and all GA eligible households are selected to participate.

MEDEXP: imputes out-of-pocket medical expenses

This imputes the amount of out-of-pocket medical expenses for households

which have an elderly or disabled person, based on a tobit equation. The

amounts are adjusted to simulation year dollars, and additive and multi-

plicative factors are applied to calibrate the total to the predicted amount
for 1996.

The medical expense is min(max(0, exp x_+_ -1), 1000), adjusted to simula-

tion year dollars, and then calibrated. The X's include log(1980 income), age,

education and race categories of the household reference person, number of

people in the household, whether or not the household gets PA, and others.

Medical expenses affect medical expense deductions, which affects net in-

come. This affects about 3% of FSP households, with an average medical

expense deduction of $96.

The medical expenses are calibrated by first multiplying by .5, and then

subtracting $50, for all households.

SHLTREXP: Imputes shelter expenses

This imputes shelter expenses (including for fuel and utilities) for households,
separately for homeowners, and for renters. The amounts are adjusted to

simulation year dollars. Then additive and multiplicative factors are used to

calibrate the [totals] to the 1996 predicted amount. Shelter expenses are not

used for people living in group quarters.

For owners, the shelter expense is rain(max(0, expXZ+_), 1212), and for

renters the shelter expense is min(max(0, expX_+_2), 1036). The X's include

log(monthly income), dummy variables for age, education, region, size of city,

and race, household size, and whether or not the household receives welfare.

Shelter expenses affect shelter deductions, which affects net income. Among

FSP households, 63% have excess shelter expense deductions, averaging $162.

The equations are calibrated by first multiplying shelter expenses by 1.2.

Then $100 is subtracted from shelter expenses for rented households with

income less than 50% of poverty, and $50 is subtracted from shelter expenses
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for rented households with income between 50 and 100% of poverty.

FSTAMP: simulates participation in the food stamp program

Any FSU in which all members are on PA are automatically eligible for
food stamps. Otherwise, if the FSU passes the net and gross income tests
and the asset test, and the computed FS benefit is positive, the FSU is
eligible. Participation is simulated based on unit size, receipt of PA, presence
of elderly, reporter status, and gross monthly income relative to poverty. At
the user's option, the probability can also depend on whether or not the unit
reports receiving food stamps. Separate probabilities are estimated for units
receiving AFDC.

The sequence for coming up with the participation probabilities for house-
holds which do not receive AFDC is: (1) In a 4-way matrix indexed by
income relative to poverty (4 classes), unit size (1,2,3-5, >5), whether or not
SSI or GA is received, and presence or absence of elderly, the probabilities
are the number of participants (based on summer 1991 IQCS control totals)
divided by the number of eligibles (from the MATH-CPS model simulation).
(2) Counts in cells in which the number of participants is greater than the
number of eligibles are reallocated to other cells (results are fairly different
from (1)). (3) The participation matrix is expanded to include the benefit
amount / poverty, and at the user's option to include reporter status.

These probabilities are 1 for everyone for whom the poverty ratio (the ratio of
income to poverty) is between 0 and .50, and for many units without elderly
at all levels of the poverty ratio. The probabilities are 0 for many units with
elderly and for whom the poverty ratio is greater than 1.

These probabilities, for baselaw participation, may be (and in our program,
are) further adjusted (in PPART) by multiplying them by has_earn_factor,
where has_earn_factor = .50 if the unit has earners and receives SSI, has_earn_factor
= .75 if the unit has earners and does not receive SSI, has_earn_factor = .95
if the unit has no earners and receives SSI, and has_earn_factor = 2.00 if the
unit has no earners and does not receive SSI.

For households which receive AFDC, the participation probability equals a
user defined participation rate x number participants (in FSP?) + number
eligible for AFDC, where the number of eligibles is from the number of AFDC
eligibles counted in the MATH-CPS model. For the baselaw, the [default]
user defined participation rate is .3960, and total number of participants is
10,864,000. [I think this means 39.6% of the 10,864,000 FS participants are
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on AFDC]. According to their tables, all households which participate in
AFDC also participate in the FSP.

The participation probabilities for the reform depend on eligibility in the
reform, and eligibility and participation in the baselaw. There are 5 cases:
(1) The unit was eligible in the baselaw but didn't participate, and unit would
receive a larger benefit under the reform than the baselaw. In this case the
probability of participation, mu, is determined by the refalgo subroutine.
(2) The unit didn't participate in the baselaw and receives a smaller or the
same benefit under the reform. In this case, force the unit not to participate.
(3) The unit participated in the baselaw and would receive the same or
larger benefit in the reform. Force the unit to participate. (4) The unit
participated in the baselaw and would receive a smaller benefit in the reform.
The participation probability is 1 - mu, where mu is determined from refalgo.
(5) The unit is not eligible in the baselaw. In this case, use the baselaw
method to calculate the participation probability.

For (1) and (4) above, mu is calculated from the refalgo subroutine. Mu
equals mills xfl0x I(benefit in reform- benefit in baselaw)[ + benefit in

pa/(x_) Otherwisebaselaw. If the unit is better off in the reform, mills = 1-cdf(x_)'

(unit does the same or worse in reform), mills = cdf(x_)'

Here X's are dummy variables for household size, ratio of household income to
poverty level, age, race and education of reference person, number of children,
whether the household receives PA, whether the household has countable
assets, and whether the household has earnings.
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A.5 Comparison of methods for determining FSP par-
ticipation probabilities

Our algorithm for allocation excess participants in the 64-cell matrix used
for determining food stamp program participation rates, differs from the
current MPR method. Our algorithm is based on an algorithm originally
considered by MPR, coded in a program called fsprob96.f. The algorithm
used by fsprob96.f to reallocate participants was originally thought by MPR
to be sufficient, but was found not to be.

Since our method of reallocating participants is based on the fsprob96.f al-
gorithm, we first describe the iterative fsprob96.f algorithm. First the total
number of eligibles and the total number of extra participants are calculated.
Extra participants are the excess number of participants in cells for which
the number of participants is greater than the number of eligibles. The ratio
of the total number of extra participants to the total number of eligibles is
then added to the probability in any cell for which the probability is less
than 1, and the number of participants is adjusted accordingly. Probabilities
in cells in which the number of participants is greater than the number of
eligibles are adjusted to be 1.0, and the number of participants in these cells
are set to be the number of eligibles. The method is iterative, in that after
this adjustment is made to each cell, the loop continues to execute until no
cell has a probability greater than 1.

Our method is based on the ideas in fsprob96.f. However, we only reallocate
excess participants in a given cell to adjacent cells, where adjacent cells are
defined to be any cells which share 3 out of the 4 dimensions with the given
cell. Another difference is that we add excess participants to any adjacent
cell, regardless of whether or not the adjacent cell probability is greater than
one. This results in the same end probabilities regardless of the order in
which cells are processed.

Below we show the initial number of eligible households, initial numbers of
participants and initial probabilities. We also compare numerical results from
the MPR method and our method.
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ELIGIBLES (Source: MATH-CPS model)
Unit Size

I 2 3-5 6+

Poverty Ratio < .50

No PA, no elderly 517319. 207560. 377705. 69709.

No PA, w/ elderly 308037. 124590. 15988. 4450.

w/ PA, no elderly 196143. 30501. 85656. 11987.

w/ PA, w/ elderly 9698. 4052. 7233. 5799.

.50 < Poverty Ratio <= 1.00

No PA, no elderly 286646. 255300. 837588. 135271.

No PA, w/ elderly 1738114. 426908. 70600. 14005.

w/ PA, no elderly 669299. 225383. 70134. 8185.

w/ PA, w/ elderly 914773. 224997. 32453. 12666.

1.00 < Poverty Ratio <= 1.30

No PA, no elderly 283822. 278688. 584647. 83000.

No PA, w/ elderly 1005777. 387444. 53009. 5685.

w/ PA, no elderly 27281. 78239. 101048. 6800.

w/ PA, w/ elderly 12682. 127052. 29805. O.

Poverty Ratio > 1.30

No PA, no elderly 11329. 17107. 5109, 1136.

No PA, w/ elderly 196286. 129504. 10043. 1271.

w/ PA, no elderly 7994. 39640. 16084. O.

w/ PA, w/ elderly 3235. 56357. 2568. O.
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NUMBER OF PARTICIPANTS (Source: summer 1992 IQCS)

794195. 293312. 384491. 53917.

44438. 19703. 5639. O.

285308. 37?48. 56890. 3657.

23838. 8006. 13585. 1154.

299528. 275845. 739920. 67765.
266888. 56813. 18200. 1679.

712636, 9533?. 57082. 14485.
682203, 108651, 20797, 1136,

82182. 111998. 216912, 26297.

121539, 35836. 9120. O.

22224. 11138. 14123. 1805.

19598, 17463, 6780. O.

7750. 4098. 1579. 348.

17378. 2636. O. O.

3876. 1564. O. O.

2405. 348. O. O.

Initial probabilities

1.5352 1.4131 1.0180 0.7735

0.1443 0.1581 0.3527 0.0000

1.4546 1.2376 0.6642 0.3051

2.4580 1.9758 1.8782 0.1990

1.0449 1.0805 0.8834 0.5010

0.1536 0.1331 0.2578 0.1199

1.0647 0.4230 0.8139 1.7697

0.7458 0.4829 0.6408 0.0897

0.2896 0.4019 0.3710 0.3168

0.1208 0.0925 0.1720 0.0000

0.8146 0.1424 0.1398 0.2654

1.5453 0.1374 0.2275 0.0000

0.6841 0.2396 0.3091 0.3063

0.0885 0.0204 0.0000 0.0000

0.4849 0.0395 0.0000 0.0000

0.7434 0.0062 0.0000 0.0000
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Probabilities from MPR algorithm

1.0000 1.0000 1.0000 1.0000

1.0000 1.0000 1.0000 1.0000

1.0000 1.0000 1.0000 1.0000

1.0000 1.0000 1.0000 1.0000

0.9855 0.9950 0.9069 0.4270

0.1651 0.0524 0.1161 0.1199

0.9971 1.0000 0.8244 1.0000

0.7520 0.2607 0.1786 0.0897

0.9868 0.2402 0.3796 0.3504

0.0314 0.0000 0.0000 0.0000

0.9613 0.6408 0.4762 0.9509

0.2115 0.0000 0.0000 0.0000

1.0000 0,2396 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000

1.0000 0.8972 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000

Probabilities after using Sally Thurston_s algorithm

1.0000 1.0000 1.0000 1.0000

0.4062 0.2613 0.4484 0.0094

1.0000 1.0000 0.8941 0.4549

1.0000 1.0000 1.0000 0.2518

1.0000 1.0000 0.9914 0.5637

0.1793 0.1545 0.2578 0.1199

1.0000 0.5498 0.9029 1.0000

0.8427 0.4901 0.6757 0.0959

0.5668 0.5192 0.4319 0.3263

0.1242 0.0925 0.1720 0.0000

1.0000 0.1592 0.1401 0.2720

1.0000 0.1480 0.2657 0.0000

0.9610 0.3569 0.3699 0.3158

0.0885 0.0204 0.0000 0.0000

0.6858 0.0559 0.0000 0.0000

0.7576 0.0133 0.0348 0.0000
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