Item ID Number: 00101

Author Simmon, Vincent F.

Corporate Author Stanford Research Institute, Menlo Park, California

Report/Article Title Evaluation of Selected Pesticides as Chemical Mutagens 'In Vitro' and 'In Vivo'

Studies

Journal/Book Title

Y6ar 1977

Month/Day May

Color (V)

Number of Images 252

Descripton Notes Contract No. 68-01-2458; EPA-600/1-77-028

Evaluation of sclected pesticides as chemical mutagens 'In vito' and 'In vivo' studies

S. DEPARTMENT OF COMMERCE

National Technical Information Service

PB-268 647

Evaluation of Selected Pesticides as Chemical Mutagens 'In vitro' and 'In vivo' Studies

Stanford Research Institute, Menlo Park, Calif

Simmon, V.F

Prepared for

Health Effects Research Lab, Research Triangle Park, N C

May 77

AEROMEDICAL LIBRARY

APR 21 1980

DOCUMENTS

, process of the proc	AL, REPORT (). on the reverse before completing)
PA-600/1-77-028	J. RECIPIENT'S ACCESSION NO.
4. TITLE AND SUBTITLE EVALUATION OF SELECTED PESTICIDES AS CHE	M 1077
In Vitro and In Vivo Studies	6. PERFORMING ORGANIZATION CODE
7 AUTHOR(S)	B. PERFORMING ORGANIZATION REPORT NO.
Vincent F. Simmon, Ann D. Mitchell and J	Ted A. Jorgenson LSU-3493
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT NO.
Stanford Research Institute	1EA615
Menlo Park, California 94025	11. CONTRACT/GHANT NO.
	68-01-2458
12. SPONSOFING AGENCY NAME AND ADDRESS Health Effects Research Laboratory - RTI	13. TYPE OF REPORT AND PERIOD COVERED
Office of Research and Development	14. SPONSORING AGENCY CODE
U.S. Environmental Protection Agency Research Triangle Park, N.C. 27711	600/11
16. SUPPLEMENTARY NOTES	

16. ABSTRACT

Twenty pesticides being reviewed as part of the EPA Substitute Chemical Program were studied for mutagenic activity by several in vitro and in vivo test procedures. The pesticides reviewed were: monocrotophos, bromacil, cacodylic acid, captan, chlorpyrifos, dinoseb, DSMA, fenthion, folpet, azinphos-methyl, malathion, methomyl, monuron, MSMA, parathion, parathion-methyl, quintozene (PCNB), phorate, simazine, and trifluralin.

Ten of the twenty compounds were evaluated in vivo by the mouse dominant lethal test. All twenty compounds were tested in vitro. None of the ten compounds tested in the mouse produced a dominant lethal response. Ten of the twenty compounds were mutagenic in one or more in vitro assays. Two were mutagenic in all of the in vitro assays: captan and folpet.

7. KEY WORDS AND DOCUMENT ANALYSIS						
n. DESCRIPTORS	b. IDENTIFIERS/OPEN ENDED TERMS	c. COSATI Field/Group				
pesticides in vivo analysis in vitro analysis mutagens		06 F 06 T				
19. DISTRIBUTION STATEMENT	19. SECURITY CLASS (This Report)	21. NO.				
RELEASE TO PUBLIC	UNCLASSIFIED 20. SECURITY CLASS (This page)	 22. PŘIČĚ				
	AEPRODUCED BY	A12 - 401				

NATIONAL TECHNICAL INFORMATION SERVICE U.S. DEPARTMENT OF COMMERCE SPRINGFIELD, VA. 22161

NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM THE BEST COPY FURNISHED US BY THE SPONSORING AGENCY. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE (LLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE.

RESEARCH REPORTING SERIES

Research reports of the Office of Research and Development, U.S. Environmental Protection Agency, have been grouped into nine series. These nine broad categories were established to facilitate further development and application of environmental technology. Elimination of traditional grouping was consciously planned to foster technology transfer and a maximum interface in related fields. The nine series are:

- Environmental Health Effects Research.
- 2. Environmental Protection Technology
- 3. Ecological Research
- 4. Environmental Monitoring
- 5. Socioeconomic Environmental Studies
- 6. Scientific and Technical Assessment Reports (STAR)
- 7 Interagency Energy-Environment Research and Development
- 8. "Special" Reports
- 9. Miscellaneous Reports

This report has been assigned to the ENVIRONMENTAL HEALTH EFFECTS RE-SEARCH series. This series describes projects and studies relating to the tolerances of man for unhealthful substances or conditions. This work is generally assessed from a medical viewpoint, including physiological or psychological studies. In addition to toxicology and other medical specialities, study areas include biomedical instrumentation and health research techniques utilizing animals — but always with intended application to human health measures.

This document is available to the public through the National Technical Information Service, Springfield, Virginia 22161.

EVALUATION OF SELECTED PESTICIDES AS CHEMICAL MUTAGENS

In Vitro and In Vivo Studies

Ву

Vincent F. Simmon, Ann D. Mitchell, and Ted. A. Jorgenson Stanford Research Institute Menlo Park, California 94025

Contract No. 68-01-2458

Project Officer

Michael D. Waters Environmental Toxicology Division Health Effects Research Laboratory Research Triangle Park, N.C. 27711

U.S. ENVIRONMENTAL PROTECTION AGENCY OFFICE OF RESEARCH AND DEVELOPMENT HEALTH EFFECTS RESEARCH LABORATORY RESEARCH TRIANGLE PARK, N.C. 27711

DISCLAIMER

This report has been reviewed by the Health Effects Research Laboratory, U.S. Environmental Protection Agency, and approved for publication. Approval does not signify that the contents necessarily reflect the views and policies of the U.S. Environmental Protection Agency, nor does mention of trade names or commercial products constitute endorsement or recommendation for use.

FOREWORD

The many benefits of our modern, developing, industrial society are accompanied by certain hazards. Careful assessment of the relative risk of existing and new man-made environmental hazards is necessary for the establishment of sound regulatory policy. These regulations serve to enhance the quality of our environment in order to promote the public health and welfare and the productive capacity of our Nation's population.

The Health Effects Research Laboratory, Research Triangle Park, conducts a coordinated environmental health research program in toxicology, epidemiology, and clinical studies using human volunteer subjects. These studies address problems in air pollution, non-ionizing radiation, environmental carcinogenesis and the toxicology of pesticides as well as other chemical pollutants. The Laboratory develops and revises air quality criteria documents on pollutants for which national ambient air quality standards exist or are proposed, provides the data for registration of new pesticides or proposed suspension of those already in use, conducts research on hazardous and toxic materials, and is preparing the health basis for non-ionizing radiation standards. Direct support to the regulatory function of the Agency is provided in the form of expert testimony and preparation of affidavits as well as expert advice to the Administrator to assure the adequacy of health care and surveillance of persons having suffered imminent and substantial endangement of their health.

This report describes the testing of a series of twenty technical grade pesticide chemicals for genotoxic properties by use of a battery of in vitro and in vivo methods. The battery includes tests for gene and chromosomal mutations and primary damage to DNA as measured by effects on DNA repair recombination. Since DNA is chemically similar in all species, test results from a variety of cells and organisms are relevant in assessing the potential genetic hazard of pesticide chemicals in humans.

John H. Knelson, M.D. Director,

Health Effects Research Laboratory

ABSTRACT

Twenty pesticides being reviewed as a part of the EPA Substitute Chemical Program were studied for mutagenic activity by several in vivo and in vitro test procedures. Ten of the twenty compounds were evaluated in vivo by the mouse dominant lethal test. All twenty compounds were tested by the following in vitro procedures:

Unscheduled DNA synthesis (UDS) in human fibro-blasts (WI-38 cells); reverse mutation in Salmonella typhimurium strains TA1535, TA1537, TA1538, and TA100 and in Escherichia coli WP2; mitotic recombination in the yeast Saccharomyces cerevisiae D3; and preferential toxicity assays in DNA repair-proficient and -deficient strains of E. coli (strains W3110 and p3478, respectively) and Bacillus subtilis (strains H17 and M45, respectively).

None of the ten compounds tested in the mouse produced a dominant lethal response.

Ten of the twenty compounds were mutagenic in one or more in vitro assays. Two were mutagenic in all of the in vitro assays: captan and folpet. In a heritable translocation study in mice, under the experimental procedures employed, captan at 5000 ppm in the diet of male mice for 8 consecutive weeks produced a heritable mutagenic event in F₁ generation male mice.

CONTENTS

LIST OF TABLES	t t.
SUMMARY	3
TWENTY PESTICIDES EVALUATED BY SRI FOR MUTAGENIC ACTIVITY	1
INTRODUCTION	4
DOMINANT LETHAL TEST IN THE MOUSE	6
General	•
Experimental	ì
Animals and Chemicals	ì
Determination of Acute Toxicity	:
Maximum Tolerated Dose Study,	-
Treatment Levels	
Administration of the Compounds	3
Test Croups	
Necropsy and Evaluation	9
Results and Discussion	9
MAMMALIAN IN VITRO UNSCHEDULED DNA SYNTHESIS ASSAYS	12
General	1:
	13
	13
	1.
	13
	14
	1:
	17
	17
	18
Salmonella typhimurium Strains TA1535,	
	18
Escherichia coli WP2	l?
Escherichia coli W3100/p3478 and	
	20
Saccharomyces cerevisiae D3	
Aroclor 1254-Stimulated Metabolic Activation System	
Results and Discussion	22
DISCUSSION	25
	_
REFERENCES	2€
APPENDIX A: Mutagenesis Studies of Pesticide Compounds - Mouse Heritable Translocation Test - Captan	, ,

TABLES

DOMINANT LETHAL TEST

1	Chi-Square Test of the Fertility Index - Monocrotophos	28
2	Average Implants per Pregnant Female - Monocrotophos	29
3	Average Dead Implants per Pregnant Female - Monocrotophos	30
4	Chi-Square Test of the Death Index - Monocrotophos	31
5	Number of Dead Implants per Total Implants - Monocrotophos	32
6	Chi-Square Test of the Fertility Index - Bromacil	33
7	Average Implants per Pregnant Female - Bromacil	34
8	Average Dead Implants per Pregnant Female - Bromacil	35
9	Chi-Square Test of the Death Index - Bromacil	36
10	Number of Dead Implants per Total Implants - Bromacil	37
11	Chi-Square Test of the Fertility Index - Captan	38
12	Average Implants per Pregnant Female - Captan	39
13	Average Dead Implants per Pregnant Female - Captan	40
14	Chi-Square Test of the Death Index - Captan	41
15	Number of Dead Implants per Total Implants - Captan	42
16	Chi-Square Test of the Fertility Index - Folpet	43
17	Average Implants per Pregnant Female - Folpet	44
18	Average Dead Implants per Pregnant Female - Folpet	45
19	Chi-Square Test of the Death Index - Folpet	46
20	Number of Dead Implants per Total Implants - Folpet	47
21	Chi-Square Test of the Fertility Index - Azinphos-Methyl	48
22	Average Implants per Pregnant Female - Azinphos-Methyl	49
23	Average Dead Implants per Pregnant Female - Azinphos-Methyl	50
24	Chi-Square Test of the Death Index - Azinphos-Methyl	51
25	Number of Dead Implants per Total Implants - Azinphos-Methyl .	52
26	Chi-Square Test of the Fertility Index - Malathion	53
27	Average Implants per Pregnant Female - Malathion	54
28	Average Dead Implants per Pregnant Female - Malathion	55
29	Chi-Square Test of the Death Index - Malathion	56
30	Number of Dead Implants per Total Implants - Malathion	57
31	Chi-Square Test of the Fertility Index - Parathion	58
32	Average Implants per Pregnant Female - Parathion	59
33	Average Dead Implants per Prognant Female	60
34	Chi-Square Test of the Death Index - Parathion	61
35	Number of Dead Implants per Total Implants - Parathion	62
36	Chi-Square Test of the Fertility Index - Parathion-Methyl	63
37	Average Implants per Pregnant Female - Parathion-Methyl	64
38	Average Dead Implants per Pregnant Female - Parathion-Methyl .	65
39	Chi-Square Test of the Death Index - Parathion-Methyl	66
40	Number of Dead Implants per Total Implants - Parathion-Methyl.	67
41	Chi-Square Test of the Fertility Index - Quintozene (PCNB)	68
42	Average Implants per Pregnant Female - Quintozene (PCNB)	69

43	Average Dead Implants per Pregnant Female -			30
	Quintozene (PCNB)	•	٠	70
44	Chi-Square Test of the Death Index - Quintozene (PCNB)	•	•	71
45	Number of Dead Implants per Total Implants -			
	Quintozene (PCNB)			72
46	Chi-Square Test of the Fertility Index - Phorate			73
47	Average Implants per Pregnant Forale - Phorate			74
48	Average Dead Implants per Pregnant Female - Phorate			75
49	Chi-Square Test of the Death Index - Phorate			76
50	Number of Dead Implants per Total Implants - Phorate			77
		•	•	
UDS	ASSAYS			
51	DNA Repair Synthesis Assay of Monocrotophos			78
52	DNA Repair Synthesis Assay of Monocrotophos with	_	•	
	Metabolic Activation		_	79
53	DNA Repair Synthesis Assay of Bromacil			80
54	DNA Repair Synthesis Assay of Bromacil with	•	•	00
7 4				81
	Metabolic Activation			82
55	DNA Repair Synthesis Assay of Cacodylic Acid	•	•	04
56	DNA Repair Synthesis Assay of Cacodylic Acid with			
	Metabolic Activation			83
57	DNA Repair Synthesis Assay of Captan	•	•	84
58	DNA Repair Synthesis Assay of Captan with			_
	Metabolic Activation			85
59	DNA Repair Synthesis Assay of Chloropyrifos	•		86
60	DNA Repair Synthesis Assay of Chloropyrifos with			
	Metabolic Activation		•	87
61	DNA Repair Synthesis Assay of Dinoseb			88
62	DNA Repair Synthesis Assay of Dinoseb with			
	Metabolic Activation			89
63	DNA Repair Synthesis Assay of DSMA			90
64	DNA Repair Synthesis Assay of DSMA with	-		•
	Metabolic Activation			91
65	DNA Repair Synthesis Assay of Fenthion			92
66	DNA Repair Synthesis Assay of Fenthion with	•	•	-
OO.				93
	Metabolic Activation	•	•	94
67	DNA Repair Synthesis Assay of Folpet	٠	•	74
68	DNA Repair Synthesis Assay of Folpet with			95
4.5	Metabolic Activation			
69	DNA Repair Synthesis Assay of Azinphos-Methyl	•	٠	96
70	DNA Repair Synthesis Assay of Azinphos-Methyl with			^=
_	Metabolic Activation			97
71	DNA Repair Synthesis Assay of Malathion	٠	٠	98
72	DNA Repair Synthesis Assay of Malathion with			
	Metabolic Activation	•	•	99
73	DNA Repair Synthesis Assay of Methomy1	•	٠	100
74	DNA Repair Synthesis Assay of Methomyl with			
	Metabolic Activation		•	101
75	DNA Repair Synthesis Assay of Monuron			102

76	DNA Repair Synthesis Assay of Monuron with	
		LO:
77	DNA Repair Synthesis Assay of MSMA	104
78	DNA Repair Synthesis Assay of MSMA with	
	Metabolic Activation	LQ:
79		10
80	DNA Repair Synthesis Assay of Parathion with	
		10
81		LO
82	DNA Repair Synthesis Assay of Parathion-Methyl	
	· · · · · · · · · · · · · · · · · · ·	10
83		110
84	DNA Repair Synthesis Assay of Quintozene (PCNB)	
		11
85		11:
86	DNA Repair Synthesis Assay of Phorate with	
		L1:
67		114
88	DNA Repair Synthesis Assay of Simazine with	
		11:
89	DNA Repair Synthesis Assay of Trifluralin	L1(
90	DNA Repair Synthesis Assay of Trifluralin with	
		112
	ROBIOLOGICAL ASSAYS	118
91 92	The state of the s	138
93	Microbial Inhibition in Escerichia coli and	130
7.3		L48
94	In Vitro Assays with Saccharomyces cerevisiae D3 -	,
,4	Monocrotophos	150
95	In Vitro Assays with Saccharomyces cerevisiae D3 -	
,,,	Bromacil	151
96	In Vitro Assays with Saccharomyces cerevisiae D3 -	
,,	Cacodylic Acid	152
97	In Vitro Assays with Saccharomyces cerevisiae D3 -	
	Captan	153
98	In Vitro Assays with Saccharomyces cerevisiae D3 -	
-	Chloropyrifos	154
99	In Vitro Assays with Saccharomyces cerevisiae D3 -	
	Dinoseb	L5:
100		156
101	In Vitro Assays with Saccharomyces cerevisiae D3 -	
	Fenthion	157
102	In Vitro Assays with Saccharomyces cerevisiae D3 -	
	Folpet	.58
103	In Vitro Assays with Saccharomyces cerevisiae D3 -	
	The second secon	.59
104	In Vitro Assays with Saccharomyces cerevisiae D3 -	
	Malathion	.60

105	In Vitro Assays with Saccharomyces cerevisiae D3 -	
	Methomy1	.61
601	In Vitro Assays with Saccheromyces cerevisiae D3 -	
	Monuron	L 6 2
107	In Vitro Assays with Saccharomyces cerevisiae D3 - MSMA 1	L63
1.08	In Vitro Assays with Saccharomyces cerevisiae D3 -	
	Parathion	164
109	ln Vitro Assays with Saccharomyces cerevisiae D3 -	
	Parathion-Methyl	165
110	In Vitro Assays with Saccharomyces cerevisiae D3 -	
	Quintozene (PCNB)	166
111	In Vitro Assays with Saccharomyces cerevisiae D3 ~	
	Phorate	L67
112	In Vitro Assays with Saccharomyces cerevisiae D3 -	
	Simazine	L68
113	In Vitro Assays with Saccharomyces cerevisiae D3 ~	
	Trifluralin	L69
114	In Vitro Mutagenesis with Salmonella typhimurium 1	L70

ACKNOWLEDGMENTS

Stanford Research Institute wishes to thank the EPA project officers for their guidance and assistance during the course of this project. Dr. Robert E. McGaughy, Office of Research and Development, Washington, D.C., was Project Officer from the beginning of the project in June 1974 until July 1975. Project responsibility then was transferred to Dr. Ronald L. Baron, Health Effects Research Laboratory, Research Triangle Park, North Carolina, until January 1976. At that time, Dr. Michael D. Waters, now Chief of the Biochemistry Branch in the Environmental Toxicology Division, Health Effects Research Laboratory, Research Triangle Park, North Carolina, became Project Officer.

Dr. Waters has continued in this project responsibility to the present.

INTRODUCTION

The Federal Insecticide, Fungicide, and Rodenticide Act designates the Environmental Protection Agency as the governmental body responsible for the safety of all pesticides used in the United States. More recently, the Federal Environmental Pesticide Control Act (PL 92-516) strengthened EPA's regulatory responsibilities in the area of pesticides to include intra- as well as inter-state commerce.

To be federally registered, a pesticide must have been determined not to be hazardous to health or to the environment when used according to its labeling restrictions. Thus, relative to new law as well as to specific directives included in Public Law 93-135, 1973, EPA now is conducting a thorough review of the implications of using alternate chemicals, including older registered pesticides, for pest control.

In the pesticide review process, EPA emphasizes development of scientific criteria for evaluating the safety of compounds substituted for those pesticides found to be hazardous. In addition to reviewing and evaluating the literature on pesticides and maintaining liaison with industry and academia, the strategy program includes laboratory studies to obtain additional data. One of these laboratory programs is directed toward gathering mutagenesis data on a selected number of compounds.

EPA's program is timely and responsive to one of the recommendations included in the President's Scientific Advisory Committee Report of September 1973, Chemicals and Health. In that document, the Committee recommended that "Regulatory agencies should take steps to insure that new scientific data raising the possibility of new or extended hazards from chemicals in use are subject to careful process of scientific review for merit interpretation."

Development of methods for evaluating the mutagenic hazard of chemical compounds has advanced markedly in the last few years. In contrast to the undefined empirical tests used a short time ago, procedures now

available can detect chromosome breaks and other genetic changes caused by chemical stress. Mutant strains of microorganisms in cell culture and mammalian fibroblast cells in tissue culture are effective in vitro systems for reliable detection of presumptive gene mutations, whereas the mammalian dominant lethal test is a recognized test for the assessment of chromosome damage to germinal cells.

Today many posticide chemicals in commercial use have not been investigated adequately for their mutagenic hazard. With the public's increasing concern about possible pollution of our environment by chemicals, the widely used pesticides must be evaluated. In this project, SRI used test methods that are appropriate for these evaluations and that are in use by the scientific community.

Under contract to EPA, SRI examined 20 pesticides for mutagenic activity using a combinattion of in vivo and in vitro mutagenicity assay systems. The 20 pesticides tested and their sources are listed in the following two tables.

The assays used were the dominant lethal test in mice (only ten compounds); unscheduled DNA synthesis (UDS) in human fibroblasts (WI-38 cells); reverse mutation in <u>Salmonella typhimurium</u> strains TA1535, TA1537, TA1538, and TA100 and in <u>Escherichia coli</u> WP2; mitotic recombination in the yeast <u>Saccharomyces cerevisiae</u> D3; and preferential toxicity assays in DNA repair-proficient and -deficient strains of <u>E. coli</u> (strains W3110 and p3478, respectively) and <u>Bacillus subtilis</u> (strains H17 and M45, respectively.

Based on positive responses in both Tier I (in vitro test) and Tier II (Drosophila) mutagenic studies, it was recommended that a heritable translocation test (Tier III) in the mouse be conducted

to further assess the mutagenic potential of Captan. The results of these further studies are reported as Appendix Λ .

The experimental procedures and results for the mammalian dominant lethal test, the UDS assay, and the microbiological assays are described in the separate sections that follow.

IN VIVO AND IN VITRO MUTAGENESIS: SUMMARY DATA FOR EPA PESTICIDES Positive Response, +; Negative Response, -

	Pesticide	House Dominant Lethal*	Salmon typhim (His* Re	ella urium† version)	Escherich (Try* R	ia coli WP2 everaion)	Seccharomye (Mitotic Re	es cerevisiae combination)	Escherichia coli (Felative Toxicity)	Sacilius aurrilis (Relative Toxicity)	UD: (DNA_R	
			-MA	+MA	-MA	+MA	-HA	+MA			-MA	+MA
	Honocrotophos	-	-	-	-	-	+	+	-	-	+	+
-	bromacil	-	-	-	-	_	-	-	•	-	-	-
	Gacodylic Acid		-	-	•	-	+	+	-	-	-	-
	Captan	-	+	+	+	+	+	+	+	+	-	+
	Chlorpyrifos		-	-	-	-	-	-	+	+	•	•
	Dinosab		-	-	-	-	-	-	•	÷	-	-
	DSMA		-	-	-	-	-	-	-	-	-	-
	Fenthion		-	-	-	-	-	-	-	-	-	•
	folpet	-	+	•	+	+	+	+	+	+	-	+
-	Azinphos-methyl	-	-	-	-	-	+	4	•	-	-	+
	Melathion	-	-	-	-	-	-		-	-	-	-
	Kathonyl		-	-	-	-	-	-	-	-	-	
	Monuron		-	-	-	-	-	_	-	•	-	+
	MEMA		-	-	-	-	-	-	-	-	-	-
	Perathion	-	-	-	-	-	-	-	-	-	+	-
	Parachion-methyl	-	••	-	-	-	+ +	+ +	-	-	-	-
	Quintozene (PCNB)	-	-	-	-	-	-	-	-	-	-	-
	Phorace	-	-	-	-	-	-	-	-	-	-	-
	Simezine		-	-	-	-	-	-	-	-	-	-
	Trifluralin		-	-	-	-	-	~	-	-	-	-

4

^{*} Only ten pesticides were tested by the dominant lethal procedure. † See page 170. # Marginelly positive.

TWENTY PESTICIDES EVALUATED BY SRI FOR MUTAGENIC ACTIVITY

Common Name*	Trade Name of Compound Tested	<u>Manufacturer</u>	Batch or Lot Number	Purity (%)	Supplier
Monocrotophos	Azodrin-5	Shell Chemical Company	Batch H, 9-SCL-77	55.0	Manufacturer
Bromacil	Hyvar	E.I. DuPont de Nemours	T80619/40	95.9	Battelle
Cacodylic Acid	Phytar	Ansul Chemical Company	Phyton 138	65.6	Battelle
Captan	Orthoside 406	Chevron Chemical Company	5 X 640	Technical	Battelle
Chlorpyrifos	Dursban	Dow Chemical Company	MM-1114-1 (603-D1)	98.8	Battelle
Dinoseb	Premerge	Dow Chemical Company	MM 200554	97.7	Battelle
DSMA	Ansar	Ansul Chemical Company	8100	80.1	Battelle
Fenthion	Baytex	Chemogro	4-15-2026	96.0	Battelle
Folpet	Phaltan	Chevron Chemical Company	SX579	Technical	Battelle
Azinphos-methyl	Guthion	Chemogro	411-0229	Technical	Battelle
Malathion	Malathion	American Cyanamid Company	40216006.300	Technical	Battelle
Methomyl	Lannate	E.I. DuPont de Nemours	6602-82	99.0	Battelle
Monuron	Telvar	E.I. DuPont de Nemours	T-40817-20	97.0	Battell e
MSMA	Ansar	Ansul Chemical Company	170 H.C.	58.4	Battelle
Parathion	Niran	Monsanto Chemical Company	AD 1236	99.0	Battelle
Parathion-methyl	Methyl Parathion	Monsanto Chemical Company	AD 0659	86.0	Battelle
Quintozene (PCNB)	Terrachlor	Olin Mathieson Chemical Corporation	Technical	99.0	Battelle
Phorate	Thimet	American Cyanamid Company	MC85		Battelle
Simazine	Primatol	Ciba-Geigy Chemical Co.	FL-740846	97.7	Battelle
Trifluralin	Treflan	Eli Lilly & Company	X-26290	97.7	Battelle

^{*} Common name as approved by the International Organization for Standardization.

DOMINANT LETHAL TEST IN THE MOUSE

General

In the dominant lethal test, the ten compounds under investigation were fed in the diet to proven male breeder mice for 7 weeks. After this period, each male was mated with two adult virgin females for 7 days; these females were then replaced by two others for another breeding. The sequence was continued for 8 weeks. This procedure emphasizes possible mutagenic effects on the male sperm, the normal female acting as a carrier to reveal in her offspring abnormalities that may have occurred in the male. We evaluated effects by examining the condition and state of fetal development during the middle to latter stages of gestation.

Experimental

Animals and Chemicals

Adult ICR/SIM mice from a closed, random-bred colony were used for the acute toxicity and maximum tolerated dose determinations as well as for the dominant lethal assay. These male and female mice were supplied by Simonsen Laboratories, Gilroy, California. The males were 3- to 4-month-old proven breeders, and the females were 10- to 12-week-old virgin stock.

At the direction of EPA, the Battelle Columbus Laboratories obtained the pesticides from the manufacturers and subsequently provided SRI with aliquous for the studies reported here. Each pesticide was a "technical" grade product (or equivalent) and was provided in sufficient quantity for us to complete all aspects of the experimental program. Excess supplies were refrigerated or frozen, should they be needed for future reference.

We investigated the solubility of each compound using water, propylene glycol, polyethylene glycol, corn oil, or carboxymethylecellulose to determine the most appropriate vehicle for administration. Compounds were administered orally, by gavage for the acute toxicity (LD₅₀) determinations, and via the diet for the maximum tolerated dose and dominant lethal studies.

Determination of Acute Toxicity

Although acute toxicity information on some of the compounds was available in the literature, we conducted confirmatory tests on all to obtain an LD_{50} under our laboratory conditions and for the ICR/SIM strain of mouse. If no data were available, we conducted a preliminary range-finding test, followed by a determination of the oral LD_{50} .

Maximum Tolerated Dose Study

Based on the acute toxicity data and available information from the literature on dose levels known to cause adverse responses when administered in the diet, several dose levels were selected and administered in the diet to adult male mice for 2 weeks. Treated males then were caged with two adult virgin females each for 7 days; these females were replaced by two others weekly for 2 weeks. The females were examined daily for the presence of vaginal (mating) plugs. At midterm of pregnancy, the females were sacrificed and examined for total implants, as well as for early and late fetal deaths. For this work, we defined a maximum tolerated dose as that dietary level which may produce up to a 20% weight loss, mild but transient clinical signs, no inhibition of breeding performance, and no mortality. Thus, these initial studies provided information on changes in body weight, acceptability of the diet, clinical signs, mortality, and breeding performance.

Treatment Levels

For the dominant-lethal study, three dose levels were administered. The highest was the maximum tolerated dose or 5 g/kg (a maximum level

agreed on by EPA and SRI), whichever was lower. The intermediate and lower dosages were one-half and one-quarter of the highest dose, respectively.

Administration of the Compounds

Each pesticide was fed in the diet to adult male mice for 7 weeks. An appropriate amount of compound initially was dissolved or suspended in corn oil; then the compound-oil concentrate was added at a level of 3% to a finely ground commercial diet of known composition. The use of corn oil assured even distribution of the compound and prevented stratification of the test material in an otherwise dry diet. Diets were prepared at 2-week intervals and were refrigerated at 4°C until fed to the animals. Fresh diet was placed in the feed containers every other day to minimize the loss of compound through instability or volatility.

Test Groups

Two reference control groups were included in this project. One was run at the beginning of each of the two dominant lethal series, five pesticides being run concurrently. In this manner, reference breeding and implant data were obtained at two time periods, as was information on each shipment of research animals. Males in these groups were fed a finely ground commercial diet supplemented with corn oil at 3%. Control groups were treated in the same manner as the compound test groups.

Two positive control groups were run concurrently with each of the two series of five pesticide tests. For these groups, the known mutagen triethylenemelamine (TEM) was administered as a single intraperitoneal injection of 0.2 mg/kg approximately 2 hours before the first mating. A commercial pelleted diet was available at all times.

Each control and experimental test group contained 20 adult male mice. At the end of the 7-week compound treatment period, each male was allowed to breed with two virgin females over a period of 7 days. Females were replaced weekly for 8 weeks.

Necropsy and Evaluation

Females were sacrificed at midterm of pregnancy. A complete necropsy was performed to determine if an intercurrent infection was present; such a condition can induce preimplantation loss and early fetal deaths. At sacrifice, each female was scored for early fetal deaths, late fetal deaths, and living fetuses (all of which provide a total implant score).

The following parameters indicate effects in dominant lethal studies: Total implants (live fetuses plus early and late fetal deaths), total dead (early and late fetal deaths), and dead implants per total implants. Total implants and dead implants were analyzed for significance by the t-test.

The index of dead implants per total implants was analyzed statistically by the t-test on arcsine- (or angular) transformed data, as described in Experimental Design (Theory and Application). This index was computed for each female. Other parameters analyzed were the fertility and death indices.

Results and Discussion

Single-dose oral acute toxicity data are as follows:

Compound	LD50
Monocrotophos	17 mg/kg
Bromacil	3.04 g/kg
Captan	> 15 g/kg
Folpet	> 10 g/kg
Azinphos-methyl	15 mg/kg
Malathion	1196 mg/kg
Parathion	17 mg/kg
Parathion-methyl	39 mg/kg
Quintozene (PCNB)	> 10 g/kg
Phorate	6.59 mg/kg

After evaluating the acute toxicity data and those from subsequent maximum tolerated dose studies, we selected the following dosage levels for the dominant lethal studies:

Compound	Treatment Levels (mg/kg of Diet)
Monocrotophos	15, 30, 60
Bromacil	1250, 2500, 5000
Captan	1250, 2500, 5000
Polpet	1250, 2500, 5000
Azinphos-methyl	20, 40, 80
Malathion	1250, 2500, 5000
Parathion	62.5, 125, 250
Parathion-methyl	20, 40, 80
Quintozene (PCNB)	1250, 2500, 5000
Phorate	5, 10, 20

Throughout the experiment, the biological criteria used to evaluate mutagenic effects in the mouse showed no consistent responses that could be attributed to treatment. Although we found occasional statistical differences between control and compound treated groups, they were random and did not suggest a time or dose-response effect.

Summary data on the fertility index, implantations per pregnant female, dead implants per pregnant female, death index, and number of dead implants per total implants are presented by compound as follows: Tables 1 through 5, Monocrotophos; Tables 6 through 10, Bromacil; Tables 11 through 15, Captan; Tables 16 through 20, Folpet; Tables 21 through 25, Azinphos-methyl; Tables 26 through 30, Malathion; Tables 31 through 35, Parathion; Tables 36 through 40, Parathion-Methyl; Tables 41 through 45, Quintozene (PCNB); and Tables 46 through 50, Phorate.

Two copies of a description of the statistical analysis procedures used for dominant lethal tests and computer printouts of the raw data and the statistical analyses are on file with the current Project Officer, Dr. Michael D. Waters, Environmental Toxicology Division, Health Effects Research Laboratory, EPA Environmental Research Center, Research Triangle Park, North Carolina 27711.

The following statistical procedures were used:

Chi-square cest of the fertility index;

Armitage test for a linear trend in proportion for the fertility index based on dose levels, based on logarithms of the dose levels, and based on dose levels including the control group;

t-test of the number of implantations in pregnant females;

Regression fits of implantations on dose and log dose and with and without control group included;

t-test of the (Freeman-Tukey transformed) preimplantation losses in pregnant females;

t-test of the number of dead implants;

Chi-square test of the death index;

Armitage test for a linear trend in proportion for the death index, based on dose levels with and without control group included and based on logarithms of the dose levels;

Probit analysis of the proportion of pregnant females with one or more dead implants:

t-test of the (Freeman-Tukey transformed) number of dead implants (dead implants/total implants);

Control group analyses of variances for number of pregnant females, number of implantations per pregnant female, preimplantation loss per pregnant female, number of dead implants per pregnant female, ratio of dead implants to total implants per pregnant female; and

t-test of the number of corpora lutea in pregnant females.

Careful review and statistical evaluation of the data show that folpet, captan, parathion-methyl, parathion, phorate, malathion, bromacil, monocrotophos, quintozene (PCNB), and azinphos-methyl are not mutagenic in the mouse by the dominant lethal test.

MAMMALIAN IN VITRO UNSCHEDULED DNA SYNTHESIS ASSAYS

General

Many mutagenic and carcinogenic agents have been shown to induce unscheduled DNA synthesis (UDS) in an <u>in vitro</u> tissue culture system of mammalian cells. UDS is a form of mammalian repair synthesis that involves at least two processes. The first is interaction of the agent with DNA, resulting in damage of the DNA. The second, which follows, is incoporation of nucleotides to repair the DNA.

UDS may be considered a fairly universal system because it occurs in a wide variety of mammalian cell types and because it has been observed in all stages of the cell cycle $(G_0, G_1, G_2, \text{ and M})$ other than \underline{S} , the normal DNA synthetic phase.^{2,3} (UDS is not observed during \underline{S} -phase because the high level of incorporation of nucleotides during the scheduled DNA synthesis obscures the relatively low level of incorporation of nucleotides during unscheduled DNA synthesis.)

An additional feature of UDS is that it may detect a level of DNA damage higher than that revealed by examination of chromosomeal aberrations because some DNA repair results in little or no detectable change in chromosome morphology. For each compound tested, an <u>in vitro</u> metabolic activation system should be incorporated for a parallel series of UDS assays since some compounds may be ineffective in producing DNA damage unless they are first activated by a microsomal preparation from a mammalian liver bomogenate.

The USS system we have developed is unique in that, at the end of each assay, DNA is extracted from human diploid fibroblasts (WI-38 cells) so that the extent of repair may be expressed per unit of DNA. We have found that this UDS assay system affords sensitivity and precision without sacrificing efficiency or economy. Under separate contact, NCI approved our use and validation of this system for the prescreening of chemical carcinogens. With the approval of the EPA project officer, we used this system for testing the 20 substitute pesticides, with and without metabolic activation.

Experimental

Coll Culture

WI-38 cells grown in T-25 tissue culture flasks were used for the UDS assays. Replicate cultures of these cells were initiated in Eagle's Basal Medium (BME) containing 10% (v/v) fetal calt serum and aureomycin, an antibiotic specific for PPLO*. For 1 to 2 weeks preceding the UDS assays, the cells were grown in medium containing 0.5% serum. This produced contact-inhibited cells in synchronous cultures in the G_1 phase of the mitotic cycle. To reduce further the possibility of incorporation of 3 H-TdR by an occasional S-phase cell that might escape the contact-inhibition synchrony and thus obscure measurements of UDS, the cultures were preincubated for 1 hour with 10^{-2} M hydroxyurea (HU) before each assay, and 10^{-2} M HU was added during each subsequent step of the assays.

Dilution of Compounds

Chemicals to be tested were made up immediately before use and were diluted in appropriate solvents (water, ethanol, or DMSO), the final concentration of solvent being one that did not produce a cytotoxic effect after repeated testing. Sonification and pH adjustments were used to ensure maximum solubility or even suspension of the stock solutions of the compounds. The highest concentration was diluted further in solvent and then in culture medium to give several log dilutions of each compound. All compounds were in apparent solution and within the physiological pH range when tested, except as otherwise noted in the tables.

Controls

The positive controls were 4-nitroquinoline-N-oxide (4NQO), a compound that induces UDS in the absence of a metabolic activation system, and dimethylnitrosamine (DMN), a compound that induces UDS only with metabolic activation. The negative controls were the solvents diluted in culture medium.

^{*} As an additional check against the presence of PPLO, which could incorporate tritiated thymidine (3H-TdR) and thus obscure measurements of UDS, stock cultures were analyzed monthly for the presence of PPLO. The results of these analyses were consistently negative.

UDS Assays

The contact-inhibited WI-38 cells were incubated at 37°C with log dilutions of the substitute pesticides and with 1 µCi/ml of 3H-TdR (sp act. 6.7 Ci/mmole). For testing in the absence of metabolic activation, the cells were exposed simultaneously to the substitute pesticide and to 3H-TdR for 3 hours. For testing with metabolic activation, the cells were exposed to the substitute pesticide, to 3H-TdR, and to 500 mg/ml of the 9000 x g supernatant fraction of a liver homogenate from adult male Swiss-Webster mice, with appropriate cofactors,* for 1 hour; then the cells were incubated with only 3H-TdR for an additional 4 hours. The shorter exposure time for metabolic activation testing was used to preclude cytotoxic effects of the liver homogenate preparation. Both approaches included a postincorporation incubation with unlabeled thymiding. DNA was extracted from the cells by a modification of the PCA-hydrolysis procedure; 5 one aliquot of the DNA solution was used to measure the DNA content, after reaction with diphenylamine, 6 and a second aliquot was used for scintillation counting measurements of the extent of incorporation of 3H-TdR. Results were expressed as incorporated per unit of DNA and were compared with the background rate of incorporation.

We have defined as an acceptable assay one in which the response of the positive control compound is predicted, within the 95% confidence limits, by regressions of average dpm/µg DNA versus average dpm/µg for background. The regressions that follow are based on data that we have acquired in previous testing:

Type of Testing	Regression [†]	Sample Size (n)	Correlation Coefficient (r)
Without mecabolic activation	$Y_1 = 696 + 17.45 (X)^{\ddagger}$	48	0.7668
With Metabolic	$Y_2 = 263 + 1.83 (X)^{\ddagger}$	13	0.9639

^{*}Nicotinamide, 3.05 mg/ml; glucose-6-phosphate, 16.1 mg/ml; MgCl₂·6H₂O, 5.08 mg/ml; NADP, 0.765 mg/ml.

[†]Regressions over a range of background dpm/ug DNA of 0 to 450.

 $^{^{\}dagger}Y_1$ = Average dpm/µg DNA for 10^{-5} M 4NQO (positive control).

 $Y_2 = Average dpm/\mu g DNA for 5 x 10⁻² M DMN (positive control).$

X = Average dpm/ g DNA for background (negative control).

If the observed average level of incorporation for the positive control compound is outside the 95% confidence limits of the regression, we assume that some variation has occurred in the experimental procedures and repeat the test.

Interpretation of Results

In a report to the National Cancer Institute, ⁷ we presented the results of tests performed without metabolic activation on 40 compounds of known carcinogenicity. We have analyzed these results using either the parametric One-Way Classifiction Analysis of Variance or the non-parametric Kruskal-Wallis One-Way Analysis of Variance, depending on which was more appropriate. ^{*} At the 99% confidence limits, all the ultimate carcinogens significantly elevate the incorporation of ³H-TdR into the DNA. The noncarcinogenic compounds, with one exception, fail to elevate significantly the incorporation of ³H-TdR at this level of confidence. Thus, the 99% confidence limits of these statistical analyses apparently can be used with reasonable accuracy to predict the biological significance of the response to a chemical.

The number of compounds we have tested with metabolic activation is insufficient to establish a correlation between statistical significance and biological significance. Therefore, we assumed that the 99% confidence levels of the analyses of variance used without metabolic activation also apply for testing with metabolic activation.

Results and Discussion

Tables 51 through 90 present the results of the UDS testing, with and without metabolic activation, of the 20 substitute pesticides. Tables 51 and 52, the DNA repair synthesis assays of monocrotophos, include detailed summaries of the cell culture and experimental conditions for these assays. The assays presented in the following tables (53 through 90) were conducted under similar conditions. In routine testing in the

^{*}If there is reason to believe that the variances of each of the treatments in a test are equal (i.e., Bartlett's test of the variance is negative), the parametric analysis is the appropriate one. If the variances are not equal, the nonparametric analysis is the appropriate one.

absence of metabolic activation, six samples each are used for five log concentrations of each test compound and for the negative and positive controls. However, because of the expense of the metabolic activation preparations, for all compounds except bromacil we tested three replicate samples in the presence of metabolic activation and used three concentrations of the test compound (selected on the basis of the testing without metabolic activation).

Based on the criteria for positive responses, we observed significant increases in unscheduled DNA synthesis in the absence of metabolic activation after exposure of the cells to only two substitute pesticides, monocrotophos and parathion. In the presence of metabolic activation enzymes, significantly increased UDS was detected for five substitute pesticides: monocrotophos, captan, folpet, azinphos-methyl, and monuron.

Compared with those of negative controls, the levels of ³H-TdR incorporation were greatly reduced in the absence of metabolic activation at the highest concentrations tested for captan, folpet, azinphos-methyl, and monuron, the same four compounds that induced UDS only in the presence of metabolic activation. The reduced levels of incorporation may be interpreted as cytotoxic effects or as inhibition of repair caused by the highest concentration of the test compounds. A similar effect was observed in the presence of metabolic activation for only one compound, captan, and this was observed at a higher concentration than had been tested without metabolic activation. Stich et al. ⁸ have discussed the problem of cytotoxicity and possible inhibition of DNA repair systems by some chemicals and have stressed that, whereas such factors may obscure measurements of UDS, often a close relationship exists between concentrations that induce UDS and obscuritations that are cytotoxic or that inhibit repair.

Because of the cytotoxic or inhibitory effects of the substitute pesticides, it should not be assumed without further testing that monocrotophos and parathion would be carcinogenic without metabolic activation or that the other four substitute pesticides that induced UDS in the presence of metabolic activation are procarcinogens. The positive UDS tosuits indicate that these six substitute pesticides should be tested more extensively, with the testing to include evaluations of the effects of these chemicals in in yivo bioassays.

MICROBIOLOGICAL ASSAYS

Genera!

SRI examined twenty pesticides for mutagenicity by in vitro microbiological assays with Salmonella typhimurium (TA1535, TA1537, TA1538, TA100), Escherichia coli WP2, repair-deficient and -proficient strains of Bacillus subtilis and E. coli, and with the yeast Saccharomyces cerevisiae D3. An Aroclor 1254-stimulated, rat-liver-homogenate metabolic activation system was included in each procedure, except the relative toxicity assays, to provide metabolic steps that the bacteria are either incapable of conducting or that they do not carry out under the assay conditions. The purpose of this study was to determine whether the compounds elicited a mutagenic response in microorganisms.

The assay procedure with S. typhimurium has been proven to be 85 to 90% accurate in detecting carcinogens as mutagens, and it has about the same accuracy in identifying chemicals that are not carcinogenic. The assay procedure with S. cerevisiae is about 50% accurate in detecting carcinogens as agents that increase mitotic recombination. E. coli WP2 and the microbial sensitivity assay are two additional methods of detecting mutagens. The combination of these four assay procedures significantly enhances the probability of detecting potentially hazardous chemicals.

Experimental

Salmonella typhimurium Strains TA1535, TA1537, TA1538, and TA100

The S. typhimurium strains used at SRI were obtained from Dr. Bruce Ames of the University of California at Berkeley. 10-12 All are histidine auxotrophs (his") by virtue of mutations in the histidine operon. In addition to the mutations in the histidine operon, the indicator strains have mutations in the lipopolysaccharide coat (rfa) and deletions that cover a gene involved in the repair of uv damage (uvrB-). The rfamutation makes the strains more permeable to large molecules, thereby increasing their sensitivity to these molecules. The uvrB mutation decreases repair of some types of chemically damaged DNA and thereby enhances sensitivity to some autagenic chemicals. Strain TA1535 is reverted to histidine prototrophy (his+) by many mutagens that cause basepair substitutions. Strains TA1537 and TA1538 are reverted by many frameshift mutagens. TA1537 is more sensitive than TA1538 to mutation by some acridine and benzanthracenes, but the difference is quantitative rather than qualitative. TA100 is derived from TA1535 by the introduction of the R factor plasmid pKM101.13 The introduction of this plasmid, which confers ampicillin resistance to the strain, greatly enhances the sensitivity of the strain to some base-pair substitution mutagens. We have shown that mutagens such as benzyl chloride and 2-(2-furyl)-3-(5-nitro-2-furyl) acrylamide (known as AF2) can be detected in plate assays by TA100 but not by TA1535. The presence of this plasmid also maken strain TA100 sensitive to some frameshift mutagens -- e.g., ICR-191, benzo(a)pyrene, aflatoxin B₁, and 7,12-dimethylbenz(a) anthracene.

All the indicator strains are stored at -80°C. For each experiment, an inoculum from frozen stock cultures is grown overnight at 37°C in a nutrient broth consisting of 12 tryptone and 0.5% yeast extract. After stationary overnight growth, the cultures are shaken for 3 to 4 hours to ensure optimal growth. Each culture is checked for sensitivity to crystal violat. The presence of the <u>rfa</u> mutation makes the indicator strains sensitive to this dye, whereas the parent strain, <u>rfa</u>, is not sensitive to the dye. Nowever, the mutation is reversible, leading to

the accumulation of real cells in the culture. Therefore, the cells must be tested routinely to ensure their sensitivity to crystal violet. Each culture also is tested by specific mutagens known to revert each test strain (positive controls).

To a sterile 13 x 100 mm test tube placed in a 43° C heating block, we add in the following order:

Assays in agar

- (1) 2 ml of 0.6% agar*
- (2) 0.1 ml of indicator organisms
- (3) 0.5 ml of metabolic activation mixture (optional)
- (4) Up to 100 μl of a solution of the test chemical.**

For negative controls, we use steps (1), (2), and (3) (optional) and $100 \mu l$ of the solvent used for the test chemical.

This mixture is stirred gently and then poured onto minimal agar plates.† After the soft agar has set, the plates are incubated at 37°C for 2 days. The number of his revertants (colonies that grow on plates lacking a sufficient amount of histidine to support colony formation) are counted and recorded. Some of the revertants are routinely tested to confirm that they are his , require biotin, and are sensitive to crystal violet (rfa).

Escherichia coli WP2

The E. coli WP2 (uvrA) used in this project was given to us by Dr. D. McCalla. 14,15 A procedure similar to the one used with Salmonella is used to measure the reversion of WP2 to tryptophan independence. However, instead of containing a trace of tryptophan in the top agar, the minimal agar plates contain 1.25 g of exold broth per liter to provide

^{* 0.6%} agar contains 0.05 mM histidine and 0.05 mM biotin.

[†] Minimal agar plates consist of 15 g of agar, 20 g of glucose, 0.2 g of MgSO $_4$.7 H $_2$ O, 2 g of citric acid monohydrate, 10 g of K $_2$ HPO $_4$, and 3.5 g of NaHNH $_4$ PO $_4$.H $_2$ O per liter.

^{**}Solvents used as appropriate include: water, dimethyl sulfoxide, ethanol, and benzene.

the trace of tryptophan required for enhancement of any mutagenic effect of the test chemical.

Alternatively, reversion of the mutated tryptophan gene, WP2 way undergo a forward mutation in a tryptophan tRNA gene to obtain tryptophan independence. We do not distinguish experimentally between the true revertants and the phenotypic revertants (although the latter tend to form smaller colonies).

Escherichia coli W3110/p3478 and Bacillus subtilis H17/M45

The f. cell strains W3110 and p3478 were obtained from Dr. H. Rosenkranz. 16 Strain p3478 is a polA derivative of strain W3110. It carries a single, revertable mutation in a gene for a DNA polymerase; Gross and Gross 17 showed that this mutation is involved in DNA repair synthesis. This autation increases the sensitivity of strain p3478 to chemicals that lead to alterations (damage) of the DNA. Therefore, we can assay for chemicals that damage DNA by comparing the relative sensitivity of the two strains (p3478 and W3110) to the test chemical.

The B. subtilus strains H17 and M45 were obtained from Dr. Kada. 18 Strain H17 (rec⁺) is derived from H17 but is deficient in the genetic recombination mechanism necessary to repair DNA damage. Cells deficient in this repair mechanism are killed more easily by chemical mutagens than are wild-type cells (rec⁺). If the chemical is toxic to rec⁻ cells, but at the same concentration is not toxic to rec⁺ cells, the chemical propably is a sutagen.

in added 0.1 ml of the test culture. The suspension is mixed and poured cate of the containing nutrient broth and 2% agar.

After the soft agar has solidified, a sterile filter disc impregnated with the test chemical is placed in the center of the plate. The places $a + 2 \times a$ ubated at 37°C for 16 hours, and the width of the zone of

^{*} Tryptone, 1%, and 0.5% yeast extract, supplemented with 5 µg of thymine/m; to prevent selection of thy* revertants.

roxicity or inhibition of growth is then measured. We usually must test several concentrations of chemical to detect accurately differences in the zones of growth inhibition because higher initial concentrations lead to steep concentration gradients that may reduce the differences in growth inhibition of the two strains.

The positive control for this assay is 1 ml of 1-phenyl-3,3-dimethyl-triazene placed on the disc. A zone of approximately 40-mm width is observed (52 and 61 mm, respectively). An additional control is 30 µg of chloramphenical placed on a disc. Equal zones of inhibition are expected in all four strains (approximately 30 mm) since the toxicity of this chemical does not depend on a mechanism that leads to DNA damage. All assays are performed at least three times.

Saccharomyces cerevisiae D3

The yeast 3. cerevisiae D3 is a diploid heterozygous for a mutation in an adenine-metabolizing enzymes. 19 Cells homozygous for this mutation produce a red dye when grown on medium containing adenine. Adenine-requiring homozygotes can be generated from the heterozygotes by mitotic recombination. Many mutagens increase the frequency of mitotic recombination. Mitotic recombination is indicated by the development of colonies with red pigmentation, and the degree of conversion to this pigmented colony indicates the mutagenicity of a compound or its metabolite. 20

The Saccharomyces test strain from the liquid nitrogen is grown overnight at 30° C with aeration in 1.0% tryptone and 0.5% yeast extract. The cells are washed twice in 0.067M PO₄ buffer (pH 7.4) and resuspended in the same buffer at a concentration of 10^{8} cells/ml.

The <u>in vitro</u> yeast mitotic recombination assay in suspension consists of 5×10^7 washed, stationary-phase yeast cells in 1 ml of 0.067M PO₄ buffer (pH 7.4) and 50 mg/ml of the test chemical (or a fraction of the concentration required to give 50% killing). The suspension is incubated at 30° for 4 hours. After incubation, the sample is diluted serially in sterile saline and plated on tryptone-yeast-agar plates.

Plates of a 10^{-3} dilution are incubated for 2 days at 30° C, followed by 2 days at 4° C to enhance the development of the red pigment indicative of adenine-negative homozygosity. To detect red colonies or red sectors, we scan the plates with a dissecting microscope at $10 \times \text{magnification}$. Plates of a 10^{-5} dilution are incubated for 2 days at 30° C for determination of the total number of colony-forming units.

The in vitro yeast itotic recombination assay in suspension with metabolic activation is conducted as above with the addition of the metabolic activation system to the incubation mixture.

Aroctor 1254-Stimulated Metabolic Activation System

Some carcinogenic mutagens (e.g., dimethylnitrosamine) are inactive unless they are converted to their active form by being metabolized. Ames et al. 21 have described the metabolic activation systems we use. Adult male mice are given a single 500-mg/kg intraperitoneal injection of a polychlorinated biphenyl (Aroclor 1254). 22 Four days after the injection, the animals' food is removed. On the fifth day, the mice are killed.

The liver are removed aseptically and placed in preweighed, sterile glass beakers. The organ weight is determined, and all subsequent operations to the metabolic activation step are conducted in an ice bath. The organ is washed in an equal volume of cold, sterile 0.15 M KCl (1 ml/g of wet organ), minced with sterile surgical scissors in three volume of 0.15 KCl, and homogenized with a Potter-Elvehjem apparatus. The homogenize is centrifuged for 10 minutes at 9000 mm and the supermitant is a moved and stored in liquid nitrogen. To the postmito-choodinax supportate are added MgCl₂, KCl, glucose-6-phosphate, TPN, and sodium obsephate (pH 7.4).

Results and Discussion

All the presides submitted to SRI for examination were tested at four: three times in the microbiological assays. The results presented here are an average of those experiments. agar with Salmonella typhimurium. In this bisridine reverse the ation assay system, two pesticides—captan and folpet—were mutagenic. For each chemical, we observed an increase in the number of hisridine—independent revertants on strains TA1535 and TA100 but not on strains TA98, TA1537, or TA1538. These results suggest that these pesticides can alkylate DNA, causing mutations of the base-pair substitution type. This conclusion is consistent with the mutagenic activity of these compounds in assays with E. coli WP2 (Table 97), which is sensitive to base-pair substitution mutagens. Although liver homogenate activity was enhanced somwhat with activation at some doses. A toxic effect (reduction of the number of mutants) was observed at doses of 100 µg of each compound.

Table 92 presents the results of assays with £. col1 WP2. Essentially, the results were identical to those obtained with §. typhimurium TAI535 and TAI00; captan and folpet were mutagenic, but none of the other pesticides was mutagenic.

Table 93 presents the results of the assays for microbial inhibition in repair-deficient and-proficient strains of B. subtilis and E. coli. Folpet, captan, chloropyrifos, and dinoseb all gave toxic zones that were larger on the repair-deficient strains than on the repair-proficient strains, indicating a mutagenic response. Toxic chemicals that do not act by damaging DNA (e.g., chloramphenical) should give equivalent zones of toxicity. However, many if not all nutagens damage DNA and, if the damage is not repaired, can result in cell death. Thus, a given concentration of mutagen may be toxic for a repair deficient strain but not for a strain the effectively repairs its DNA.

Tables 94 through 113 present the results of the assays for mitotic recombination in Saccharomyces cerevisiae D3. A positive response in this assay is indicated by an increase of more than threefold in the absolute number of mitotic recombinants per milliliter as well as in the relative number of mitotic recombinants per 10⁵ survivors. Folget,

captan, monocrotophos, cacodylic acid, and azinphos-methyl increased mitotic recombination significantly and are considered positive by these procedures. Methyl parathion gave a marginally positive response.

our results indicate that 7 of the 20 pesticides examined give positive responses in one or more of the four microbiological assay procedures. Although a mutagenic response in a microorganisms does that a chemical is a mutagen in humans, the combination of four separate assay system greatly enhances the probability of detecting potentially hazardous chemicals. Folpet and captan are mutagenic in all row assay procedures. Chloropyrifos and dinoseb are positive in the referobial sensitivity. Monocrotophos, cacodylic acid, and azinphosmetrech are positive in the yeast assays.

DISCUSSION

of the 20 pesticides tested for mutagenic activity, 9 were clearly mutagenic in one or more in vitro assays. Of these 9, 2 were mutagenic in all the in vitro assays, but none of them produced a dominant lethal response in the mouse. In the Salmonella assays, these chemicals caused base-pair substitution mutations but not frameshift mutations. The absence of activity in the dominant lethal assay may be due to a lack of sensitivity of the mouse to these types of compounds; for example, N-methyl-N'-nitro-N-nitrosoguanidine and other alkylating agents that cause base-pair substitution mutations do not all cause dominant lethality. Another explanation for the absence of activity may be that these pesticides did not reach the gonadal tissues in sufficient amounts to cause a mutagenic event. None of the other 6 pesticides was mutagenic in all the in vitro assays.

The combination of assays used in this program is one means of identifying those pesticides that may present a mutagenic health hazard. Those that show positive responses in several experimental systems should be evaluated more thoroughly before they are substituted for other pesticides already considered as a risk to the environment. Also apparent is that no one assay system is uniquely capable of detecting the spectrum of mutagenic events that different chemical structures may cause.

REFERENCES

- 1. W. T. Federer. Experimental Design (Theory and Application). The Macrifton Company, 1955.
- 2. B. Moralevic and L. Tolmach. Response of synchronized populations of NeLa cells to ultraviolet irradiation at selected stages of the generation cycle. Radiat. Res. 32, 327 (1967).
- R. R. Raspussen and R. B. Painter. Radiation-stimulated DNA synthesis in cultured mammalian cells. J. Cell Biol. 29, 11 (1966).
- H. Stich and B. A. Laishes. DNA repair and chemical carcinogens. In Pathobiology Annual. H. L. Ioachim (ed.), Appleton-Century-Crofts, New York, 1973, pp. 341-376.
- 5. K. Elgjo, H. Hennings, D. Michael, and S. H. Yuspa. Natural synchrony of newborn mouse epidermal cells in vitro. J. Invest. Derm. 66, 292-296 (1966).
- K. Burton. A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxgribonucleic acid. Biochem. J. 62, 315-323 (1956).
- 7. A. D. Mitchell. Potential Prescreens for Chemical Carcinogens: Unscheduled DNA Synthesis, Task 2. Final report prepared for National Cancer Institute under Contract NO1/CP-33394, SRI Project LSU-2735 (April 1976).
- 8. H. F. Scich, D. Kieser, R.H.C. San, and R. A. Laishes. The Use of DNA repair in the identification of carcinogens, precarcinogens, and target classe. In Canadian Cancer Conference: Proceedings of New World Canadian Cancer Conference, Vol. 10. P. E. Scholefield (ed.). University of Foronto Press, Toronto, Canada, 1973, pp. 83-110.
 - . Net so. 3. Choi, F. Yamasaki, and B. N. Ames. Detection of care acquires as nutagens in the Salmonella microsome test: Assay of 500 chesticals. Proc. Nat. Acad. Sci. USA 72, 5135-5139.
- B. N. Ames, E. G. Gurney, J. A. Miller, and H. Bartsch. Carcinogens as frameshift mutagens: Metabolites and derivatives of 2-acetylaminofluorene and other aromatic amine carcinogens. Proc. Nat. Acad. Sci. USA 69, 3128-3132 (1972).
- 11. B. G. Ades, F. D. Lee, and W. E. Durston. An improved bacterial force system for the detection and classification of mutagens and correspondens. Proc. Nat. Acad. Sci. USA 70, 782-786 (1973).

- 12. B. N. Ames, E. W. Durston, E. Yamasaki, and F. D. Lee. Carrings of are mutagens: A simple test system combining liver homogenates for activation and bacteria for detection. Proc. Nat. Acad. Sci. USA 70, 2281-2285 (1973).
- J. McCano, N. E. Spingarn, J. Kobori, and B. N. Ames. The detaction of carcinogens as mutagens: Bacterial tester strains with R factor plasmids. Proc. Nat. Acad. Sci. USA 72, 979-983 (1975).
- 14. B. A. Bridges. Simple bacterial systems for detecting mutagenic agents. Lab. Pract. 21, 413-416 (1972).
- 15. D. R. McCalla and D. Voutsinos. On mutagenicity of nitrofurans. Mutation Res. 26, 3-16 (1974).
- M. D. Anderson, E. E. Slater, and H. S. Rosenkranz. Rapid detection of mutagens and carcinogens. Cancer Res. 31, 970-973 (1971).
- J. Gross and M. Gross. Genetic analysis of an E. coll strain with a mutation affecting DNA polymerase. Nature 224, 1:66-1168 (1969).
- T. Kada. Mutagenicity testing of chemicals in microbial systems.
 New Methods in Environ. Chem. Toxicology 127-133 (November 1973).
- 19. F. K. Zimmermann and R. Schwaier. Induction of mitotic gene conversion with nitrous acid, 1-methyl-3-mitro-1-mitrosoguanidine and other alkylating agents in Saccharomyces cerevisiae. Mol. Gen. Genet. 100, 63-69 (1967).
- 20. D. J. Brusick and V. W. Mayer. New developments in mutagenicity screening techniques with yeast. Environ. Health Perspectives $\underline{6}$, 83-96 (1973).
- 21. L. D. Kier, E. Yamasaki, and B. N. Ames. Detection of mutagenic activity in cigarette smoke condensates. Proc. Nat. Acad. Sci. USA 71, 4159-4163 (1974).
- 8. N. Ames, J. McCann, and E. Yamasaki. Methods for Detecting Carcinogens and Mutagens with the <u>Salmonella/Mammalian-Microsome</u> Mutagenicity Test. Mut. Res. <u>31</u>, 347-364 (1975).

Table 1 ··: SQUARE TEST OF THE FERTILITY INDEX - HONOCSOTOPHOS.
I DEGREE OF FREEDOM

	aEEK		4141	CLE CON	TROL	* - # -	t-:0	15 4	6/KG	74	-10	30 H	G/KG	14	- <u>1</u> 0	-00 4	6/K3	76	FM	× 5.	6/KG
		N PRG	H HTD	FERT. INDEX	C+150	n Pri	N MYG	FERT.	CHISO	N PRG	_	FERT. INGER	CH150	m Pkå	N NTD	FERT.	CHISG	PRG	MTD	FERT. INDEX	CHISQ
									MULT [PLE 1	FREAT	MENT									
	1	28	LI	.70	0.05	53	40	,57	•#7	18	40	.45	4.14	14	40	.40	6,21.	29	40	.72	0.00
28	2	26	٠¢	.65	0.04	٥.	40	.77	.94	20	40	.50	1,28	16	40	.40	4,55 *	27	39	.69	.03
	3	23	40	.57	0.00	30	40	. 75	2.01	19	e 0	•47	.45	25	40	.59	0.00	32	40	.60	3.72
	4	27	40	.67	0.00	25	40	.63	-05	22	•0	.55	.84	15	4¢	.38	6.07 *	21	40	.67	.06
	>	24	•0	.60	0.00	33	39	. 65	4.79+1	25	40	. 63	0.00	\$1	40	•52	.20	30	+0	.75	1.42
	6	24	34	.63	6.33	27	40	-67	•03	23	40	.57	.08	52	38	.66	9.00	27	36	•7t	.24
	7	30	38	.79	0.00	25	40	.63	1.01	21	40	.52	4.91*	26	38	.74	.07	27	36	. 75	-02
	9	27	38	-71	0-00	28	40	.70	+02	20	40	.50	2.75	24	38	.63	.24	26	36	.72	•02

^{*} SIGNIFICANT AT P LT 0.05 I INCREASED ABOVE CONTROL

Table 2 AVERAGE IMPLANTS PER PREGNANT FEMALE - MONOCROTOPHOS

	REEK	CONTROL	74-10 l	5 M9/K6	74-10 3	0 M\$/KB	74-10 60	MG/KG	TEM ,	2 Majkg
					MULTIPLE TREA	THENT				
	1	319/ 28=11.39	249/	23=10.83	189/	16=10.50	180/	16-11.25	316/	29=10.90
	2	303/ 26-11.65	332/	31=10,71	242/	20-12-10	180/	16=11,25	293/	27=13.65
N 3	3	245/ 23=10,65	356/	30=11.07	239/	19=12,56 **I	267/	22=12,14 *1	348/	32=10.67
29	4	309/ 27=11.44	314/	25=12,56	274/	22=12.45	106/	15=11.07	2467	27= 9,85*
	5	274/ 24=11.42	372/	33=11.27	270/	25=10.80	248/	21=11.81	354/	30=11.07
	ė	302/ 24=12.58	327/	27=12-11	275/	23=11.96	255/	25=10.20 **	273/	27=10+11**
	7	346/ 30=11.53	285/	25=11.40	255/	21=12+14	316/	28=11.29	306/	27=11.33
	8	292/ 27+10,81	313/	26=11,18	228/	20=11.40	291/	24=12,12	322/	24=12,384=1

^{*} SIGNIFICANT AT P LT 0.05
** SIGNIFICANT AT P LT 0.01
I INCREASED ABOVE CONTROL

Table 3 AVERAGE DEAD INPLANTS PER PREGNANT FEMALE - MONOCROTOPHOS

wi	Eĸ	CON	TROL		74-10	15	N6/K6	74-10 3	0 1	4G/KG	74-10 60	#G	/x6	1EH	2 MG/K6
								MULTIPLE TREA	THEN	•					
	ı	13/	28=	.44	28/	234	1.22	10/	18=	.56	10/	16=	.63	62/	29= 2.14**
	5	4/	26=	.31	3/	31+	.16 ap	10/	20=	.50	2/	16=	.13	77/	27- 2,85**
w	3	9/	234	.39	;6/	30=	.53	9/	19=	,47	9/	22=	.41	97/	320 2,72**
30	4	2/	27=	+07	7/	25#	.28 *	26/	22=	1+16*	9/	15=	.60**	117	27= -41*
	5	11/	244	.45	22/	33=	.67	12/	25=	.48	9/	21*	,43	52/	30= .73
	•	21/	24=	. 98	167	21=	.59	14/	23=	-61	6/	25=	.24**D	17/	27= .63
	7	30/	36=	1.00	11/	25=	.44	4/	21=	-19	8/	28=	, 29	11/	27= .41
	8	19/	27=	.70	24/	28=	.06.	7/	20+	, 35	9/	24=	.38	11/	26= .42

[•] SIGNIFICANT AT P LT 0.05 •• SIGNIFICANT AT P LT 0.01 D DECREASED BELOW CONTROL

Table 4 CHI-SQUARE TEST OF THE DEATH INDEX - MONGCROTOPHOS 1 DEGREE OF FREEDOM

	WEEK		VEH.	CLE CON	TROL	7-	4-10	15 +	16/K 6	74	-10	30 M	G/KG	74	-10	60 M	G/KG	T!		۳ 5.	6/KG
		N MDI	N PRO	DEATH INDEX	CHISE	MOI N	N PHG	DEATH	CHISG	ADI M	N PRG	DEATH	CHISQ	N -01	N PRG	DEATH INGEA	CHISG	ec:	N PNG	HTABC X30v1	CAISE
									MULT	IPLE	FREAT	MENT									
	1	10	28	.36	0.00	11	53	.48	.35	7	18	.39	10.	6	i 6	.30	.04	25	29	. 86	13.27 **
31	2	7	26	.27	0.00	3	31	.10	1,64	7	20	.35	,07	2	16	.13	.52	26	27	. 96	24.26 **
	3	9	23	.39	0.00	11	30	.37	.01	7	19	.37	.03	6	28	.27	.28	25	35	.79	7.05 Am
	•	2	27	.07	0.00	7	25	.24	2.54	11	55	.50	9.20**	÷	15	.6¢	11.21 **	8	27	.30	3.67
	5	ç	24	.38	0-00	11	33	.33	.00	12	25	.46	•21	3	21	.38	.07	10	30	.33	•00
	•	15	24	.63	0.00	13	27	.48	.56	11	23	.48	.52	5	25	-20	7.48	10	27*	.37	2.36
	7	8	30	.27	0.00	6	25	-32	.02	4	21	.19	.09	7	26	. 25	. 02	9	27	.33	.07
	8	12	27	.44	0.00	15	28	.54	.17	7	20	.35	.12	8	24	•33	.27	10	26	.38	-63

^{**} SIGNIFICANT AT P LT 0.01

Table 5 SUMBER OF DEAD DEPLANTS PER TOTAL IMPLANTS - HONOGROTOPHOS

*	EEK	CONTROL	74-10	15	#6/KG	74-19	30 M	.6/KG	74-10 65	96	/KG	1E4 .	2 MG/	K6
						MULTIPLE TRE	ATHENT	ı						
	1	13/ 319=	.0. 26	/ 249=	·11	10/	189=	.05	10/	180=	.06	62/	316=	+20**
	2	8/ 303=	.03 3	/ 3320	.01	10/	242#	.04	2/	180=	.01	77/	293=	.26**
	3	9/ 245=	.04 14	/ 35e×	.04	9/	534=	.04	9/	267=	.03	87/	346=	.25*#
32	4	2/ 309:	.01 7	/ 314=	.02	26/	274#	.094×	9/	166=	.05 **	11/	266=	.04 [±]
	5	11/ 274=	.04 22	/ 372=	. et	12/	270=	•04	9/	248=	.04	\$5/	356+	-06
	ė	21/ 302=	.07 16	/ 327=	.05	14/	275=	.05	6/	255=	.02 **D	17/	273=	.06
	7	30/ 346=	.09 11	/ 285=	.04	4/	255=	.02	•/	316=	.03	11/	306=	.04
	8	19/ 292=	.07 24	/ 313=	.06	7/	£28=	. 43	9/	291=	.63	117	355-	.03

[&]quot; SIGNIFICANT AT P LT 0.05
" SIGNIFICANT AT P LT 0.01
D DECREASED BELOW CONTROL

Table 6 CHI-SQUARE TEST OF THE FERTILITY INDEX - BROMACIL 1 DEGREE OF FREEDOM

46:	E۴		VEHI	CLE CON	TROL	7	+=06	1250 H	6/XG	74	-06	2500 ~	ű/RÚ	74	-G6	5000 M	G/KG	77	: M	M S.	G/KB
		N PRG	N MTD	FERT. INDEX	CHISQ	N PRG	N MTD	FERT. INDEX	CHISQ	N PRG	N NTD	FERT. INDEX	CHISG	N PRG	N HTD	FERT. INCEX	CHISQ	h PRG	N NTO	FERT. INDEX	CHISO
33									MULT	IPLE 1	REAT	HENT									
	ı	26	40	.70	0.00	21	40	.52	1.90	23	40	.57	.87	29	40	.72	0.00	29	40	.72	9.00
	2	56	40	.65	0.00	24	40	.60	.05	26	36	.68	.01	25	40	.63	0.00	27	39	.69	.03
	3	23	40	.57	0.60	29	40	.72	1,37	19	30	.50	.19	25	40	.63	.05	32	40	.80	3,72
	4	27	40	.67	0.00	25	40	.63	.05	55	36	.58	•41	28	40	.70	0.00	27	40	.67	.06
	5	24	40	.60	0.00	31	40	.77	2.09	22	38	.58	+00	27	40	.67	•22	30	40	.75	1.42
	6	24	38	.63	0.00	31	40	.77	1,30	25	38	.66	0.03	27	40	.67	.03	27	38	.71	.24
	7	30	38	.79	0.00	20	40	.72	.16	22	38	.58	2.98	29	40	-72	.16	27	36	.75	.02
			20	**			70	79			20		- 24				. ^ -		74	72	69

Table 7 AVERAGE IMPLANTS PER PREGNANT PENALS - BROWACIL

#i	EK	CON	TROL	74-96	1250 %6/KG	74-06 2	:500 #6/k6	74-06 50	OG MG/KG	TEM ,	2 MG/KG
•						MULTIPLE TREA	THEN?				
	i	319/	26=11.39	235/	21=11.19	278/	23=12.09	324/	29411.31	316/	29=10.90
	2	3037	26-11,45	2537	24=10.54	284/	26=10.92	304/	25-12,16	293/	27=10.85
د)	245/	23=10.65	335/	29=11.55	225/	19011-64	319/	25=12.76**1	348/	32-10.87
7	4	305/	27=11.44	290/	25=11.60	268/	22=)2.18	346/	28=12.36	266/	27= 9.85 *
	5	2747	24-11.42	351/	31=11.65	261/	22=11.86	323/	27=11.96	356/	30-11-87
	4	1500	24=12.58	368/	31=11,87	294/	25=11.76	276/	27410.30**	273/	27=10.11 **
	7	346/	30-11,53	355/	29=12,24	253/	22=11.50	357/	29+12,31	306/	27=11,33
	9	292/	27-10.61	316/	20-11,36	277/	24=11.54	307/	27=11,37	322/	26=12.38 **I

SIGNIFICANT AT P LT 0.05
SIGNIFICANT AT P LT 0.01
I INCREASED ABOVE CONTROL

Table 8 AVERAGE DEAD IMPLANTS PER PREGNANT FEMALE - BROMACIL

۹E	Eĸ	CON	TROL		74-06	1250	HG/KG	74-06 2	300 M	16/kG	74-06 50	00 MG	/KG	TEM	2 MG/KB
								MULTIPLE TREA	THEN	•					
	1	13/	58 =	.46	8/	21=	, 3g	10/	23=	.43	17/	292	.59	62/	29= 2.14**
	2	8/	26=	.31	12/	24=	.50	8/	26=	.31	5/	25=	.20	77/	27= 2.85**
	3	9/	23=	,39	6/	29=	.21	. 12/	19=	.63	10/	25=	.40	87/	32= 2,72**
35	4	2/	27=	.07	7/	25.	.28	16/	22=	.73**	15/	28=	.5#=	11/	27= -41+
	5	11/	24=	.46	12/	31=	. 39	15/	22=	-68	87	27=	.30	22/	30= .73
	6	21/	24=	.88	7/	31=	.23 **D	16/	25=	•64	21/	27=	.78	17/	27= .63
	7	30/	30≖	1.00	117	29=	.38	14/	22*	.64	14/	29=	.48	117	27= .41
	8	19/	27=	.70	15/	28=	.54	. •/	24=	.33	9/	27=	.33	11/	26= .42

^{*} SIGNIFICANT AT P LT 0.05
** SIGNIFICANT AT P LT 0.01
D DECREASED BELOW CONTROL

Table 9 CHI-SQUARE TEST OF THE DEATH INDEX - SROMACIL
1 DEGREE OF FREEDOM

	WEER		VEHI	CLE CON	1790L	7	-06	1250 M	S/KG	74	-06	2500 m	G/KG	74	-06	5680 K	6/KB	76	EM	,2 M	G/KG
		AG1	N PRG	DEATH INDEX	CHISQ	N #31	PRG	DEATH INDEX	CH1SG	N WD1	N PRG	DEATH INDEX	CH150	401 H	R PRG	DEATH INDEX	CH159	N uDI	H PHG	DEATH INDEX	CHISG
									MULTIF	LE '	TREAT	MENT									
36	1	10	28	.36	0.00	7	51	,33	.02	7	23	.30	.01	14	29	•48	.48	25	29	. 86	13,276#
6	2	7	50	.27	0.00	10	24	,42	.64	8	26	.31	3.06	5	25	.20	.06	56	27	.96	24,264
	3	9	53	.39	0.00	•	29	.21	1.32	9	19	.47	. 05	ó	25	.24	.67	25	32	. 78	7.05**
	•	2	≥7	•07	0+66	6	25	•24	1.05	11	22	•50	9.20**	1+	20	.50	10-11**	8	27	.30	3.07
	5	9	2*	.38	0.00	12	31	.39	.04	12	22	.55	.74	8	27	.30	.09	10	30	.33	.00
	6	15	24	.63	0-00	5	31	-16	10.65**D	13	25	.52	•2)	10	27	•37	2.36	10	27	.37	2.36
	7	6	36	.27	0.00	7	29	. 24	.01	10	22	.45	1.24	12	29	-41	.54	9	27	.33	.07
	8	12	27	.44	0.00	11	28	.39	.01	7	24	.29	.70	7	27	-26	1.30	10	26	.38	.03

^{**} SIGNIFICANT AT P LT G.01 D DECREASED BELOW CONTROL

Table 10 NUMBER OF DEAD IMPLANTS PER TOTAL IMPLANTS - BROMACIL

wE	EK	CONTROL		74-06	1250	MG/KG	74-06	25	06 M	5/KG	74-06	50	00 MG	/KG	1E4		.2 MG/	RG
							MULTIPLE TO	REATI	MENT									
	1	13/ 319=	.04	2/	235=	.03	10)/ 2:	78=	-04	1	7/	328=	.05	•	2/	3 <u>1</u> 6=	.20**
	5	8/ 303=	.03	12/	253=	.05	(3/ 20	94=	.03		5/	304#	*05	7	7/	293*	, 26 _{**}
	3	9/ 245=	.04	6/	335=	.02 +D	18	2/ Z	25=	.05	1	0/	319=	.03	6	7/	348:	.254*
37	4	2/ 309=	.01	7/	290.	.02	16	5/ 20	662	.06**	1	5/	340=	, 04 ×4	1	1/	2662	.440
	5	11/ 274=	.04	12/	361=	.03	15	5/ 20	6 <u>1</u> =	. 06		8/	323=	.02	ā	2/	356#	.06
	6	21/ 302=	.07	7/	368=	.02 **D	16	6/ 2	94=	-05	2	17	278=	.06	1	"	273=	.06
	7	30/ 346=	.09	117	355=	.03	14	·/ 2	53=	•06	1	4/	357=	.34	¥	1/	306=	.04
	8	19/ 292=	.07	15/	318=	.05		8/ 2	77=	.03		9/	307=	.03	1	1/	322=	.03

^{*} SIGNIFICANT AT P LT 0.05 ** SIGNIFICANT AT P L7 0.01 D DECREASED BELOW CONTROL

Table 11 CHI-SQUARE TEST OF THE FERTILITY INDEX - CAPIAN 1 DEGREE OF FREEDOM

,	EEK		IH3V	CLE COM	1 0 2	7	+-02	1256 4	G/KG	74	-02	2500 >	G/Ki	74	-02	4 6505	16/KS	71	ļk 	.2 *	G/KG
•		* P=G	N 470	FERY, INDEX	Chisi	N PRG	AV B	FERT. INDEX	CH150	» 986	N MTU	FLRT. INDEX	Ch:SG	N PRG	N 410	PERT. INDER	CHISG	N PRG	M MTO	FERT. INDEX	CHISQ
									HULTI	PLE '	TREAT	MENT									
38	1	23	4 0	•\$?	6.00	34	40	-85	6.10.1	31	40	.77	2.79	29	40	.72	1.37	29	40	.72	1.37
œ	2	27	39	,69	J.00	30	40	.75	.10	36	40	.90	4,07 ±1	30	40	.75	.10	27	39	.69	.06
	3	20	46	.65	0.60	23	40	.57	.21	30	40	.75	.54	31	46	.77	.98	35	43	.80	1.57
		27	40	.67	e	31	38	.82	1.35	33	40	.62	1.67	32	+3	.80	1.03	27	40	.67	• 96
	5	>4	+0	ج7ء	0+00	25	38	.66	.02	36	40	.75	0-90	26	38	.68	-02	30	40	.75	9 • DQ
	٨	29	40	.72	0.00	27	38	•71	-01	34	40	.85	1.20	30	38	.79	.16	27	38	•71	•01
	,	29	40	.72	9.00	27	38	.71	-91	30	40	.75	0-00	26	38	.68	-02	27	36	,75	•00
	#	36	40	.80	0.00	37	35	.87	.26	34	40	.85	.09	27	38	.71	.43	25	36	.72	.24

^{*} SICNIFICANT AT PLT 0.05 I INCREASED ABOVE CONTROL

Table 12

AVERAGE IMPLANTS PER PREGNANT FEMALE - CAPTAN

# E	£<	CON	120L	74-02	1250 MG/KG	74-02 2	500 #G/KG	74-02 50	00 MG/KG	TEM	2 M6/KG
						MULTIPLE TREA	THENT				
	i	265/	23=11.52	387/	34=11.3a	339/	31=10.44	310/	29210.69	3167	29=10.90
	2	305/	27=11.30	328/	30*10.93	375/	36=10.42	342/	30=11,40	243/	27=10.85
39	3	268/	26=10.31	252/	23=10.96	313/	30=10.43	345/	31:11.13	34R/	32=10.67
9	4	288/	27=10.67	324/	31=10-45	359/	33=10.48	333/	32=10-41	2667	27= 9.85
	5	334/	29=11.52	28Z/	26=10.05	348/	30=11.60	298/	26=11.46	356/	30=11-87
	6	323/	29=11.14	312/	27=11.56	361/	34=10,62	340/	30=11.33	273/	27=10.11
	7	323/	29=11.14	304/	27=11.44	329/	30=10.97	309/	26ml1.88	304/	27=11.33
	e	381/	32=11.91	382/	33*11.58	363/	3+=11.26	301/	27=11-15	322/	26*12.38

^{*} SIGNIFICANT AT P LT 0.05 ** SIGNIFICANT AT P LT 0.01

Table 13 AVERAGE DEAD INPLANTS FER PREGNANT FEMALE - CAPTAN

#6	£ĸ	CON	TROL		7*+62	1250	MG/AG	74-02 2	500 4	G/KG	782 50	30 40	143	1F4 .	3 MB.	/KG
-								MULTIPLE TREA	THENT							
	1	67	23#	. 35	17/	3+=	.50	19/	31=	.61	157	29≠	, <u>£</u> 2	62/	\$4=	2.14 **
	2	:17	27=	.41	15/	30×	.50	17/	36=	.47	147	30=	.47	77/	27=	2,85 **
40	3	16/	26s	,42	16/	23=	.70	16/	30=	.53	15/	31-	.48	87/	35=	2.72=+
	•	367	27=	. 99	12/	31 ×	. 39	15/	33z	.45	117	32=	, 34	11/	27=	.+1
	5	15/	24=	.52	24/	26 z	.92	9/	30=	.30	117	26=	\$4.	22/	30±	.73
	6	9/	24*	+ 31	13/	274	.48	21/	34=	•62	18/	36=	+60	177	27=	-63
	7	217	29=	.72	15/	2?=	. 56	14/	30=	.47	8/	24=	.3;	117	27*	•41
	8	13/	32=	.+1	12/	33=	.36	11/	34=	.32	7/	27c	,26	117	26=	,42

^{*} SIGNIFICANT AT P LT 0.05 ** SIGNIFICANT AT P LT 0.01

Table 14
CHI-SQUARE TEST OF THE DEATH INDEX - CAPTAN 1 DEGREE OF PREEDOM

,	4E F K	: 	VEH)	CLE COM	TROL	7	-02	1250 #	d/Ke	74	-02	2500 M	g/KG	74	4-02	5000 M	6/KG	76	; H	.2 M	6/KG
		M NOI	N PRG	DEATH INDEX	CHISQ	NDI	N PRG	DEATH	CHISQ	ADI N	N PRG	DEATH	CHISO	N VĎI	N PRG	NTA30 ¥36HI	CHISQ	N =01	N PRG	DEATH	CHISO
									HULT	PLE 1	TABAT	HENT									
41	1	a	23	.35	0.00	10	34	,29	-02	12	31	.39	.00	12	29	••1	.04	25	29	. #6	12.49 **
Ť	2	9	27	.33	0.00	8	30	.27	.07	12	36	.33	.07	10	30	.33	.05	26	27	.96	20.79 **
	3	16	25	.38	0.00	12	23	.52	.96	11	30	.37	.02	13	31	.42	.00	25	35	.76	7.85 **
	4	11	27	•41	0.00	8	31	.26	.86	7	33	•81	1.85	6	32	• 25	1.02	8	27	-30	. 32
	5	11	29	.38	0.00	10	26	.38	.06	7	30	.23	.67	11	26	.42	.00	30	30	.33	.61
	6		29	.24	0.00	9	27	.33	.03	15	34	.44	1.20	20	30	•33	.04	10	27	-37	.22
	7	12	29	•41	0.00	12	27	.44	.00	11	30	.37	•01	7	26	+27	.71	9	27	.33	.12
	8	11	32	•34	0.00	8	33	•24	.39	•	34	.26	+19	5	27	+19	1+15	10	50	.36	• 60

^{**} SIGNIFICANT AT PLT 0.01

Table 15 NUMBER OF DEAD IMPLANTS PER TOTAL IMPLANTS - CAPTES

h	£ F.#	(3.	NTROL		70402	1250	43/X3	74-02	2500 >	15/KG	74-02 5000	20/KG	1E4	.2 MG/	KG
								MULTIPLE TRE	ATHEN	ī					
	;	6/	265*	.03	17/	367=	.04	19/	339=	.06	15/ 31	C* .C\$	62/	316=	. 20**
	ż	117	395=	.06	15/	328=	.05	17/	375=	.05	14/ 34	2= _04	77/	293=	.26**
42	3	16/	268=	.06	16/	257±	.06	167	313s	. 05	15/ 34	5= •0 •	87/	348±	.25**
	4	16/	288=	•04	12/	324=	•04	15/	359=	-04	11/ 33	3= -03	117	2665	-04
	5	15/	334=	. 54	247	282=	.09	9/	348=	.03	11/ 29	8± , 04	22/	356=	.06
	6	31	323*	.03	13.	312=	.04	21/	351=	.06*	18/ 34	0# .05	17/	273a	.06
	7	21/	323=	.07	15/	309=	.05	14/	329=	+04	غ∕ 30	9m -t3	117	366.	.04
	7	337	381=	.03)2/	382=	.03	11/	383=	•03	7/ 30	;= .ôz	11/	322*	.03

^{*} SIGNIFICANT AT P LT 0.05 ** SIGNIFICANT AT P LT 0.01

Table 16
CHI-SQUARE TEST OF THE FERTILITY INDEX - FOLPET
1 DEGREE OF PREEDOM

1	EEK		VEHI	CLE CON	TRUL	74	-63	1250 M	G/K6	74	-63	2530 4	6/K6	74	-03	5000 M	6/KG	TE	*	. 2MG	/*G
43		PRG	N MTD	FERT, INDEX	CHISE	M PHG	N GTM	FERT.	CHIS	h PRG	N HTU	FERT. INDEX	CH120	n PRG	A QTK	FERT. INDEA	CHISQ	A PAG	N MTD	FEHT. INDEX	CHISE
									MULT	IPLE 1	REAT	MENT									
	1	53	40	•57	0.00	27	•0	•67	•*6	29	40	.72	1.37	34	40	,75	2.01	50	40	.72	1.37
	2	27	39	.69	0,00	24	40	.70	.03	23	40	.57	. 72	35	+0	.88	2.90	27	39	.69	.06
	3	26	40	.65	0.00	25	40	.63	0.46	31	40	.77	.48	32	40	.00	1.57	32	•0	.80	1.57
	•	27	40	.67	0.00	30	40	.75	.4	18	40	.45	3.25	30	40	. 75	.24	27	40	+67	•06
	5	24	40	.72	U- 9D	30	40	,75	0.00	26	• 0	.65	+23	35	40	. 48	j . 95	30	40	.75	0.00
	6	29	40	•72	0-00	30	40	.75	0.46	28	40	.70	0+00	59	40	.73	0.00	2?	38	.71	.01
	7	29	40	•72	0.00	24	40	.70	0.00	27	+0	.67	. ij 6	31	40	•77	-07	27	90	.75	- 34
	8	32	40	.80	u- 00	27	40	.67	1.03	59	40	.72	+48	39	40	, 19	.07	26	36	.72	. 26

Ü

Table 17 AVERAGE IMPLANTS PER PREGNANT FEMALE - FOLDET

	UEŁA	COM	TROL	74-03	1250 MG/KB	74-03 2	500 MB/KG	74-23 50	Ú@ M6/KG	(<u>24</u> .	ZMG/R:
						HULTIPLE THEA	THENT				
	3	205/	23=11.52	308/	27=11.41	324/	29=11-17	328/	36=10,93	316/	29=10.90
	ž	2057	27=11.30	30=/	28=10.86	257/	23=11.17	390/	35+11,14	293/	27=10.85
£	3	261/	26±10.31	271/	25=10.84	334/	31=10.77	327/	32=10.22	348/	32=10.87
**		258/	27=10.67	2947	30= 9.97	183/	18=19+17	320/	30-10-67	266/	27= 9.85
	5	334/	29411.52	333/	30=11.10	318/	26=12.23	399/	35=11.40	356/	30=11-87
	•	323/	29-11,1-	334/	30=11,13	294/	26=10.50	312/	28=11,14	273/	27=10.11
	7	323/	29=11.14	307/	28410.46	311/	27=11.52	356.1	31=11.+8	305/	27+11.33
	6	361/	32=11.91	301/	27=11.15	345/	24*11.40	346/	30=11.53	322/	20=12-38

^{*} SIGNIFICANT AT P LT 0.05 ** SIGNIFICANT AT P LT 0.01

Table 15 AVERAGE DEAD IMPLANTS PER PREGNANT FEMALE - POLPET

# 6	ŁK	CON	TRUL		74-03	1250	MG/KG	74-03 2	590 M	6/RG	74-93	0 00 PC	3/RG	1E4 ,	2#5/R6
								MULTIPLE TREA	THENT						
	1	8/	23=	.35	10/	27\$. 37	25/	29=	.46	13.	30=	.43	62/	29= 4.14**
	S	117	27=	.41	16/	\$8±	.64	20/	23=	.87.	21.	35=	.60	77/	27= 2,65 ⁴⁴
£5	3	16/	26=	.62	13/	25.	.52	19/	31=	.ol	11.	22=	,34	67/	52= 2.72**
G.	•	16/	27=	.59	167	30=	.53	8/	18.	.44	7.	/ 30∸	.23±D	117	27= .41
	5	15/	29.	.52	12/	30±	++0	4/	26=	. 15	16.	354	. +6	22/	30± .73
	6	9/	29*	.31	17/	30=	.57	10/	28=	.97	13.	/ ¿5#	. 45	74%	2 ⁷ = +63
	7	21/	29=	.12	14/	28=	.43	10/	27=	.37	is	31=	•>8	11/	27= +41
		13/	32=	••1	117	27s	••1	20/	29=	•••	13.	30=	. 43	117	26= .42

^{*} SIGNIFICANT AT P LT 0.05 ** SIGNIFICANT AT P LT 0.01

D DECREASED BELOW CONTROL

Table 19
CHI-SQUARE TEST OF THE DEATH INDEX - FOLPET
1 DEGREE OF FREEDOM

	# <u>!</u> EK		4E#3	CFF COV	176		-03	1250 M	8/46 	74	-03	2500 P	5/Ku	74	-03	5005 M	6/46	T (H	. 2mg	/KG
		N a91	N PRd	DEATH	041 5 0	h n01	N PhG	OEATH INDEX	CHISH	N ⊎D1	n PRU	DEATH	CHIPO	#U1	PR6	DEATH	CHISU	#0:	PrG	DEATH	CHISG
									MULT	IPLE '	THEAT	MENT									
46	1	ē	53	+35	0.00		27	.30	.41	73	29	.45	" 2 0	10	30	.33	.03	25	24	•86	12.49 **
2	5	9	27	.33	0.00	13	28	.+0	,51	12	23	.52	1.12	15	35	.43	.25	26	47	.96	20.79 **
	3	10	26	.38	0,00	4	25	.36	,01	y	31	,29	.22	•	32	.25	.67	25	jż	.76	7.85 **
	•	ti	27	+41	0.00	11	30	.37	.00	7	į B	.39	£U.	7	30	•23	1.27	ê	27	.30	•35
	5	11	29	+38	4.00	10	30	•33	-61	8	20	-31	•47	12	35	.34	. 90	10	39	+33	•01
	6	6	29	-26	4.00	11	30	•37	• 42	11	24	•39	•43	4	58	+32	-01	10	7ء	.37	•55
	7	:2	29	+41	0.00	8	28	.29	.54	4	27	•33	-12	13	31	-42	.05	9	47	.33	•12
	8	11	32	. 34	0.00	4	27	+33	. 44	16	29	.55	1.89	11	30	+37	•01	10	cb	.38	.00

_

^{**} SIGNIFICANT AT PLT 0.01

Table 20 NUMBER OF DEAD INPLANTS PER TOTAL IMPLANTS - FOLPET

•	EER	CONTROL		14-03	1250	MG/KG	/4-63	6500 M	6/KG	74-03 5000 M	>/KG	7 L M	,24G/K	6
•						-	MULTIPLE TRE	ATHENT						
	1	a/ 265m	.03	10/	308=	.03	25/	324=	. 18	13/ 32g=	.04	62/	314=	.20**
	2	11/ 305=	.04	14/	304e	. 96	20/	257=	. 48 .	21/ 390=	.05	77/	293=	,26**
_	3	16/ 268=	.06	14/	2714	.45	19/	334e		11/ 327=	.03	87/	348=	.25**
47	4	16/ 200=	.96	167	294=	.05	8/	183=	- 04	7/ 320*	•02	11/	246=	•64
	5	15/ 334=	.0=	12/	333=	.04	9/	318=	•02	16/ 399=	.04	22/	356=	.56
	5	9/ 323=	.03	17/	3 34 =	.05	16/	294#	ئ ن.	13/ 312=	.64	17/	273=	.06
	7	21/ 323=	.07	14/	307.	.04	10/	311=	.03	18/ 356=	.05	11/	306=	.04
	8	13/ 381=	_03	11/	301=	_04	20/	345=	. u6	13/ 346=	.04	11/	322=	.63

^{*} SIGNIFICANT AT P LT 0.05 ** SIGNIFICANT AT P LT 0.01

Table 21 CRI-SQUARE FEST OF THE FERTILITY INDEX - AZINPHOS-METPYL 1 DEGREE OF FREEDOM

¥	ÆΣK		4EH1	CLE CON	7804	74	2 2	23 9	6/KG	74	-69	40 M	6/KG	74	-09	AG ×	G/KG	72	y	# 5 ,	g>KG
		PRG	NTO	FERT. INDEX	CHISS	6+3 	N NTO	PERT. INDEX	CHISE	tı PRG	N HTD	FERT. INDEX	CHISQ	N PRG	MTD	FERT. INDEX	Crisq	N PRG	N NTO	FERT. INDEX	CHISG
									MULTI	PLE 1	TREAT	HENT									
48	1	28	40	.70	6.09	34	40	•85	1.79	28	40	.70	.06	27	40	.67	0.00	29	40	.72	0.00
00	2	26	40	,65	0.00	29	40	.72	.23	27	40	.67	0.00	27	40	.67	0.00	27	39	.69	.03
	3	23	40	.57	0.00	33	40	. 82	4.02*1	29	40	.72	1.37	24	30	.63	.08	32	40	.84	3,72
	4	27	40	-67	3.09	30	40	,75	.24	29	40	.72	.06	51	36	.58	. 35	27	40	,67	.04
	5	24	+9	.60	0.00	29	+0	.72	.89	Sę	40	.65	.05	20	34	.59	.02	30	40	.75	1.42
	6	24	39	.63	3+95	30	40	.75	.79	27	40	•67	• 63	28	34	.82	2.41	27	ēĘ	•7;	. 24
	7	33	38	.79	0-00	27	40	.67	.78	25	40	.63	1.81	24	34	+71	. 30	27	36	.75	.02
	ě	27	35	.71	0.00	26	40	,65	-11	26	40	.65	.11	52	34	.65	-10	26	36	.72	. 02

^{*} SIGNIFICANT AT F 17 0.05 I INCREASED ABOVE CONTROL

Table 22 AVERAGE IMPLANTS PER PREGNANT FEMALE - AZINZHOS-METHYL

46	EK	CONTROL	74-09	20 MG/KG	74-09 4	C MG/KS	74-09 80	MG/KG	TEM	2 46/KG
					MULTIPLE TREA	THENT				
	1	319/ 28=11	.39 375/	34=11.03	300/	20=10.71	306/	27=11.33	316/	29=10.90
	5	303/ 26=11	.65 335/	29=11,55	315/	27=11.56	310/	27=11,48	253/	27=10.65
4	3	245/ 23=10	.65 379/	33=11,48	338/	29=11.66	272/	24x11.33	346/	32=10.97
9	٠	309/ 27=11	.44 367/	30=12.23	369/	29=12.72**[247/	21=11.76	246/	27= 9.85 *
	5	274/ 24=11	.42 337/	29=11.62	310/	26=11.92	228/	20=11.40	356/	30=11.87
	6	302/ 24=12	.58 345/	30=11.50 *	276/	27=10.22**	323/	20=11.5+*	273/	27=10.11 **
	7	346/ 30-11	.53 288/	27=10.67	278/	25=11.12	262/	24=10.92	304/	27=11.33
	8	292/ 27=10	.61 306/	26=11,77	293/	26.11.27	250/	22=11.36	322/	26:12,38 **I

^{*} SIGNIFICANT AT P LT 0.05
** SIGNIFICANT AT P LT 0.01
I INCREASED ABOVE CONTROL

Table 23 AVERAGE DEAD IMPLANTS PER PREGNANT FEMALE - AZINPHUS-METHY.

٠	EEx	104	TROL		14-04	£0	~3/46	74-39 4	4 1	46/4G	74-09 AC	MG	/4G	† <u>E</u> M .	9 MG/	KG
	· · · · ·	-						MULTIPLE TREA	THEN	ī						
	1	13/	\$6=	.46	13/	3+=	. 36	34/	28=	1.21 .	19/	27=	.70	42/	29=	2.14 **
	ż	97	26=	.31	16/	25=	.55	15/	54=	.56	19/	27=	.70*×	77/	27=	2,85 **
L	3	9,	23z	.39	31/	33.	.94	0/	29.	.20	11/	24=	.46	87/	35=	2.72 **
50	4	2/	27=	.07	51/	30-	.70**	31/	29=	1+07 **	7/	21=	. 33*	11/	27=	-41 *
	5	117	24 z	.45	15/	29=	.52	6/	Zé=	.23	117	20=	.55	22/	30=	+73
	é	21/	24=	.69	16/	36=	,33 * •9	17/	27=	.63	9/	28=	.32**0	17/	27=	.63
	7	367	30=	1.64	8/	27~	. 36	8/	25=	. 32	19/	24=	.79	11/	27×	.41
	ŝ	197	27=	.70	13/	26.	.50	10/	Ž6s		6/	22=	.36	117	24 z	-+2

SIGNIFICANT AT P L(3.05 SIGNIFICANT AT P LT 9.01 D DECREASED BELOW CONTROL

Table 2+ CHI-SQUARE TEST OF THE DEATH INDEX - AZINPHOS-METHYL 1 DEGREE OF FREEDOM

	WEEK		VEHI	CLE CON	TROL	74	4-07 	20 H	IB/K6	74	-09	40 #	G/KG	74	-09	80 M	IG/KG	75	H	۲ .	G/XS
		wDI	N PRG	NOEX	CHISQ	м 1Сш	N PRG	DEATH	CHISQ	N #DI	N PRG	HTA3C A3DNI	CHISQ	401	N PRG	DEATH	CHISQ	*DI	N. PRG	DEATH INDEX	CHISG
									MULTER	LE 1	FREAT	MENT									
	1	10	28	.36	0.00	12	34	. 35	.05	14	28	.50	.46	11	27	-+1	.01	25	29	.46	13.27**
51	2	7	26	.27	0.00	11	29	.38	,34	ð	27	.30	.01	12	27	.44	1.09	26	27	.96	24.26**
	3	9	53	.39	0.00	16	33	.48	.10	5	29	.17	2.11	8	24	.33	.01	25	32	.78	7.05**
	4	2	27	.07	0.00	13	30	.43	7.70 **	14	29	.46	4,53**	7	21	.33	3,65	8	27	,30	3.07
	5	9	24	, 38	0.00	13	29	. 45	.67	6	26	,23	.64	7	20	, 35	.02	10	30	. 33	.00
	6	15	2+	,63	0.00	•	30	.27	5,61 **0	9	27	.33	3,25	8	20	.29	4,73 4	10	27	.37	2.36
	7	8	30	.27	0.00	7	27	,26	.06	7	25	,20	.04	10	24	.42	.76	9	27	.33	.07
	a	12	27	.44	0,00	10	26	.30	.03		26	.31	.55	a	22	.36	.08	10	26	.38	.03

^{*} SIGNIFICANT AT P LT 0.05
** SIGNIFICANT AT P LT 0.01
D DECREASED BELOW CONTROL

Table 25 NUMBER OF DEAD IMPLANTS PER TOTAL DIPLANTS - AZINTHOS-MITHYL

**	EEK	CCAIROL	~- +	74-39	20	45/KG	74-09	40	MG/#6	74-09 6) MG	/×6	TE# .	2 #G/	KG
							MULTIPLE TRE	RATHEN	T						
	;	13/ 319=	104	13/	375=	.03	34,	/ 300=	•11	:4/	306=	.36	62/	316=	.20 **
	2	%/ 3gjæ	.03	16/	335=	.05	15/	/ 312=	.05	19/	310#	.06	77/	293=	. 26 **
	3	9/ 245.	.04	31/	379=	.08	a,	336=	.02	11/	272*	.04	87/	348=	.25 AM
52	4	2/ 309±	.01	511	367e	.06 **	31.	/ 369=	.08 **	7/	247=	.03*	117	265=	.04*
	5	11/ 274	,04	15/	337#	.04	6,	/ 310=	. o Z	11/	226=	.05	55/	356s	,06
	6	21/ 302=	.07	10/	3452	.33 **D	17/	/ 276=	,04	9/	323-	.03**0	17/	273=	.06
	7	30/ 346±	.09	8/	205=	.03	•	276.	.03	19/	262=	.07	11/	366±	.04
	8	19/ 292=	.07	13/	306=	. 04	104	/ 293=	•03	87	250=	.03	117	322=	-03

SIGNIFICANT AT P LT 0.05
SIGNIFICANT AT P LT 0.01
DECREASED BELOW CONTROL

Table 26

CHI-SQUARE TEST OF THE FERTILITY INDEX - MALATHION
1 DEGREE OF FREEDOM

	HEEK	VEHICLE CONTROL			VEHICLE CONTROL			74-07 1253 MG/KG			74-87 2500 46/KG				74-07 5000 MG/KG					.2 MG/KG	
		N P#G	N MTD	FERT. INDEX	CHISQ	N PAG	N MTD	FERT. INDEX	CHISE	N PRG	N H7D	FERT. INDEX	CHISQ	N PRG	N MTD	FERT, INDEX	CHISG	N PRG	PTD	FERT. INDEX	CHISE
	MULTIPLE TREATHENT																				
5	1	26	40	.70	0.00	31	40	•77	.26	26	40	-65	.06	29	40	•72	0.00	29	40	.72	0.00
	2	26	40	.65	0.00	30	+0	.75	.54	24	40	.60	.05	31	34	.79	1.40	27	39	.69	.03
	3	23	40	-57	0.00	\$3	38	.61	.00	24	40	.60	0.00	33	40	.52	1* \$8.¢	32	40	.80	3,72
	•	27	40	.67	0.00	25	38	.66	.01	22	36	.58	-41	₹7	40	.67	.06	27	+0	,67	.06
	5	24	40	.60	0.00	21	36	.58	.01	22	36	.61	-02	34	40	. 85	5,08 *I	30	40	. 75	1.42
	6	24	38	.63	0.00	24	36	.76	1.26	19	34	.56	-15	35	40	.90	5.02 *I	27	38	.71	.24
	7	36	30	.79	0.00	30	36	.63	.03	19	34	.56	3.39	32	40	,60	.03	27	26	.75	.02
	8	27	38	•71	0.00	30	36	.83	, 96	16	34	.47	3.36	37	40	.92	4.72*1	26	36	.72	.02

^{**} SIGNIFICANT AT P LT 0.05

I INCREASED ABOVE CONTROL

Table 27 AVERAGE IMPLANTS PER PERCHANT FEMALE - MALATHION

9£	.€<	CON	TROL	74-07	1250 FE/KG	74-07	2500 MB/AG	74-57 53	05 MG/KG	1EH .	2 - G/K6
						HULTIPLE TREA	ATMENT				
	:	3197	28=11.39	346/	31=11,16	298/	26=11.46	321/	29-11-07	316/	29+10+90
	2	3937	26=11.65	363/	30412,10	267/	24=11,12	354/	3:11.48	293/	27=10.85
.n	3	6-3/	23=10.65	281/	23=12,22 *1	305/	24a12,71°I	402/	33=12,18 41	348/	32±10,87
54	4	309/	27m11,44	304/	25=12,16	256/	22=11.64	300/	27=11.11	266/	27= 9.85*
	5	2757	24=11,42	238/	21=11,33	243/	22-11.05	3867	34=11.35	356/	30=11.87
	47	3627	24=12,54	319/	28=11.36 *	226/	19-11.69	391/	35+11.17 **	273/	27=10,11**
	3	346/	30=11,53	337/	30=11_23	235/	19=12,37*1	352/	32=11,00	306/	27:11,33
	9	292/	27=10.83	323/	30%19,77	187/	16=11,69	397/	37=10,73	322/	26=12,38==1

^{*} SIGNIFICANT AT P LT 0.05 ** SIGNIFICANT AT P LT 6.01 I INCREASED ABOVE CONTROL

Table 28 AVERAGE DEAD IMPLANTS PER PREGNANT FEMALE - MALATHION

MEEK		CONTROL			74-07 1250 MG/KG		74-07 2	2500)	1Ģ ∕KĠ	74-67 50	74-07 5000 MG/KG			2 MG/NG	
-								MULTIPLE TREA	THEN	'					
	ı	13/	28=	.46	16/	31*	-56	5/	26=	.31	13/	29=	.45	62/	29= 2+14 **
	2	8/	26=	.31	12/	30≠	.40	11/	24=	.46	11/	31=	, 35	17/	27= 2.85**
55	3	9/	23=	, 39	14/	23=	.61	14/	24=	,58	147	33≖	.42	87/	324 2.72**
V.	•	2/	27=	.07	147	25=	.56**	8/	22=	. 36 *	7/	27=	.20	11/	27= .41*
	5	117	246	.46	4/	21=	.19	8/	22=	. 36	6/	34.	.24	22/	30= .73
	6	21/	24=	.88	51/	28=	.75	\$0/	19=	1.05	23/	35=	.66	17/	27= .63
	7	30/	30=	1.00	10/	30=	.33	6/	19*	.35	15/	32=	.47	11/	27= ,41
	8	19/	27=	.70	19/	30=	.63	7/	16=	.44	32/	37•	.86	117	26= .42

^{*} SIGNIFICANT AT P LT 0.05 ** SIGNIFICANT AT P LT 0.01

Table 29 CHI-SQUARE TEST OF THE DEATH INDEX - MALATNION 1 DEGREE OF FREEDOM

,	ežEK		VEHICLE CONTAGE			74	-07	1250 #	G/K6	74	-07	2500 #	6/K6	74	-07	5000 ×	G/RG	71	EM	.2.	8/kg
		N 13a	N PAG	DEATH INCEX	CH15Q	N 171	N PRQ	DEATH INDEX	CHISQ	A01 H	N PRG	DEATH INDEX	CRISQ	#DI	PRG	DEATH	Cx159	#D1	N PHG	Death Inger	CHISO
									HULT I	PLE 1	TA Z A1	MENT									
. 25	1	10	26	.36	4.00	13	31	.42	.05	7	26	.27	.16	20	29	.34	.03	25	29	.86	13.27 **
Ġ,	2	7	26	.27	3.00		30	.27	.00	9	24	.36	,25	8	31	.26	.04	26	27	.96	24.26 **
	3	9	23	.39	0.00	7	23	.30	.16	11	24	,46	.03	9	33	,27	.41	25	32	.78	7.05 **
	•	ż	27	.07	00.0	10	25	.40	6,04*	5	2\$.23	1.24	5	27	.39	.66	8	27	,30	3.07
	2	9	24	.29	9.60	3	21	-14	5.01	6	\$5	.27	.18	7	34	.21	1,26	10	30	,33	.00
	6	15	24	.63	0,00	11	28	.39	1.93	6	19	.32	2.91	16	35	.46	1.01	10	27	.37	2,36
	,	8	30	.27	5,90	7	36	,23	0,90	4	19	.21	.01	12	32	.38	.41	9	27	.33	.07
	ê	12	27	.44	0.69	14	34	.47	.01	7.	16	.44	.07	16	37	, 43	.03	10	26	,38	,03

^{*} SIGNIFICART AT P LT 0.05
** SIGNIFICART AT P L1 0.01

Teble 30 NUMBER OF DEAD IMPLANTS PER TOTAL IMPLANTS - MALATRION

	EEĸ	CONTROL		74-07	1250	#8/K6	74-07 25	00 M	G/K3	74-07	5000 H	9/KG	754	2 #6/	*G
							MULTIPLE TREAT	MENT							
	1	13/ 319=	.04	10/	346=	.05	3/ 2	9 9 =	.03	13	/ 321=	.04	62/	316=	*50 **
	2	8/ 303=	.03	12/	363=	.03	11/ 2	67 =	.04	11	/ 356=	.63	77/	293=	, 26 **
	3	9/ 245=	.04	14/	281=	.05	14/ 3	05=	.05	14	/ 402=	.03	87/	348#	.25 **
57	4	2/ 309=	.01	-14/	304=	.05**	e/ 2	56=	.03	7	/ 300=	.02	117	266=	.04 *
	5	11/ 274=	.04	4/	236=	.02*D	8/ 2	43=	.03		/ 386=	.02	52/	356±	.06
	6	21/ 3020	.07	51/	318=	.07	\$0/ S	26=	. 19	23	/ 391=	.06	17/	2734	.06
	7	30/ 346=	.09	10/	337=	.03	6/ 2	35=	.03	14	/ 352=	.04	117	306=	.04
	8	19/ 292=	.07	19/	323=	.06	7/ 1	87=	.04	32	/ 397=	.00	11/	355*	.03

[•] SIGNIFICANT AT P LT 0.05 •• SIGNIFICANT AT P LT 0.01 D DECREASED BELOW CONTROL

Table 31

CHI-SQUARE TEST OF THE PERTILITY INDEX - PARATHICK
1 DEGREE OF PREEDOM

wEE	K		VEAL	CLE CON	FRCL	7.	•-0ì	62.5 M	G/KG	74	-01	125. 4	3/KG	74	-01	256. A	t/KG	75		., 4	G/KG
. 8	,	N 186	** *10	FERT. INDEX	CHISQ	n Pre	N MTD	FERT.	CH150	PRG		FERT. INDEX	CH1\$9	N PRG	N MTD	FERT. INDEX	CHISI	N PHG	N HTD	FERT.	CHISQ
									MULT!	IPLE 1	REAT	HENT									
:	2	23	40	.57	0.00	25	40	.63	.05	27	40	.67	.48	55	40	455	0.00	29	+0	.72	1.37
ž	2	27	39	,65	0.00	35	40	.80	.71	23	40	.57	.72	53	+0	.57	sy,	27	96	.+9	.06
3	9	26	40	.45	0.90	23	40	.57	.21	20	40	.50	1.28	26	40	, 65	.05	32	43	48.	1.57
•	,	27	•0	,67	0.00	25	40	.63	.45	23	40	,57	.48	\$R	40	.70	0.00	27	40	.67	.06
•	5	29	40	.72	0.00	25	+0	.03	.51	25	40	.63	.51	30	40	.75	0.00	30	40	.75	0.00
•	b	29	40	.72	9.00	28	40	.70	0.00	53	40	.57	1.37	32	40	.80	.29	27	34	,71	.01
1	,	29	49	.72	4.30	29	≜ ŋ	,72	.04	21	4¢	.52	2.61	24	40	.72	.66	27	36	.75	-00
•	•	32	48	.80		33	46	. 42		29	40	.72	.28	39	••	. 75	,07	24	36	.72	.28

•

Table 32 AVERAGE IMPLANTS PER PREGNANT FEMALE - PARATHION

wE	EK	CONTROL	74-01 62.5 MG/KG	74-01 125. HG/#G	74-01 250, 46/K6	TFM .2 MG/KG
				MULTIPLE TREATMENT		
	1	265/ 23=11.52	266/ 25=10.64	314/ 27=11.63	224/ 22=10.1R=	315/ 29=10.90
	2	305/ 27=11.30	337/ 32=10.53	250/ 23=10.47	234/ 27-10.35	293/ 27=10.85
٠.	3	268/ 26=10.31	257/ 23=11.17	246/ 20=12.30 **1	277/ 26=10.65	348/ 32=10.87
9	4	298/ 27=10.67	277/ 25=11.08	253/ 23-11-00	311/ 28=11-11	266/ 27: 4.85
	5	334/ 29=11.52	299/ 25=11.96	285/ 25=11.40	339/ 30=11.30	356/ 30=11.87
	6	323/ 29*11.14	322/ 20=11.50	259/ 23=11,26	331/ 32=10.34	273/ 27#10.11
	7	323/ 29#11-14	322/ 29=11-10	236/ 21=11-24	339/ 29=11.69	304/ 27=11.33
	8	381/ 32=11.91	393/ 33=11.91	336/ 29=11.59	355/ 30=11.83	322/ Z6#12.38

[•] SIGNIFICANT AT P LT 0.05 •• SIGNIFICANT AT P LT 0.01 I INCREASED ABOVE CONTROL

Table 33 AVERAGE DEAD IMPLANTS PER PREGNANT FEMALE - PARATHION

¥	EEX	CON	TROL		74-01	62.5	MS/KG	74-01 1	25. *	16/K 6	74-01 25	0. ×	6/KP	TE4 .	2 MG	/KG
								PULTIPLE TREA	TMENT	İ						
	1	6/	23=	.35	18/	25=	.12	117	27=	•41	8/	55=	. 16	62/	29=	2-1401
	2	117	27=	.41	14/	32=	.44	10/	23=	.43	17/	23=	.74	77/	27=	2,85**
- CPA	3	16.	26#	.62	7/	2 65	.30	10/	20=	.50	6/	2 +=	.31	87/	32=	2.7244
Š	4	16/	27=	.59	9/	25=	.36	5/	23±	.22*D	42/	28=	1.50	11/	27=	.41
	5	15/	29=	.52	11/	25=	,52	14/	25=	.56	117	30=	.37	22/	30≖	.73
	5	9/	29=	.31	10/	28.	.36	9/	23#	. 39	147	37=	.44	17/	27=	.63
	7	21/	29=	.72	15/	29*	.52	23/	21=	1.10	22/	29=	.7é	117	27=	.41
	è	13/	32=	.41	13/	33*	.39	9/	29=	•31	6/	30=	.20	1)/	24=	.42

[•] SIGNIFICANT AT P LT 0.05 •• SIGNIFICANT AT P LT 0.01 D DECREASED BELOW CORTEGE

4

Table 34

CHI-SQUARE FEST OF THE DEATH INDEX - PARATHION
1 DEGREE OF PREEDOM

,	IEEK		VEHI	CLE CON	TROL	74	-01	62.5	19/KG	74	-01	125. *	G/KG	74	-01	250. M	6/RG	T #	^г м	۾ ج.	G/KG
		ADI	N PRG	DEATH INDEX	CHISQ	WDI	N PRG	HTA30 X30N1	CHISO	10M	N PRG	DEATH	CHISQ	₩D[PRG	DEATH	CHISU	#D1	N PHG	DEATH INDEX	CHISU
									HULT:	IPLE 1	REAT	MENT									
61	1		53	.35	0.00	6	25	. 24	.25	9	27	.33	.04	5	22	.23	.32	25	29	.86	12.49**
	2	9	27	.33	0.00	11	32	.34	.04		23	.35	.54	7	23	.30	.01	26	27	.96	20.79**
	3	10	26	.30	0.00	7	23	.30	.08	8	20	.40	.04	7	56	-27	.35	25	38	,7A	7.854
	4	11	27	•41	0.00	8	25	.32	.13	4	23	•17	2.21	10	28	.36	-01	a	۲2	.35	.32
	5	11	29	.38	0+06	7	25	-28	.23	9	25	.36	.02	8	30	-27	.42	10	30	. 33	•01
	6	•	29	.28	0-00	9	28	•32	-01	7	23	•30	- 51	10	32	•31	-00	10	27	. 37	•55
	7	12	29	•41	0.00	12	29	•41	.07	12	21	.57	.06	11	29	.36	0.00	9	27	. 13	-12
	е	11	32	.34	0.00	11	33	. 33	.03	9	29	.31	.00	5	30	-17	1.70	10	26	. 38	.00

** SIGNIFICANT AT PLT 0.01

Table 35 WWHEN OF DEAD IMPLANTS PER TOTAL IMPLANTS - PARITHION

⊎E:	ĒΚ	CONTROL		74-0i	62.5	M6/K3	74-01	125	. 4G	/KG	74-31	25	0. MG	/46	164		.2 FG/	K.G
							MULTIPLE TR	EATH	ENT									
	1	8/ 2654	.03	18/	266×	.07	11	/ 31	4=	.04		8/	25+=	.04	6	2/	316=	+20##
	2	117 305=	.04	14/	337=	.04	10	/ 25	0=	.04	1	7/	239=	.07	7	7/	293=	.26**
_	•	16/ 268=	.06	7/	257=	.03	10	/ 24	6=	.04		8/	277=	.63		7,	3482	.25 **
62	•	16/ 288*	.06	9/	277=	.03	5	/ 25:	3=	.02 tb	•	2/	311=	-14	3	1/	266=	.04
	Ē	15/ 334=	.04	13/	299*	. 64	14	/ 28	5=	.05	1	1/	339=	.03	2	2/	356#	. 96
	٤	4. 323=	.03	10/	322:	.03	9	/ 25	9 =	.03	1	4/	331=	.04	1	7/	273=	.06
	7	21/ 323=	.07	15/	355>	.05	23	/ 23	6=	•10	2	2/	334=	.04	ı	1/	304=	.04
	0	13/ 301=	.03	13/	393=	.03	9	/ 33	60	.03		6/	355=	• 0 2 ÷s	1	1/	355=	.03

^{*} SIGNIFICANT AT P LT 0.05 ** SIGNIFICANT AT P LT 0.01 D DECREASED BELOW CONTROL

Tatle 36 CHI-SQUARE TEST OF THE FERTILITY INDEX - PARATHION-METHYL 1 SEGREE OF PREEDOM

	#EEK		VEH!	CLE CON	TRGL	7	05	20 M	G/KG	74	-05	+0 +	16/KG	74	4-05 	80 %	₩/KĜ	76	M	, > M	3/<6
		PRG	М НТО	FERT. INDEX	CHISQ	N PRG	MTD	FERT. INDEX	CHIPG	N PRG	N HTU	FERT. INDEX	CH156	N PHU	N MTD	FERT, INCEX	CHISG	N Pkg	ATD	FERT. INDEX	CHISG
									MULTIP	LE 1	REAT	MENT									
	1	23	40	.57	0.00	29	40	.72	1.37	24	40	.60	0.00	29	40	.72	1.37	29	40	.72	1.37
53	2	27	39	.69	0.00	33	40	.62	1,45	23	40	.57	.72	29	40	.72	.01	27	39	.69	.06
	3	26	40	.65	0.00	30	40	.75	.54	32	40	.60	1.57	28	40	.70	-06	32	40	.80	1.57
	4	27	40	+67	0.00	38	+0	•95	6.21 **I	26	37	.70	• 0 0	26	39	.67	.03	27	40	, 67	.06
	5	29	40	•72	0.00	32	40	.80	. < 6	24	40	.60	. 69	30	40	.75	6.00	30	43	.74	0.00
	6	29	•0	.72	0.00	33	40	.82	.65	30	40	.75	0+60	2•	40	.60	. 89	21	35	.71	-01
	7	29	40	•72	0.00	36	40	.90	2.75	32	40	.80	8	33	4 G	.82	.65	27	36	.75	.00
	ė	32	40	.80	0.00	32	40	0	.06	35	+0	.88	.37	34	40	.85	.09	26	36	.72	.28

^{**} SIGNIFICANT AT P LT 0.01 I INCREASED ABOVE CONTROL

Table 37 AVERAGE IMPLANTS PER PREGNANT PERALE - PARATRION-METRYL

u č	EK	CONTROL	74-05	20 #6/KG	74-05 4	O HG/KG	74-05 80	MG/KG	1E4 .	2 MG/KG
			•		MULTIPLE TREA	TMENT				
	÷	265/ 23+1	1.52 301/	29=10,36±	268/	24=11-17	303/	29=10.45+	316/	29=10.90
	2	345/ 27=1	1,30 347/	33=18,52	241/	23=10,+0	323/	29=11,14	293/	27=10.85
•	3	268/ 26-1	0.31 306/	30=10.20	321/	32=10.34	297/	28=10.61	348/	32=10.87
\$	4	268/ 27=1	0.67 417/	38=16.97	275/	26=10.58	281/	26-10-81	266/	27= 9.85
	5	334/ 29=1	1.52 354/	32=12.16	300/	24=12.50	368/	30=12.27	356/	30=11-07
	6	323/ 29=1	1.14 366/	33-11.09	334/	30=11-13	279/	24-11,62	273/	27=10.11
	7	323/ 29+1	1,14 401/	36:11,14	357/	32:11,16	399/	33412,09	306/	27=11.33
	#	381/ 32eI	1.41 347/	32×10.64 ,	407/	35=11.63	402/	34=11.82	322/	26#12.38

^{*} SIGNIFICANT AT P LT 0.05 ** SIGNIFICANT AT P LT 0.01

Table 38 AVERAGE DEAD IMPLANTS PER PREGNANT FEMALE - PARATH!ON-METHY).

4 6	£κ	CON	THOL		74-05	20	MG/KG	74-05 4	0 1	16/46	74+05 80	M (b/KG	TEM	,2 MG	/RG
	_	-					-	HULTIPLE TREA	7MEN1	t						
	1	e/	23=	.35	9/	29=	.31	25/	24×	1-04 *	16/	29=	.55	62/	29=	2-14mm
	2	11/	27=	.41	10/	33=	. 30	8/	53=	5د.	9/	29=	.31	77/	27=	2.85**
65	3	16/	26=	.62	6/	30≖	.27 AD	22/	32=	.69	34/	25=	1.51	87/	32=	2.72**
Ç	4	16/	27=	.59	181	38=	.47	5/	26=	•1¥ *D	9/	26=	• 35	11/	27=	••1
	5	15/	29=	.52	23/	32=	•72	17/	2+=	. 71	12/	30=	.40	22/	30=	• 73
	•	4/	24=	.31	20/	33=	.61	10/	30=	+23	6/	24=	.25	17/	27#	.63
	7	21/	29=	.72	7/	362	.19 =D	11/	32.	٠ 34	16/	33 2	.48	11/	27=	+41
	8	13/	32=	.41	11/	32-	.34	18/	35=	•51	12/	34=	. 35	. 117	26=	•42

[•] SIGNIFICANT AT P LT 0.05
• SIGNIFICANT AT P LT 0.01
D DECREASED BELOW CONTROL

Table 39
CHI-SQUARE TEST OF THE DEATH INDEX - PARATHION-METHYL

1	uê.Er		in3v	CLE COM	TROL	74	4-05 	20 4	e/KG	74	4-05	40 #	6/Ku	74	-05	86 4	5 /₹6	76		. 2	E/KG
		#D1	PRG	DEATH INDEX	CHISE	N EDI	N PRG	REATH KEON!	CHISH	#01 #	N PR6	DEATH INDEX	CHISQ	₩ #01	N PR6	DEATH INDEX	CH150	N UDI	P×G	DEATH INDEX	CHISG
									MŲLT	IPLE :	TREAT	MENT									
66	1	đ	23	. 35	0.00		29	. 29	.07	12	24	.50	-58	¥	29	•31	.00	25	29	-86	12.49**
~	5	9	27	, 33	0.00	9	33	.27	.05	•	23	.26	.46		24	,28	.03	26	47	.96	20,79**
	3	10	2+	.38	0.00		30	.27	.42	14	32	.44	.02	4	28	.32	.64	25	32	.78	7.85**
	•	11	27	.41	0.00	14	36	.37	.00	5	26	,19	1,98	1	26	.27	.60	¥	27	.30	.32
	5	11	29	.38	0.00	11	32	.34	.00	10	24	.+2	-00	10	30	.33	.01	10	30	.33	.01
	6	4	29	• 28	3-00	11	33	+33	- 05		30	.27	. 05	6	24	• 25	+01	10	27	.37	- 22
	7	<u> </u>	29	+41	0.00	6	36	-17	3./4	•	32	.25	1+18	13	33	•39	•01	ý	27	.33	-12
	8	11	32	.34	0.00	B	32	-25	- 30	7	35	-20	1-10	8	34	.24	.49	10	26	.38	+00

^{**} SIGNIFICANT AT P LT 0.01

fable 40 NUMBER OF DEAD IMPLANTS PER TOTAL IMPLANTS - PARATHION-METHYL

et	£K	CONTROL	+	74-05	20	MG/KG	74-05 40 I	H6/KG	74-03 80	M6/K6	TEM	2 46/	
							MULTIPLE TREATMENT	ī					
	1	8/ 265=	.03	9/	301=	.03	25/ 268=	• 39*	16/	103= .05	62/	316=	.2044
	2	11/ 305=	.04	10/	347=	.03	8/ 241=	.03	9/ 3	.03	17/	293±	. 2044
σ.	3	16/ 268=	.06	8/	306=	.03	22/ 331=	.07	34/ 8	97= +11	87/	348=	. 2544
67	٠	16/ 288=	.06	18/	417=	+04	5/ 2 75 =	+ u 2+D	9/ 2	181= ·03	11/	266 =	•04
	5	15/ 334*	.04	23/	389=	.06	17/ 300=	+06	12/ 3	168 2 .03	22/	356=	.06
	6	9/ 323=	.03	20/	366=	.05	10/ 334=	.03	6/ 1	279= .02	17/	273=	.06
	7	21/ 323=	.07	7/	+01=	.02 *D	11/ 357=	.03	167	99= .04	117	306=	.04
	8	13/ 381=	.03	11/	347=	-03	18/ 407=	- g4	12/	102= .03	11/	322*	•03

SIGNIFICANT AT PLT 0.05
SIGNIFICANT AT PLT 0.01
D DECREASED BELOW CONTROL

Table 41 CAL-SQUARE TEST OF THE FERTILITY INDEX - QUINTOZEAE (FCMB)
1 DEGREE OF FREEDOM

,	HE.E.		14 3 V	CLE CON	FROL	ï.	440×	1250 =	6/KG	74	-08	2500 M	G/KG	7:	•-0a	5000 M	G/KG	T1	EM	× 5.	6/KG
		72G	% UTU	FERT. INOEX	CHISG	N PRG	MTD	FERT. INDEX	CHT50	Ŋ PRS	N MTD	FERT. INDEX	CH150	h PRG	N MTD	FERT. INCEX	CHISQ	PAG	MTD	fert. Inôfi	CH150
									WULT:	IPLE T	REAT	MENT									
68	i	28	40	.7G	6.52	23	40	.72	0.00	30	40	.75	.06	31	49	.77	.26	54	40	.72	0.00
ÓΦ	2	26	40	.65	2.00	21	34	.62	.00	55	40	.55	.47	26	40	.65	.05	27	39	.69	.03
	3	23	40	+57	0.00	25	38	.65	.27	26	38	-66	.50	29	40	.72	1.37	32	40	.80	3.72
	•	27	40	.67	0.60	33	39	.87	3,09	30	40	,15	.2•	28	40	.70	0,09	27	+0	.67	.06
	5	5+	40	.60	0.00	19	38	.50	.44	28	+0	.70		33	40	-62	3.914[30	• 6	.75	1,42
	6	24	38	-63	0,00	53	38	·ě1	0.00	26	49	-65	-00	36	40	.90	6-47±I	27	36	-71	.24
	7	3v	38	.79	0.00	27	36	,71	.26	27	40	.67	.78	28	+0	.70	.42	27	36	.75	.02
	8	27	33	.71	0.00	40	38	.79	.25	31	40	.77	.15	30	40	.75	.02	26	36	.72	.02

^{*} SIGNIFICANT AT P LT 0.05 I INCREASED ABOVE CONTROL

Table -2 AVERAGE IMPLANTS PER PREGNANT FEMALE - QUINTOZENE (FCNB)

•	EE#	CONTE	ROL	74-08	1250 46/KG	74-08 Z	500 MG/+G	74-08 50	OÇ #G/KG	!Em .	2 4 0/K3
-						MULTIPLE TREA	THENT				
	1	319/ 8	28=11.39	349/	29=12.03	336/	30=11.27	361/	3]=11.65	316/	29=10.90
	2	303/ 2	26=11.65	222/	21=10.57	235/	22=10-68	259/	26= 9.964	293/	27=10.85
69	3	245/ 2	23*10.65	296/	25=11.64	326/	26=12.54 ==I	353/	29*12+17*1	348/	32*10.87
9	4	309/ 2	27=11.44	392/	33=11.68	349/	30=11-63	317/	20=11.32	266/	27= 9+85*
	5	274/ 2	24=11,42	214/	19=11,26	342/	28=12,21	376/	33=11,39	356/	30=11.67
	6	302/ 2	24=12.58	267/	23=11.01	291/	26=11.19 **	+00/	36=11.11=	273/	27=10.11 **
	7	346/ :	30=11.53	267/	27=10.63*	292/	27=10.ml	302/	28=10.79	306/	27=11-33
		292/ 2	27=10.61	354/	30=11.80	336/	31=10.H4	333/	30=11.10	322/	26=12.38 **!

SIGNIFICANT AT P LT 0.05
SIGNIFICANT AT P LT 0.01
I INCREASED ABOVE CONTROL

Table 43 AVERAGE DEAD IMPLANTS PER PREGNANT FEMALE - QUINTOZENE (MONE)

	eE t K	CGN	TAOL		74-08	1250	46/KG	74-08 Z	500 H	6/K6	74-08 4	00 ×6	/KG	TEN .	2 46/6	KĠ
								MULTIPLE THEA	THENT	,						
	1	13/	28=	.46	117	29=	. 38	12/	30×	.40	11/	31-	.35	62/	59= 2	2.14 **
	2	8/	26 <i>±</i>	.31	12/	21=	.57	15/	22=	.68	6/	26*	.23	77/	27= 2	2.85 **
~	3	97	3 3=	-39	13/	25=	-52	7/	5 6=	-27	15/	29=	-52	87/	32= 2	2.72 **
70	4	21	27=	.07	15/	33=	.45**	7/	30=	. 23	10/	29=	.36*	11/	27=	.41 =
	5	117	242	.46	10/	19=	.53	21/	28=	.75	10/	33=	.48	22/	30=	,73
	5	21/	24=	.88	6/	23=	. 35 *D	9/	26=	.35 **D	16/	36=	.44 AD	17/	27=	.63
	7	30/	30=	1.00	11/	27=	-41	16/	27=	.59	50/	58=	.71	11/	27=	•41
	a	19/	27=	.70	17/	30=	.57	10/	3]=	.32	13/	30=	.43	11/	26*	.42

SIGNIFICANT AT P LT 0.05
SIGNIFICANT AT P LT 0.01
D DECREASED BELOW CONTROL

Table 44 CHI-SQUARE TEST OF THE DEATH INDEX - QUINTOZENT (PONS)
1 DEGREE OF FREEDOM

	MEEK		VEH!	CLF CON	TPOL	7:	4-08	1250 M	G/KG	74	-08	2500 ×	G/KG	74	-08	5000 4	G/KG	71	F# 	,2 M	G/KG
		MUT.	N PRG	DEATH	CHISQ	N UDI	N PHG	DEATH	CHISQ	HOI	PRS	DEATH INDEX	CHISQ	10# N	N P#6	OEATH INDEX	CHISG	P01	N PHG	DEATH INDEX	CHISG
									MULTIS	PLE 1	REAT	MENT									
7	1	10	26	•34	0.00	7	29	.24	.44	10	30	.33	•01	ų	31	•24	.07	25	2.9	,86	13.27 **
7	2	7	26	.27	0.00	10	21	.48	1,35	9	55	.41	,51	5	26	.00	2.15	26	27	. 94	24.26 **
	3	9	23	•39	0.00	11	25	.44	.00	6	56	.23	.82	11	29	. 38	.04	25	32	,7A	7.05 **
	4	2	27	.07	0.00	12	33	. 36	5.44 *	6	30	.20	.97	7	28	• 25	1.96	A	27	.30	3.07
	5	9	24	•38	0.00	9	19	.47	.12	13	28	-46	-1+	13	33	. 39	.02	10	30	. 23	.00
	٥	15	24	+63	0.00	6	23	.26	4.91 40	8	26	.31	3.86*D	12	36	.33	3.84 *D	10	27	.37	2.35
	7	8	30	.27	0.00	10	27	. 37	.31	14	27	.5 2	2.61	10	26	.36	•21	9	27	. 33	.07
	8	12	27	.44	0.00	13	30	.43	.03	¥	31	.29	. 49	12	30	.40	.00	10	26	.38	.03

^{*} SIGNIFICANT AT P LT 0.05
** SIGNIFICANT AT P LT 0.01
D DECREASED BELOW CONTROL

Table 45 NORBER OF DEAD INPLANTS PER TOTAL IMPLANTS - QUINTGZENE (PCNA)

4	EEK	(6878 0)	74-08	1250 8	49/KG	74-08	2500 M	6/KG	74-06	3000 46	/KG	17 #	2 46/	KG
						MULTIPLE TRE	ATMENT							
	1	13/ 319= .	.04 11/	349=	.03	12/	338=	.04	1:	/ 361=	.03	62/	316=	.50**
	ş	8/ 303m ,	.03 12/	555=	.05	15/	235=	.oé	•	/ 259=	.02	77/	293=	.26*
	3	9/ 245= .	-04 13/	296=	-04	7/	326=	•02 = D	15	353 =	•04	87/	348=	-25"
72	4	2/ 309= .	.0) 15/	392=	.64##	7/	349#	• 05	10	/ 317=	.03*	117	266=	. 04t
	5	11/ 2744	.04 30/	214=	.05	21/	342=	.06	16	376=	.04	22/	356=	.06
	6	21/ 302= .	.07 8/	267=	,02±D	9/	291=	.03 *D	10	400=	.04	17/	273±	.06
	7	30/ 346m .	.09 11/	287=	.64	16/	292=	.05	20)/ 302±	.07	117	306=	•04
	é	19/ 292=	•07 17/	354=	-05	10/	336=	•03	t:	333#	•04	11/	322=	•03

^{*} SIGNIFICANT AT P LT 0.05 ** SIGNIFICANT AT P LT 0.01

D DECREASED BELOW CONTROL

Table 46 CHI-SQUARE TEST OF THE PERTILITY INDEX - PRORATE
1 DEGREE OF FREEDOM

	AEEK		VEHI	CLE CON	INUL	7	-04	5 H	G/46	74	-64	10 M	6/KG	74	-04	20 ×	6/AG	76	, M	H 5.	G/KG
73		PRG	N HTD	FERT. INDEX	CHISQ	М РКС	MTU	FERT, INDEX	CHISG	N PHG	N MTO	FEAT. INDEA	CHISQ	М РНБ	HTD	FERT. INDEX	CHISE	PAG	њ н г о	FERT. INDEX	CHISH
									MULT	IPLE 1	HEAT	MENT									
	1	23	40	.57	0.00	23	40	.57	.05	51	40	.52	• 42	2.	+0	.60	0.00	29	40	.72	1.37
	2	27	39	.69	0,00	30	40	.75	-10	2.5	40	,57	.72	29	40	.72	.01	27	34	.69	.06
	3	26	40	.05	0.00	26	+0	.65	.45	24	40	.60	. 45	31	49	,77	.98	32	40	.80	1,57
	•	27	40	.67	0.40	26	40	.05	0.40	26	40	, 65	0.40	32	40	.80	1.03	27	40	.67	.06
	5	29	40	.72	0.00	25	40	,63	.51	27	40	.67	.u6	31	40	.77	.07	30	+ 0	.75	0.00
	6	29	40	.72	0.00	25	40	,63	.51	26	40	.65	.23	33	40	.82	£0,	21	36	.71	.01
	7	29	40	.72	0.00	30	+0	.75	0.40	29	40	.72	.06	35	40	.88	1.95	27	jb	.75	. 0e
		32	40	.80	0-00	26	40	.65	1.57	29	40	.72	. 28	30	40	.75	-07	Sp	30	.72	-26

Table 47 AVERAGE UMPLANTS PER PREGNANT FEMALE - PROGATY

	WEEK	CONTROL	79-94 5	#6/X6	74-04 1	3 MG/RÛ	74-04 20	#6/KG	TEM .	2 4G/K6
					MULTIPLE TREA	TMENT				
	1	265/ 23=11.52	241/ 2	3=10.48*	5511	21=10.52 *	269/	24=11,21	316/	29=10.90
	2	305/ 27=11.30	326/ 3	10.01=0	255/	23=11.09	347/	29=10,59	293/	27=10.85
~	3	268/ 26=10,31	299/ 2	?6=11.50+I	257/	24=10.71	341/	31=11.00	346/	32=10,07
74	4	288/ 27:10,67	291/ 2	6=11,19	277/	26=10.65	353/	32=11,03	266/	27= 9.85
	5	334/ 29-11.52	278/ 2	25=11,12	312/	27=11,56	369/	31=11,90	356/	30=11.87
	6	323/ 20=11,10	305/ 2	25=12,20=1	296/	26=11,35	369/	33±11,79	273/	27=10.11
	7	323/ 29m11.14	336/ 3	90=11.20	317/	24=10.43	+07/	35:11.63	306/	27=11-33
	8	301/ 32=11.91	315/ 2	26=12-12	335/	29=11+55	324/	30=10.40*	322/	26=12+36

^{*} SIGNIFICANT AT P LT 0.05 ** SIGNIFICANT AT P LT 0.01 I INCREASED ABOVE CONTROL

Table 48 AVERAGE DEAD IMPLANTS PER PREGNANT FEMALE - PHORATE

٠	IEEK	CON	THOL		74-44	5	MG/KG	/4-04 1	U 1	16/ng	74-04 20	Mu	/KG	. iem	2 MG/KG
							-	MULTIPLE THEA	THEN	r					
	1	8/	23=	. 35	9/	23=	.39	10/	21=	• • 15	3/	24=	.13	62/	29= 2.14 **
	2	11/	27=	,41	16/	30≖	.53	4/	23*	-17	17/	29=	,59	77/	27= 2,85 **
~.1	3	16/	26=	.62	14/	26=	.50	12/	24=	.50	15/	31=	.48	87/	32= 2,72 **
75	•	16/	27=	.59	15/	26=	,58	26/	Zôz	1.40	12/	35=	.38	11/	27= .41
	5	15/	29=	.52	13/	25=	.>2	117	27=	.41	13/	31=	.42	22/	30= .73
	6	9/	29.	.31	13/	25=	.52	7/	26:	.27	7/	33=	.21	17/	27= ,63
	7	21/	292	.72	13/	30±	,43	22/	29=	./6	7/	35=	.20*D	11/	27= .41
	6	13/	32=	.41	10/	50=	.38	26/	29=	.40	117	30=	.37	117	26= ,42

[•] SIGNIFICANT AT P LT 0.05
• SIGNIFICANT AT P LT 0.01
D DECREASED BELOW CONTROL

Table 49 CMI-SQUARE TEST OF THE DEATH INDEX - PHORATE
1 DEGREE OF FREEDOM

:	uf k s		4E=1	CLE CON	TRUL	?-		5	16/K6	74	-04	10 H	G/Ku	7.	-04	20 H	€/ 16	76	# 	* S.	16/K3
		WOI	N Pito	DEATH INDEX	CH!Se	#U1	N PNG	DEATH INDER	CHISG	M IOu	PRG	DEATH INDEX	CHISO	N lue	N 486	DEATH LAUEA	CHISH	w01	N P#G	DEATH	CHISG
									HULT	IPLE 1	reat	MENT									
	ı	a	23	.35	v.80		23	. 35	.10	7	21	.33	. 05	2	24	• 98	3.45	25	د ع	.86	12.49 **
76	S	9	27	.33	8.00	13	30	.+3	. 25	2	23	.09	3.07	13	24	.45	.37	26	₫ 7	.96	20.79 **
0,	3	10	24	,38	0.00	7	26	,27	. 45	12	24	,50	. 49	10	31	,32	.0+	25	32	,78	7.65 **
	4	11	27	.41	6.00	11	26	.42	.03	15	26	,56	.42	11	32	,34	,05	8	٤7	.30	.32
	5	11	29	.36	0.60	14	25	.48	. 22	7	15	,26	.46	11	31	. 35	.01	10	30	. 33	.01
	6	8	54	.28	0.00	10	25	.+0	.46	7	26	.27	.08	7	33	,21	.00	10	۲3	.37	.22
	7	15	29	.41	0.00	ý	30	.30	.91	15	29	.52	.48	>	35	.14	4.66*D	9	٤7	,33	S1.
	â	. 1	32	.34	0,06	¥	26	.35	.47	14	24	.46	.71	6	30	.27	.lo	10	6 6	.38	.00

^{*} SIGNIFICANT AT P LT 0.05
** SIGNIFICANT AT P LT 0.01
D DECREASED BELOW CONTROL

Teble 50 NUMBER OF DEAD IMPLANTS PER TOTAL IMPLANTS - PHORATE

wE	Eĸ	CUNTROL	_	74-04	5	MG/KG	/4-04	10	MG/KG	74-04 2	0 46	/KG	lem .	,2 MG/	KG
••							MULTIPLE TRO	EATML	nT						
	1	8/ 265=	.03	4/	241=	.04	10.	/ 221:	cu. =	3,	264=	.01 *D	62/	316=	.20 ±#
	2	11/ 305=	.04	16/	326=	.05	4.	/ 255	- ,02	17/	307=	.06	17/	293=	.26 **
	3	16/ 268=	.00	13/	299=	-04	12.	/ 257	z . ¢5	15,	341=	.04	67/	348=	.25 **
77	•	16/ 288=	.06	15/	291=	-05	26.	/ 477	9 ن	12/	353=	.03	11/	266=	.04
	5	15/ 334=	.04	13/	278=	.05	11.	/ 315	= .u4	13,	369=	.04	\$2/	356*	•06
	6	9/ 323=	.03	13/	305=	.04	7.	/ 295	± .02	7.	289=	.02	17/	273=	-06
	7	21/ 323=	.07	13/	336=	.04	22	/ 317	= ,07	7,	407=	.02 ±D	117	306=	.04
	8	13/ 381=	.03	10/	315=	.03	26.	/ 335	± , , 8	11,	324=	.03	117	355=	.03

[•] SIGNIFICANT AT P LT 0.05 •• SIGNIFICANT AT P LT 0.01 D DECREASED BELOW CONTROL

Table 51

DNA REPAIR SYNTHESIS ASSAY OF Monocrotophos (dpm/µg DNA)

			Monocre	otophos	(M)			4MQO (M)
		0_	10-7	10-6	10-5	10-4	10-3	10-5
Sample	1	65 [#]	46	31	54	70	64	1354
	2	35	42	9*	46	46	86	1273
	3	39	39	25	40	36	69	1306
	4	34	34	25	40	40	51	975
	5	30	26	46	53	64	64	972
	6	20	†	†	- - †	37	92	1135
Mean		32	38	32	47	50	71	1169
SD		7	7	10	7	14	15	168
SE		6	3	5	3	6	6	69

Cell culture and experimental conditions

T-25 flask cultures of passage 24 WI-38 cells were initiated in medium containing 10% serum. The medium was replaced with medium containing 0.5% serum on day 5 following initiation and subsequently on days 11 and 15. The assay was conducted on day 22.

Hydroxyurea (10-3M) preincubation = 1 hour.

Compound expesure time = 3 hours.

Postincorporation incubation = medium containing TdR, 3/4 hour.

Cells were removed with IN NaOH, 1 minute, 70°C.

DNA was extracted by the PCA-hydrolysis procedure and measured following reaction with diphenylamine.

Negative control and compound solvent = 0.5% EtCH.

^{*} Sample deleted from calculations because of low DNA value.

[†] Only five samples used.

[&]quot;H-TdR added with compound.

³H-TdR incorporation = 1 µCi/ml (S.A. = 6.7 Ci/mmole), 3 hours.

Table 52

DNA REPAIR SYNTHESIS ASSAY OF Monocrotophos
WITH METABOLIC ACTIVATION
(dpm/µg DNA)

	_	Mono	crotophos	(M)		DMN (M)
		<u>o</u>	10-4	10-3	10-2	5 × 10 ⁻²
Sample 1	l	55	67	43	87	206
2	2	54	66	48	84	220
3	3	52	43	52	82	223
Mean		54	59	48	84	216
SD	•	2	14	4	2	9
SE		1	8	2	1 .	5

Cell culture and experimental conditions

T-25 flask cultures of passage 24 WI-38 cells were initiated in medium containing 10% serum. The medium was replaced with medium containing 0.5% serum on day 4 following initiation and subsequently on day 10. The assay was conducted on day 16.

Hydroxyurea $(10^{-2}M)$ preincubation = 1 hour.

Compound exposure time = 1 hour, with the 9,000 g fraction of a mouse liver homogenate.

³H-TdR added with compound.

³H-TdR incorporation = 1 μ Ci/ml (S.A. = 6.7 Ci/mmole), 4 hours.

Postincorporation incubation = medium containing TdR, 1 hour.

Cells were removed with 1N NaOH, 10 minutes, 22°C.

DNA was extracted by the PCA-hydrolysis procedure and measured following reaction with diphenylamine.

Negative control and compound solvent = 0.5% EtOH.

Table 53

DNA REPAIR SYNTHESIS TESTING

OF BROMACIL

(dpm/µg DNA)

	_ ,	- * - Tarkensa , 	Bromaci	1 (M)			4NQ0 (M)
	<u>_0</u> *	10-7	10-6	10-5	10-4	10-3 f	10-5
Sample							
1	195	207	201	248	148	129	2670
2	153	212	215	178	144	137	2850
3	212	156	121	179	152	105	2688
4	230	187	218	231	204	107	2702
5	217	182	184	240	144	80	2438
6	298	251	220	178	200	74	2662
Mean	218	199	193	209	165	87	2668
SD	48	32	38	34	28	50	134
SE	19	13	15	14	12	20	55

^{*} Negative control and compound solvent = 0.5% DMSO.

 $^{^{\}dagger}$ Slight precipitate observed at $10^{-3}~\text{M}$ and $10^{-4}~\text{M}$

Table 54

DNA REPAIR SYNTHESIS ASSAY OF BROMACIL
WITH METABOLIC ACTIVATION
(dpm/ug DNA)

		Bromacil (M)						
	0_	10-7	10-6	10-5	10-4	10-3	5 X 10 ⁻²	
Sample								
1	113	191	91	102	120	161	400	
2	102	112	117	102	110	178	397	
3	141	174	110	102	149	131	*	
4	158	189	82	91	135	185	529	
5	218	152	104	126	167	141	645	
6	136	170	96	190	165	133	448	
Mean	145	165	100	119	141	155	484	
SD	41	30	13	37	23	24	105	
SE	17	12	5	15	9	10	50	

^{* %}ample lost.

Table 55

DNA REPAIR SYNTHESIS ASSAY

OF CACODYLIC ACID

(dpm/ug DNA)

			Cacodylic Acid (%)						
		<u>0</u> *	10-7	10-8	10-5	10-4	10-3+	10-8	
Sample	1	61	41	47		31	36	1891	
	2	31	48	27		27	19	1681	
	3	32	59	25	63	30	45	2418	
	4	18	32	38	68	29	19	2245	
	5	25	39	‡	23	22	38	1430	
	6	35	22	‡	29	28	36	2275	
Mean		34	40	34	46	28	32	1990	
SD		15	13	10	23	3	11	387	
SE		6	5	5	11	1	4	158	

^{*} Negative control and compound solvent = 0.5% DMSO.

[†] Slight lowering of pH at 10⁻³ M.

^{*} Sample lost.

Table 56

DNA REPAIR SYNTHESIS ASSAY OF CACODYLIC ACID
WITH METABOLIC ACTIVATION
(dpm/µg DNA)

		Cacodylic Acid (M)						
	<u>o</u> *	10-5	10-4	10-3	5 × 10 ⁻²			
Sample 1	44	25	21	29	381			
2	30	33	22	25	384			
3	23	39	28	21	339			
Mean	33	32	24	25	368			
SD	11	7	4	4	25			
SE	6	4	2	2	15			

^{*} Negative control and compound solvent = 0.5% EtOH.

Table 57

DNA REPAIR SYNTHESIS ASSAY OF CAPTAN (dpm/µg DNA)

			Captan (M)					
	<u>o*</u>	10-8	10-7	10-4	10-5	10-4	10-5	
Sample 1	37	43	41	74	81	8	924	
2	64	58	53	60	81	6	947	
3	76	50	68	52	57	7	1106	
4	76	60	73	37	51	5	801	
ទ	63	61	56	50	72	5	760	
6	66	44	66	82	65	6	884	
Mean	64	51	59	59	68	6	904	
SD	14	8	12	16	12	1	122	
SE	6	3	5	7	5	0.4	50	

Negative control and compound solvent = 0.5% DMSO.

Table 58

DNA REPAIR SYNTHESIS ASSAY OF CAPTAN
WITH METABOLIC ACTIVATION
(dpm/µg DNA)

		Captan (M)					
	<u>o*</u>	10-5	10-4	10-3	5 × 10-8		
Sample 1	30	53	89	7	t		
2	40	50	73	5	323		
3		48	71	5	384		
Mean	35	50	77	6	353		
SD	7	2	9	1	43		
SE	5	1	5	0.6	31		

^{*} Negative control and compound solvent = 0.5% DMSO.

[†] Sample lost.

Table 59

DNA REPAIR SYNTHESIS ASSAY OF CHLOROPYRIFOS

(dpm/µg/DNA)

			Chloropyrifos					
		<u></u>	10-7	10-6	10-5	10-4	10-3	10-5
Sample	l.	115	280	282†	•	61	109	1337
	2	143 [†]	129	93	110	67	‡	‡
	3	96	102	84	110	60	*	1721
	4	72	95	64	\$	52	68	1220
	5	97	89	99	98	64	37	1208
	6	78	. 98	85	86	79	49	1209
Mean		92	103	85	101	64	66	1339
SD		17	15	13	11	9	31	220
SE		7	7	6	5	4	15	98

^{*} Negative control and compound solvent = 0.5% DMSO.

 $^{^{\}dagger}$ Sample deleted from calculations because of low DNA value.

^{*} Sample lost.

Table 60

DNA REPAIR SYNTHESIS ASSAY OF CHLOROPYRIFOS
WITH METABOLIC ACTIVATION
(dpm/µg DNA)

		The state of the s	DMN (M)			
			10-5	1.0-4	10-3	5 × 10-3
Sample	1	72	79	70	52	355
	2	75	65	75	71	349
	3	55	67	63	79	384
Mean		67	70	69	67	363
SD		10	8	6	14	18
SE		6	5	4	8	11

^{*} Negative control and compound solvent = 0.5% DMSO.

Table 61

DEN REPAIR SYNTHESIS ASSAY

OF DINOSEB

(dpm/µg DNA)

		Dinoseb (≌)					
	_0*	10-7	10-4	10-6	10-4 +	10-6	
Sample 1	115	101	67	103	106	1337	
2	143*	101	68	100	100	5	
3	96	112	54	116	79	1721	
4	72	61	58	62	66	1220	
5	97	57	63	60	67	1208	
6	78	58	73	60	76	1209	
Mean	92	82	64	84	82	1339	
SD	17	26	7	25	17	220	
SE	7	11	3	10	7	98	

^{*} Negative control and compound solvent = 0.5% DMSO.

[†] Suggestion of precipitate at 10⁻⁴ M.

^{*} Sample deleted from calculations because of low DNA value.

[§] Sample lost.

Table 62

DNA REPAIR SYNTHESIS ASSAY OF DINOSEB
WITH METABOLIC ACTIVATION
(dpm/µg DNA)

			Dinoseb (M)						
			10-5	10-4	10-3	5 x 10 ⁻²			
Sample	ı	72	93	76	71	355			
	2	75	81	80	64	349			
	3	55	51	58	89	384			
Mean		67	75	71	74	363			
SD		10	22	12	13	18			
SE		6	12	7	8	11			

^{*} Negative control and compound solvent = 0.5% DMSO.

Table 63

DNA REPAIR SYNTHESIS ASSAY OF DSMA (dpm/µg DNA)

				DSMA		(M)		4NQO (M)
		<u>o*</u>	10-7	10 ⁻⁶	10-5	10-4	10-3	10-6
Sample	ι	67	51	79	86	100	62	902
	2	58	54	67	64	155	49	1241
	3	44	36	99	64	35	58	1380
	4	55	36	400 [†]	45	44	59	990
	5	79	62	74	53	55	68	1087
	6	105	32	75	107	89	69	971
Moan		68	45	79	70	80	61	1095
SD		22	12	12	23	45	7	182
SE		9	5	5	9	18	3	74

^{*} Negative control and compound solvent = H_2O .

[†] Sample deleted from calculations because of low DNA value.

Table 64

DNA REPAIR SYNTHESIS ASSAY OF DSMA
WITH METABOLIC ACTIVATION
(dpm/µg DNA)

		DSMA		(M)	DMON (M)
	<u>o</u> *	10-5	10-4	10-3	5 x 10 ⁻³
Sample 1	44	28	25	38	3 81
2	30	36	29	36	384
3	23	21	32	28	339
Mean	33	29	29	34	368
SD	11	8	4	5	25
SE	6	4	2	3	15

^{*} Negative control and compound solvent = 0.5% EtOH.

Table 65

DNA REPAIR SYNTHESIS ASSAY

OF FENTHION

(dpm/µg DNA)

			Fenthion (M)						
		<u>o</u> *	10-6	10-5	10-4	10-3+	10-5		
Sample	1	89	65	154	37	64	2983		
	2.	43	105	337 ‡	34	67	2272		
	3	107	83	85	40	36	2552		
	4	62	46	54	63	63	4059		
	5	61	34	102	31	44	1728		
	6	94	51	44	-~ §	33	1893		
Moan		76	64	88	41	51	2583		
SD		24	26	44	13	15	857		
se		10	11	16	5	6	350		

^{*} Negative control and compound solvent = 0.5% EtCH.

[†] Precipitate observed at 10-3 M.

 $^{^{*}}$ Sample deleted from calculations because of low DNA value.

[§] Sample lost.

Table 66

DNA REPAIR SYNTHESIS ASSAY OF FENTHION WITH METABOLIC ACTIVATION (dpm/µg DNA)

			Fenthion (M)						
		<u>o*</u> .	10-5	10-4	10-3	5 × 10 ⁻²			
Sample	ì	55	54	60	51	206			
	2	54	50	46	64	220			
	3	52	42	64	63	223			
Mean		54	48	57	60	216			
SD		2	6	10	7	9			
SE		1	4	6	4	5			

^{*} Negative control and compound solvent = 0.5% EtOH.

Table 67

DNA REPAIR SYNTHESIS ASSAY OF FOLPET (dpm/µg DNA)

			Folpet (M)						
		<u>o*</u>	10-8	10-7	10-6	10-5	.10-4	10-6	
Sample	1	37	43	63	45	82	29	924	
	2	64	58	62	54	58	25	947	
	3	76	91	108	52	92	31	1106	
	4	76	83	91	92	65	26	801	
	5	63	107	72	70	85	31	760	
	6	66	60	84	104	107	29	884	
Mean		64	73	80	71	82	28	904	
SD		14	24	18	25	18	2	122	
SE		6	10	7	10	7	1	50	

^{*} Negative control and compound solvent = 0.5% DMSO.

Table 68

DNA REPAIR SYNTHESIS ASSAY OF FOLPET WITH METABOLIC ACTIVATION (dpm/µg DNA)

			Folpet (M)						
			10-5	10-4	10-3	5 X 10 ⁻²			
Sample	1	30	49	63	49	†			
	2	40	54	82	40	323			
	3	t	54	98	58	384			
Mean		35	52	81	49	353			
SD		7	3	18	9	43			
SE		5	2	10	5	31			

^{*} Negative control and compound solvent = 0.5% DMSO

[†] Sample lost.

Table 69

DNA REPAIR SYNTHESIS ASSAY

OF AZINPHOS-METHYL (dpm/µg DNA)

	Azinophos-methyl (M)							
		<u>o</u> *	10-	7 10-	10-	s <u>10</u> -	10-	10-5
Sample	ı	102	145	99	264 [‡]	51	55	804
	2	99	115	103	99	105‡	39	924
	3	77	96	71	82	55	33	629
	4	97	125	100	80	85	34	856
	5	85	93	\$	79	57	97	761
	6	111	17	72	56	68	35	897
Mean		95	108	89	79	63	49	822
SD		12	25	16	15	14	25	87
SE		5	10	7	7	6	10	36

^{*} Negative control and compound solvent = 0.5% DMSO.

 $[\]dagger$ Precipitate observed at 10^{-3} M.

[†] Sample deleted from calculations because of low DNA value.

[§] Sample lost.

Table 70

DNA REPAIR SYNTHESIS ASSAY

OF AZINPHOS-METHYL WITH METABOLIC ACTIVATION

(dpm/ug DNA)

				و پوستاند داکاره کاران کاران درگان		DMN (M)
		<u>o*</u>	10-5	10-4	10-3	5 × 10-2
Sample	1	30	70	75	42	†
	2	40	66	65	55	323
	3	†	78	41	54	384
Mean		35	71	60	50	353
SD		7	6	18	8	43
SE		5	3	10	4	31

^{*} Negative control and compound solvent = 0.5% DMSO.

[†] Sample lost.

Table 71

DNA REPAIR SYNTHESIS ASSAY OF MALATHION (dpm/µg DNA)

			4NQO (M)				
	_0*	10-7	<u>10-6</u>	10-5	10-4	10-3	10-5
Sample					•		
1	123	110	128	144	90	33	1943
2	125	111	124	78	126	34	1626
3	106	86	130	74	67	23	1538
4	100	133	116	119	113	44	1264
5	114	116	127	132	91	39	1737
6	138	110	143	127	156	40	1651
Mean	118	111	128	112	107	35	1626
SD	14	15	9	29	31	7	225
SE	6	6	4	12	13	3	92

^{*} Negative control and compound solvent = 0.5% EtOH.

Table 72

DNA REPAIR SYNTHESIS ASSAY OF MALATHION WITH METABOLIC ACTIVATION (dpm/µg DNA)

		Malathion (M)					
	<u>o*</u>	10-5	10-4	10-3	5 x 10-2		
Sample 1	55	48	46	38	206		
2	54	49	52	48	220		
3	52	62	55	37	223		
Mean	54	53	51	41	216		
SD	2	8	5	6	9		
SE	1	5	3	4	5		

^{*} Negative control and compound solvent = 0.5% EtOH.

Table 73

DNA REPAIR SYNTHESIS ASSAY

OF METHOMYL

(dpm/µg DNA)

			Methomyl (M)						
		<u>o*</u>	10-7	10-6	10-5	10-4	10-3	10-6	
Sample	1	135	95	116	117	126	88	1442	
	2	133	†	133	108	116	69	1544	
	3	165	100	129	97	122	69	1518	
	4	72	98	97	115	109	69	1385	
	5	104	85	103	116	109	70	1423	
	6	103	95	93	139	130	61	†	
Mean		118	94	112	115	118	71	1462	
SD		32	6	17	14	9	9	67	
SE		13	3	7	6	4	4	30	

^{*} Negative control and compound solvent = 0.5% DMSO.

[†] Sample lost.

Table 74

DNA REPAIR SYNTHESIS ASSAY OF METHOMYL.
WITH METABOLIC ACTIVATION
(dpm/µg DNA)

	-	Meth	DMN(M)		
	_ <u>o*</u>	10	10	10	5 × 10-2
Sample 1	44	26	22	24	381
2	30	25	20	25	384
3	23	22	26	30	339
Mean	33	25	23	26	368
SD	. 11	2	3	3	25
SE	6	1	2	2	15

^{*} Negative control and compound solvent = 0.5% BtCH.

Table 75

DNA REPAIR SYNTHESIS ASSAY

OF MONURON

(dpm/µg DNA)

			Monuron (M)						
		<u>o*</u>	10-7	10-6	10-5	10-4	10-3	10-6	
Sample	1	135	113	86	97	83	48	1442	
	2	133	‡	93	88	72	47	1544	
	3	165	129	89	77	81	46	1518	
	4	72	*	83	75	82	49	1385	
	5	104	118	92	77	84	45	1423	
	6	103	131	110	109	85	38	*	
Mean		118	123	92	87	81	46	1462	
SD		32	8	9	14	5	4	67	
SE		13	4	4	6	2	1	30	

^{*} Negative control and compound solvent = 0.5% DMSO.

 $^{^{\}dagger}$ Precipitate observed at 10^{-3} M.

[†] Sample lost.

Table 76

DNA REPAIR SYNTHESIS ASSAY OF MONURON WITH METABOLIC ACTIVATION (dpm/µg DNA)

		Monuron (M)						
	<u>o*</u>	10-8	10-4	10-3	5 x 10 ⁻²			
Sample 1	30	78	81	74	+			
2	40	88	68	74	323			
3	†	92	63	88	384			
Mean	35	86	71	79	353			
S D	7	7	9	8	43			
SE	5	4	5	5	31			

^{*} Negative control and compound solvent = 0.5% DMSO.

[†] Sample lost.

Table 77

DNA REPAIR SYNTHESIS ASSAY OF MSMA (dpm/µg DNA)

			MSMA (M)						
		_ 0*	10-7	10-8	10-8	10-4	10-3	10-5	
Sample	1	67	38	108	60	93	68	902	
	2	58	84	93	53	52	3 9	1241	
	3	44	114	68	61	66	61	1380	
	4	55	235 [†]	50	63	66	67	990	
	5	79	75	66	75	48	60	1087	
	6	105	53	#	50	59	75	971	
Mean		68	73	77	60	64	62	1095	
SD		22	29	23	9	16	12	182	
SE		9	13	9	4	· 7	5	74	

^{*} Negative control and compound solvent = H_2O .

[†] Sample deleted from calculations because of low DNA value.

^{*} Sample lost.

Table 78

DNA REPAIR SYNTHESIS ASSAY OF MSMA
WITH METABOLIC ACTIVATION
(dpm/µg DNA)

			MSMA (M)					
		<u>o*</u>	10-5	10-4	10-3	5 x 10 ⁻³		
Sample	1	44	27	21	32	381		
	2	30	25	35	25	384		
	3	23	21	34	24	339		
Mean		33	24	30	27	368		
SD		11	3	8	4	25		
SE		6	2	5	3	15		

Negative control and compound solvent = 0.5% EtCH.

Table 79

DNA REPAIR SYNTHESIS ASSAY

OF PARATHION

(dpm/µg DNA)

		Parathion (M)						
	<u>_0*</u>	10-7	<u> 10-6</u>	10-5	10-4	10-3	<u>10⁻⁵</u>	
Sample								
1	123	127	151	221	102	90	1943	
2	125	129	155	129	94	104	1626	
3	106	135	135	157	83	93	1538	
4	1.00	124	200	137	72	116	1264	
5	114	137	160	155	93	102	1737	
6	138	1.45	210	126	71	93	1651	
Mean	118	133	169	154	86	100	1626	
SD	14	7	29	35	13	10	225	
SE	6	3	12	14	5	4	92	

^{*} Negative control and compound solvent = 0.5% EtOH.

Table 80

DNA REPAIR SYNTHESIS ASSAY OF PARATHION WITH METABOLIC ACTIVATION (dpm/µg DNA)

		Parathion (M)					
	<u>o*</u>	10-5	10-4	10-3	5 × 10 ⁻⁸		
Sample 1	44	33	42	20	381		
2	30	33	32	23	384		
3	23	35	30	30	339		
Mean	33	34	35	24	368		
SD	11	1	6	5	25		
SE	6	1	4	3	15		

Negative control and compound solvent = 0.5% EtOH.

^{*}

Table 81

DNA REPAIR SYNTHESIS ASSAY

OF PARATHION-METHYL

(dpm/µg DNA)

			Parathion-Methyl (M)						
		<u>o*</u>	10-7	10-4	10-5	10-4	10-3 +	10-5	
Sample	1	36	36	33	34	44	40	411	
	2	34	38	3 3	55	44	23	781	
	3	86	49	28	31	53	28	782	
	4	94	56	27	52	41	29	858	
	5	53	49	, 35	43	40	29	1296	
	6	112‡	46	41	85	44	27	,1103	
Mean		61	46	33	50	44	.,28	964	
S D		.28	8	5	20	.5	6	227	
Se		13	3	2	8	2	3	102	

1

^{*} Negative control and compound solvent = 0.5% EtCH.

[†] Precipitate observed at 10-3 M.

^{*} Sample deleted from calculations because of low DNA value.

Table 82

DNA REPAIR SYNTHESIS ASSAY OF PARATHION-METHYL

WITH METABOLIC ACTIVATION

(dpm/µg DNA)

			Parathion-Methyl (M)					
		<u>o*</u>	10-5	10-4	10-3	5 × 10 ⁻²		
Sample	1	55	44	65	51	206		
	2	54	54	52	48	220		
	3	52	57	37	45	223		
Mean		54	52	51	48	216		
SD		2	6	14	3	9		
SE		1	4	8	2	5		

^{*} Negative control and compound solvent = 0.5% EtOH.

Table 83

DNA REPAIR SYNTHESIS ASSAY OF QUINTOZENE (PCNB)

(dpm/µg DNA)

			PCNB (M)						
		<u>o</u> *	10-7	10-6	10-6	10-4	. 10-3+	10-5	
Sample	1	61	35	33	21	27	23	1891	
	2	31	43	22	21	18	37	1681	
	3	32	44	31	23	18	19	2418	
	4	1.8	3 0	30	16	18	21	2245	
	5	25	38	27	32	22	27	1430	
	6	35	20	20	39	20	27	2275	
Mean		34	35	27	25	20	26	1990	
SD		15	9	5	8	4	6	387	
SE		6	4	2	3	2	3	158	

^{*} Negative control and compound solvent = 0.5% DMSO.

[†] Precipitate observed at 10⁻³ M.

Table 84

DNA REPAIR SYNTHESIS ASSAY OF QUINTOZENE (PCNB)

WITH METABOLIC ACTIVATION

(dpm/µg DNA)

		PCNB (M)					
	<u>. o</u> *	10-	10	4 10-	3 5 x 10 ⁻³		
Sample 1	. 72	75	95	106	355		
2	2 75	79	71	72	349		
3	55	84	73	49	364		
Mean	67	79	80	76	363		
\$D	10	5	13	29	18		
SE	6	3	8	17	11		

^{*} Negative control and compound solvent = 0.5% DMSO.

Table 85

DNA REPAIR SYNTHESIS ASSAY OF PHORATE

(dpm/µg DNA)

			. Phorate (M)						
		<u>o*</u>	10-7	10-6	10-5	10-4	10-3+	10-5	
Sample	1	36	58	38	25	27	56	411 [¢]	
	2	34	45	44	17	50	45	781	
	3	86	31	107	22	42	55	782	
	4	94	26	5	43	43	50	858	
	5	53	40	44	52	37	61	1295	
	6	112‡	56	26	77	39	59	1103	
Mean		61	43	52	39	40	55	964	
SD		28	13	32	23	8	6	227	
SE		13	5	14	9	3	2	102	

^{*} Negative control and compound solvent = 0.5% EtCH.

[†] Precipitate observed at 10-3 M.

[#] Sample deleted from calculations because of low DNA value.

[§] Sample lost.

Table 86

DNA REPAIR SYNTHESIS ASSAY OF PHORATE WITH METABOLIC ACTIVATION (dpm/µg DNA)

		Phorate (N)					
		10-5	10-4	10-3	5 × 10 ⁻²		
1	55	45	43	37	206		
2	54	59	41	35	220		
3	52	63	39	38	223		
	54	55	41	37	216		
	2	10	2	1.4	9		
	1	6	1	0.8	5		
	2	1 55 2 54 3 52 54 2	0* 10-5 1 55 45 2 54 59 3 52 63 54 55 2 10	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0* 10 ⁻⁵ 10 ⁻⁴ 10 ⁻³ 1 55 45 43 37 2 54 59 41 35 3 52 63 39 38 54 55 41 37 2 10 2 1.4		

^{*} Negative control and compound solvent = 0.5% EtOH.

Table 87

DNA REPAIR SYNTHESIS ASSAY

OF SIMAZINE

(dpm/ug DNA)

		4NQO (M)					
	<u>0*</u>	10-7	10-6	10-5	10-4	10-3	<u> 10⁻⁵</u>
Sample							
1	195	165	151	195	177	369	2670
2	153	91	171	190	193	208	2850
3	212	131	152	312	253	233	2688
4	230	138	146	290	281	165	2702
5	217	152	179	237	166	205	2435
6	298	113	213	305	161	+	2662
Mean	218	132	169	255	205	236	2668
SD	48	27	25	55	50	78	134
SE	19	11	10	22	20	32	55

^{*} Media control and compound solvent = 0.5% DMSO.

[†] Sample lost.

Table 38

DNA REPAIR SYNTHESIS ASSAY OF SIMAZINE WITH METABOLIC ACTIVATION (dpm/µg DNA)

		Simazine (M)					
	<u>o*</u>	10-5	10-4	10-3	5 x 10 ⁻³		
Sample 1	72	57	64	59	355		
2	75	58	60	58	349		
3	55	64	61	76	384		
Mean	67	60	62	64	333		
SD	10	4	2	10	18		
SE	6	2	1	6	11		

Negative control and compound solvent = 0.5% DMSO.

Table 89

DNA REPAIR SYNTHESIS ASSAY

OF TRIFLURALIN

(dpm/pg DNA)

			Trifluralin (M)						
		<u>o*</u>	10-7	10-0	10-6	10-4	10-9	_10-6	
Sample	1	56	42	26	53	51	71	639	
	2	68	29	†	152*	97	123	1125	
	3	51	78	48	68	158 [‡]	112	570	
	4	45	51	76	89	78	83	894	
	5	50	47	79	97	56	80	663	
	6	29	41	59	57	43	53	986	
Mean		50	48	58	73	62	87	812	
\$D		13	17	22	19	28	26	222	
SE		5	7	10	9	12	11	91	

^{*} Negative control and compound solvent = 0.5% EtCH.

[†] Sample lost.

 $^{^{\}ddagger}$ Sample deleted from calculations because of low DNA value.

Table 90

DNA REPAIR SYNTHESIS ASSAY OF TRIFLURALIN
WITH METABOLIC ACTIVATION
(dpm/µg DNA)

			Triflural	~	DMN (M)		
		<u>o*</u>	10-6	10-4	10-3	5 × 10 ⁻⁹	
Sample	1	72	67	79	51	355	
	2	75	58	64	61	349	
	3	55	74	79	†	384	
Mean		67	66	74	56	363	
ŞD		10	8	9	7	78	
SE		6	5	5	5	11	

^{*} Negative control and compound solvent = 0.5% DMSO.

[†] Sample lost.

Table 91

IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM

		Average Number of							
		Metabolic	pg Compound	Histidi	ne-Positiv	e Revertan	ts/Plate		
	Compound	Activation	Added/Plate	TA100	TA1535	TA1537	TA1538		
						_	_		
	Negative control	-		95	13	8	7		
		+		113	13	10	10		
	Positive control, 4-o-tolylazo-1-toluidine	-	25				6		
		+	25				183		
118	Monocrotophos	-	1	87	9	10	11		
00	•	-	5	101	22	ğ	10		
		· -	10	93	14	9	13		
		-	50	107	23	7	10		
		-	100	97	13	11	9		
		_	500	95	17	10	7		
		-	1000	126	14	10	6		
		+	1	101	16	14	12		
		+	5	89	20	13	12		
		+	10	75	16	12	11		
		+	50	79	14	10	10		
		+	100	71	16	15	11		
		+	500	78	19	9	15		
		+	1000	113	18	10	10		

Table 91 (continued)

				Average N	umber of	
	Metabolic	µg Compound	H1stld		e Revertant	s/Plate
Compound	Activation	Added/Plate	TA 100	TA 1.535	TA1537	TA 1538
Negative control	-		145	22	25	16
	+		154	25	24	30
Positive controls						
g-Propiolactone	_	50 µ1		756		
AF-2	-	0.05	372			
2-Anthramine	-	50				. 63
	+	50				338
Bromacil	-	1	120	23	24	26
-	-	5	129	17	13	14
	-	10	123	31	22	13
	-	50	117	29	16	1
		100	136	40	18	19
	_	500	140	30	15	1:
	-	1060	101	14	6	13
	+	1	118	35	21	16
	+	5	131	28	16	20
_	+	10	157	33	21	19
19	+	50	136	26	14	13
-9	.	100	138	30	12	18
	+	500	145	21	20	20
	·	1000	162	8	5	16

Table 91 (continued)

	Metabolic	ug Compound	Histidi	Average Number of Histidine-Positive Revertants/Plate			
Compound	<u>Activation</u>	Added/Plate	TA100	TA1535	TA1537	TA1538	
Negative control	-		56	15	12	7	
	+		72	14	9	15	
Positive control, 4-o-tolylazo-o-toluidine	-	25				10	
	+	25				150	
Cacodylic Acid	-	1	48	17	15	5	
	-	5	42	15	15	11	
	-	10	42	12	15	8	
	-	50	39	18	10	8	
	· –	100	43	22	11	9	
	-	500	44	15	11	9	
	-	1000	44	16	8	8	
	+	1	69	17	14	18	
	.	5	53	15	15	8	
	+	10	64	16	12	18	
¥	+	50	50	15	11	12	
•	+	100	64	18	15	19	
	+	500	54	21	14	15	
&	+	1000	59	14	13	13	

Table 91 (continued)

		Number of						
	Metabolic	ng Compound		Histidine-Positive Revertants/Plate				
Compound	<u>Activation</u>	Added/Plate	TA100	TA1535	TA1537	TA1538		
Negative control	-		72	18	7	8		
	+		98	14 -	3	25		
Positive control, 4-o-tolylazo-o-toluidine	-	2		3		•		
·	+	2		100				
Captan	-	1	211	29	2	7		
	-	5	532	80	5	14		
	-	10	822	76	0	16		
	, -	15	820	104	O .	26		
	-	25	720	80	0	5		
	-	50	Killing	Killing	0	22		
	+	1	141	20	2	19		
	+	5	210	60	2	22		
	+	10	285	113	2	26		
	+	15	340	55	0	21		
	+	25	330	71	Ö	46		
	+	50	704	143	Ĭ	44		

Table 91 (continued)

			Average Number of ,			
	Metabolic	ng Compound		ine-Positiv		
Compound	<u>Activation</u>	Added/Plate	TA100	TA1535	TA1537	TA1538
Negative control	_		92	18	12	16
_	+		80	14	16	16
Positive control, 4-o-tolylazo-o-toluidine	_					15
·	+					168
Chloropyrifos	-	1	66	20	12	2 2
	-	5	92	22	15	28
	-	10	65	14	21 -	24
	-	50	88	26	15	25
	-	100	67	· 20	17	22
	-	500	87	17	18	17
	-	1000	79	13	20	22
	+	1	67	11	15	14
	+	5	71	9	15	16
	+	10	87	11	15	20
	+	50	77	16	18	13
	+	100	77	11	14	16
	+	500	72	13	14	30
	+	1000	77	14	11	22

Table 91 (continued)

			Average Number of Histidine-Positive Revertants/Plate			
Compound	Metabolic Activation	µg Compound Added/Plate	Histidia TA100	TA1535	re Reverta TA1537	TA1538
			4			
Negative control	-		97	15	12	21
	+		80	15	16	17
Positive control, 4-o-tolylazo-o-toluidine	-	25				. 15
	+	25				168
Dinoseb	-	1	69	12	21	15
	-	5	59	12	16	14
	-	10	57	17	18	20
	, -	50	67	17	17	17
	_	100	82	12	16	. 15
		500	91	7	17	19
	-	1000	Killing	Killing	Killing	Killing
	+	1	79	13	19	15
	+	5	82	14	18	14
	+	10	94	12	17	15
	+	50	83	14	15	17
	+	100	87	13	17	14
	+	500	104	12	10	7
	+	1000	Killing	Killing	Killing	Killing

			Histidi	Average Number of - C Histidine-Positive Revertants/Plate			
sitive control, 4-c-tolylazo-o-toluidine	Activation	Added/Place	TA100	TA1535	TA1537	<u>TA1538</u>	
Negative control	_		56	15	12	7	
Ť	+		72	14	9	15	
Positive control, 4-c-tolylazo-o-teluidine	-	25				. 10	
• • •	+	25				250	
DSMA	_	1	50	12	7	4	
• •	-	5	56	10	10	5	
	-	10	51	20	10	3	
	. -	50	66	15	11	8	
	-	100	71	16	7	8	
	-	500	53	13	12	7	
	-	1000	43	12	7	9	
	+	1	54	22	8	8	
	÷	5	85	7	.8	15	
	+	10	50	16	-	3	
	+	50	55	17	11	5	
	+	100	50	13	9	7	
	+	500	60	15	5	10	
	+	1000	53	14	2	8	

Table 91 (continued)

Table 91 (continued)

	Metabolic		e Number of tive Revertants/Plate			
Compound	Activation	ug Compound Added/Plate	TA100	TA1535	TA1537	TA1538
Negative control	_		101	26	6	13
	+		102	26	3	24
Positive control, 4-o-tolylazo-o-toluidine	_	25				13
	+	25				78
Azinphos-methyl	_	1	66	39	4	10
·	_	5	74	22	3	11
	-	10	74	23	2	9
	-	50	73	30	3	11
	-	100	75	49	4	10
		500	107	30	2	10
	-	1000	104	31	3	13
	+	1	76	23	1	20
	+	5	69	23	2	25
c.	+	10	68	24	3	28
<u> </u>	+	50	81	22	3	21
	+	100	65	24	2	19
	+	500	84	30	0	24
	+	1000	119	24	Ó	23

Table 91 (continued)

			Average Number of 3							
		Metabolic	µg Compound		.ne-Positi <mark>v</mark>					
	Compound	<u>Activation</u>	Added/Plate	TA100	TA1535	TA1537	TA1538			
	Negative control	-		94	36	10	12			
		+		80	20	9	12			
	Positive control, 4-o-tolylazo-o-toluidine	-	25				15			
		+	25				168			
	Fenthion	-	1	64	31	8	13			
_		-	5	97	34	11	17			
ν. 2		-	10	105	32	15	12			
_			50	112	36	15	14			
		-	100	100	38	16	14			
		-	500	107	42	10	14			
		-	1000	90	32	6	12			
		+	1	114	15	10	12			
		+	5	9 7	17	12	10			
		+	10	81	9	9	17			
		+	50	90	16	12	21			
		+	100	98	14	7	13			
		+	500	86	22	8	10			
		+	1000	89	20	10	15			

Table 91 (continued)

		Average Number of					
	Metabolic	µg Compound	<u> Histidi</u>	ne-Positiv	e Revertar	ts/Plate	
Compound	Activation	Added/Plate	TA100	TA1535	TA1537	TA1538	
Negative control	_		72	19	3	8	
Hegative control	+		93	15	7	20	
Positive control, 4-o-tolylazo-o-toluidine	-	25				. 6	
•	+	25				183	
Folpet	_	1	127	20	7	5	
	-	5	150	35	0	8	
	-	10	244	39	1	11	
		25	300	48	0	14	
	-	50	550	111	2	7	
	_	100	286	110	0	2	
	-	500	Killing	Killing	0	Killing	
	-	1000	Killing	Killing	0	Killing	
	+	1	112	20	2	30	
	+	5	173	51	1	26	
	+	10	241	79	5	35	
	+	25	420	70	6	36	
	+	50	720	218	10	45	
	+	100	532	216	3	48	
	+	500	killing	Killing	0	Killing	
	+	1000	Killing	Killing	, 0	Killing	

Table 91 (continued)

		Metabolic μg Compound				Average Number of Average Number of Histidine-Positive Revertants/Plate				
	Compound	Activation	Added/Plate	TA1.00	TA1535	TA1537	TA1538			
	Negative control	-		.89	10	8	7			
		+		92	10	10	7			
	Positive control, 4-c-tolylazo-o-toluidine	-	25				. 6			
		+	25				183			
	Malathion	-	1	54	8	11	3			
_		-	5	48	7	1.2	3			
128		-	10	85	7	10 .	5			
		· -	50	9,9	8	6	7			
		-	100	81	7	7	5			
		-	500	82	12	5	7			
		-	1000	61	10	7	4			
		+	1	65	5	6	9			
		+	5	61,	6	8	5			
		+	10	99	9	7	4			
		+	50	9 2.	8	7	6			
		+	100	75	9	6	5			
		+	500	90	8	12	4			
		+	1000	66	7	10	4			

Table 91 (continued)

			Average Number of				
	Metabolic	µg Compound	Histidine-Positive Revertants/Plate				
Compound	Activation	Added/Plate	TA100	TA1535	TA1537	TA1538	
Negative control	_		128	18	33	17	
	+		149	14	20	22	
Positive control, 4-o-tolylazo-o-toluidine	_	25				17	
	+	25				206	
Methomy1	-	1	123	19	28	14	
	-	5	112	20	35	10	
	-	10	98	16	28	18	
	. -	50	109	18	27	14	
	-	100	110	21	34	24	
	-	500	119	17	23	26	
	-	1000	105	13	24	21	
	+	1	145	12	18	15	
	+	5	115	10	18	15	
	+	10	126	12	21	13	
	+	50	129	10	19	20	
	+	100	132	13	20	19	
	+	500	133	10	20	18	
	+	1000	122	14	24	14	

Table 91 (continued)

							Average Number of				
		Metabolic	ug Compound	Histidine-Positive Revertants/Plate							
	Compound	Activation	Added/Plate	TA100	TA1535	TA1537	TA1538				
	Negative control	-		128	17	17	17				
		+		149	12	15	22				
	Positive control, 4-o-rolylazo-o-toluidine	••	25				6				
		+	25				177				
	Monuron	-	1	126	15	15	19				
130.		-	5	. 98	24	12	18				
o.		-	10	108	17	12	22				
		. -	50	122	19	11	21				
		-	100	114	19	15	29				
		-	500	122	20	18	29				
		-	1000	125	22	14	19				
		+	1	125	10	15	21				
		+	5	142	13	15	15				
		+	10	119	17	13	18				
		+	50	116	15	1 9	21				
		+	100	108	15	16	19				
		+	500	104	15	15	12				
		+	1000	123	11	15	17				

Table 91 (continued)

			Average Number of			
	Metabolic	µg Compound		ine-Positiv		
Compound	Activation	Added/Place	TA100	TA1535	TA1537	TA1538
Negative control	_		56	15	12	7
_	+		72	14	9	15
Positive control, 4-o-tolylazo-o-toluidine	-	25				10
	+	25				250
MSMA	-	1	79	15	7	6
	~	5	69	15	13	4
	_	10	62	14	11	6
	, -	50	52	17	11	6
	-	100	41	15	12	7
	-	500	53	17	8	5
	-	1000	48	13	12	5
	+	1	79	11	11	10
	+	5	64	15	8	10
	+	10	65	7	10	9
	+	50	67	7	14	7
	+	100	53	12	8	8
	+	500	66	14	7.	8
	+	1000	68	10	10	10

Table 91 (continued)

			Average Number of				
	Metabolic	µg Compound		ne-Positiv			
Compound	Activation	Added/Plate	TA100	TA1535	TA1537	TA1538	
Negative control	_		95	19	6	6	
	+		114	21	13	7	
Positive control, 4-o-tolylazo-o-toluidine	-	25				6	
	+	25				177	
Parathion:	-	1	94	12	7	8	
	-	5	138	12	7	7	
_	-	10	85	13	4	7	
	. -	50	98	13	4	8	
	-	100	87	15	4	6	
	-	500	110	13	4	8	
	-	1000	107	14	3	13	
	+	1	56	11	12	15	
	+	5	75	16	7	15	
	+	10	69	14	5	19	
	+	50	76	14	6	8	
	+	100	88	17	7	5	
	+	500	105	15	8	9	
	+	1000	103	12	6	12	

Table 91 (continued)

	Metabolic	µg Compound	Histidi	ne-Positív	e Revertan	ts/Plate
Compound	<u>Activation</u>	Added/Plate	TA100	TA1535	TA1537	TA1538
Negative control	_		96	15	8	8
	+		118	17	11	11
Positive control, 4-o-tolylazo-o-toluidine	-	25				6
	+	25				177
PhoTate	-	1	70	17	8	16
	-	5	65	15	8	11
	-	10	85	17	7	11
	<u>.</u> –	50	65	17	5	8
	-	100	72	11	7	9
	-	500	70	14	6	6
	-	1000	58	14	7	9
	+	1	101	14	11	15
	+	5	103	11	8	10
	+	10	79	13	10	12
	+	50	89	15	9	11
	+	100	79	15	6	7
	+	500	59	16	6	11
	+	1000	70	19	8	5

Table 91 (continued)

•		Metabolic	ug Compound	Average Number of Histidine-Positive Revertants/Place			
	Сощроипа	Activation	Added/Plate	TA100	TA1535	TA1537	TA1538
	Negative control			98	10	8	25
	. 1	+		106	7	Š.	26
	Positive controly 4-o-tolylazo-o-toluidine	_	25				22
		+	25				266
	Simazine	-	1	83	7	15	22
_		-	5	72	5	10	20
136		-	10	73	7	20	20
		-	50	87	7	10	22
		<i>'</i> -	100	85	8	12	17
		-	500	71	3	7	25
		-	1000	69	4	11	22
		+	1	84	9	11	22
		+	5	90	4	11	22
		+	10	82	8	16	15
		+	50	83	9	9	14
	44 /	+	100	87	8	11	15
	** /	+	500	89	4	16	15
		+	1000	120	2	10	18

Tratturall

Table 91 (concluded)

	Metabolic	Average Number of Histidine-Positive Revertants/Place				
Compound	Activation	ug Compound Added/Plate	TA100	TA1535	TA1537	TA1538
Negative control	-		96	15	17	14
	+		80	15	20	8
Positive control, 4-o-tolylazo-o-toluidine	- +	25 25				15 1 68
Trifluralin	-	1	73	11	18	15
	-	5	81	12	24	14
	-	10	74	16	29	14
		50	93	19	23	16
	-	100	86	18	25	15
	-	500	76	18	22	11
	-	1000	95	13	18	15
	+	1	72	10	13	9
	+	5	80	13	16	9
	+	10	78	14	18	14
	+	50	90	15	14	13
	+	100	81	8	16	15
	+	500	79	12	13	11
	+	1000	81	12	15	10

Compound	Metabolic Activation	ug of Compound Added per Plate	Average Number of Tryptophan Positive Revertants per Plate
Negative control	-		68
	+		73
Positive control,	-	0.05	204
AF-2	+	0.05	220
Moncrotophos	_	1	. 89
•	_	10	83
	_	50	76
	_	100	77
	-	500	61
	• •	1000	70
	+	1	90
	+	10	88
	+	50	. 76
	+	100	73
	+	500	75
	+	1000	95
Bromacil	-	1	65
	_	10	74
	-	50	71
	_	700	70
	-	500	70
	-	1000	67 、
	+	1	71
	÷	10	73
	+	50 ·	66
	+	100	70
	+	500	70
	+	1000	71

	Metabolic	µg of Compound	Average Number of Tryptophan-
Compound	Activation	Added per Plate	Positive Revertants per Plate
Cacodylic Acid	•	1	111
	-	10	102
	-	50	89
	-	100	82
	-	500	91
	-	1000	85
	+	1	95
	+	10	76
	+	50	79
	+	100	89
	+	500	81
	+	1000	85
Captan	~	1	124
	-	5	381
	-	10	733
	-	15	1358
	-	25	1755
	-	50	2600
	+	1	89
	+	5	182
	+	10	423
	+	15	699
	+	25	955
	+	50	1712

Table 92 (continued)

	Compound	Metabolic Activation	ug of Compound Added per Plate	Average Number of Tryptophan- Positive Revertants per Plate	1:20
	 		1	57	
	Chloropyrifos	-	10	57	
	0112 22 - 2 7	-	50	49	
		•	100	71	
		-	500	52	
		-	1000	42	
		-		60	
		+	1	73	
		+	10	53	
_		+	50	49	
140		+	. 100	61	
		+	500	49	
		+	1000		
			1	64	
	Dinoseb	-	10	73 . '	
		-	50	58″	
		-	100	55 [.]	
		-	500	44- '	
		-	1000	Toxic	
		-		73	
		+	1	69	
		+	10	63	
		+	50	65	
		+	100	49	
		+; +	500 1000	Toxic	

Compound	Metabolic Activation	μg of Compound Added per Plate	Average Number of Tryptophan- Positive Revertants per Plate
	<u></u>		
DSMA	-	1	86
	-	10	81
	-	50	67
	-	100	68
	-	500	68
	-	1000	71
	+	1	69
	+	10	′ 62
	+	50	67
	+	100	73
	+	500	81
	+	1000	79
Fenthion	-	1	59
	-	10	63
	-	50	62
	_	100	56
	_	500	70
	-	1000	71
	+	1	64
	+	10	50
	+	50	67
	+	100	64
	+	500	64
	+	1000	81

Table 92 (continued)

Compound	Metabolic Activation	ug of Compound Added per Plate	Average Number of Tryptophan- Positive Revertants per Plate	· Phys
Folpet	-	1	65	
	-	5	162	
	-	10	170	
	-	25	424	
	-	50	720	
	-	100	1260	
	+	1	74	
	+	5	167	
	+	10	202	
	+	25	900	
	+	50	1680	
	+	100	1880	
Azinphos-methyl	-	1	92	
	_	10	87	
	-	50	83	
	•	100	89	
	_	500	68	
	-	1000	88	
	+	1	83	
	+	10	74	
	+	50	87	
	+	100	86	
	+	500	73	
	+	1000	79	

Table 92 (continued)

Compound	Metabolic Activation	µg of Compound Added per Plate	Average Number of Tryptophan- Positive Revertants per Plate
Malathion	-	1	62
	-	10	54
	_	50	60
	-	100	60
	_	500	54
	-	1000	48
	+	1	58
	+	10	50
	+	50	55
	+	. 100	59
	+	500	75
	+	1000	64
Methomyl	_	1	61
	· _	10	76
	_	50	83
	-	100	57
	_	500	68
	-	1000	71
	+	1	70
	.	10	81
	.	50	78
	• •	100	83
	· +	500	63
	.	1000	74

Table 92 (continued)

Connected	Metabolic	pg of Compound	Average Number of Tryptophan- Positive Revertants per Plate
Compound	Activation	Added per Plate	1001010101010101010101010101010101010101
Monuron	-	1	72
	_	10	68
	_	50	68 57
	-	100	63
	-	500	65
	-	1000	63
	+	1	60
	+	10	· 59
	+	50	47
	+	100	71
	+	500	50
	'+	1000	61
MSMA	_	1	55
	-	10	64
	-	[*] 50	57
	-	100	76
	-	50 0	60
	-	1000	63
	+	1	55
	+	10	71
	+	50	73
	+	100	71
	+	500	61
	+	1000	72

Table 92 (continued)

Compound	Metabolic Activation	µg of Compound Added per Plate	Average Number of Tryptophan- Positive Revertants per Plate
Parathion	-	1	71
	-	10	64
	-	50	66
	-	100	70
	-	500	64
	-	1000	64
	+	1	69
	+	10	53
	+	50	76
	+	. 100	57
	+	500	72
	+	1000	66
Parathion-methyl	-	1	53
	-	10	5 6
	~	50	60
	_	100	68
	-	500	63
	_	1000	52
	+	1	64
	+	10	83
	+	50	60
	+	100	65
	+	500	53
	+	1000	71

Table 92 (continued)

Compound	Metabolic Activation	ug of Compound Added per Plate	Average Number of Tryptophan- Positive Revertants per Plate
Quintozene (PCNB)	_	1	54
,	_	10	59
	-	50	70
	-	100	60
	-	50 0	57
	-	1000	62
	+	1	78
	+	10	67
	+	50	54
	+	. 100	57
	+	500	59
	+	1000	62
Phorate	_	i	63
	-	10	64
	-	50	65
	-	100	49
	-	500	71
	-	1000	60
	+	1	78
	+	10	86
	+	50	83
	+	100	73
	+	500	90
	+	1000	70

Table 92 (concluded)

Compound	Metabolic Activation	ug of Compound Added per Plate	Average Number of Tryptophan- Positive Revertants per Plate
Simazine	_	1	55
	-	10	51
	-	50	73
	-	100	54
	_	500	54
	-	1000	53
	+	1	64
	+	10	66
	+	50	72
	+	100	56
	+	500	71
	+	1000	83
Trifluralin	-	1	75
	-	10	73
	_	50	81
	-	100	86
	-	500	69
	-	1000	60
	+	1	58
	+	10	63
	+	50	63
	+	100	65
	· +	500	70
	+	1000	70

Table 93

MICROBIAL INHIBITION IN ESCHERICHIA COLI AND BACILLUS SUBTILIS

		Dia	meter of Zone	of Inhibition	n (1993)	
A	mg of Compound	E.	coli	B. sub		
Compound	Added to Disc	<u>W3110</u>	p3478	<u>H17</u>	<u>m45</u>	
Positive control, 1-phenyl-3,- dimethyltriazene	1.0	37	52	. 40 .	61	
Negative control, chloramphenacol	0.03	34.5	34	. 32	31	
Monocrotophos	1	6.	6	6	6	
Bromacil	1.0	6.5	6.5	6.5	6.5	
Cacodylic acid	ī	6	6	6	6	
Captan	0.1	6.5	11	9	19	
Chloropyrifos *	2.5	6	10	6	11	
Dinoseb	1	10	17	8.5	11	
DMSA	1	6	6	6	6	
Fenthion	1	6	6	6	6	
Folpet	0.1	6.5	10	6.5	7.5	
Azinphos-methyl	1	6	6	6	6	

145

Table 93 (concluded)

		Dia	meter of Zone	of Inhibitio	n (ma)
	mg of Compound	E.	coli	B. sub	tilis
Compound	Added to Disc	W3110	p3478	<u>H1</u> 7	m45
Malathion	1	6	6	6	6
Methomy1	1	6	6	6	6
Monuron	1	6	6	6	6
MSMA	1	6	6	6	6
Parathion	1	6	6	6	6
Parathion-methyl	1	6 ·	6	6	6
Quintozene (PCNB)	1	6	6	6	6
Phorate	1	6	6	6	6
Simazine	1	6	6	6	6
Trifluralin	1	6	6	6	6

Table 94

IN VITRO ASSAYS WITH SACCHAROMYCES CEREVISIAE D3 - MONOCROTOPHOS

		Percent	Surv	ivors	Mitotic Re	ecombinants
Compound	Metabolic Activation	Concentration (w/v or v/v)	Cells/ml (x 10 ⁻⁷)	Percent of Control	per ml (x 10 ⁻³)	per 10 ⁵ Survivors
		EXPERIMENT 1				
Negative control	· _		5.7	100	4,5	7.9
	+		5.8	100 -	4.5	7.8
Positive control	~	0.1	5.8	102	1,650	2,845
1,2,3,4-Diepoxybutane	+	0.1	4.6	79	1,435	3,120
Monocrotophos	-	5	5.7	100	44	77,2
	+	5	4.7	81	30	63.8
		EXPERIMENT 2				
Negative control	-		9.1	100	8	8,8
	+		8.6	100	9.5	11.0
Monocrotophos	_	5	6,3	69	26	41,2
•	+	5	4.8	56	40	83.3

. 051

Table 95

IN VITEO ASSAYS WITH SACCRAROMYCES CEREVISIAE D3 - BROMACIL

		Percent	Survivors		Mitotic Recombinants	
Compound	Metabolic Activation	Concentration (w/v or v/v)		Percent of Control	per ml (x 10 3)	per 10° Survivors
EXPERIMENT 1						
Negative control	-		4.8	100	3	6.3
	+		4.7	100	3	6.4
Positive control						
1,2,3,4-Diepoxybutane	-	0.04	3.4	71	745	2191
	+	0.04	3.5	74	683	1951
Bromscil	_	0.005	5.0	104	3	6.0
	-	0.01	4.5	94	2	4.4
	-	0.05	5.0	104	3	6.0
	-	0.10	4.4	92	1	2.3
	-	0,50	2.0	42	1	10.0
	+	0.005	4.4	94	5	11.4
	+	0.01	3.9	83	3	7.7
	.	0.05	4.3	91	3	7.0
	+	0.10	3.8	81	1	2.6
	+	0.50	2.4	51	3	12.5
EXPERIMENT 2						
Negative control	-		4.5	100	5	11.1
_	+		4.2	100	3	7.1
Positive control						
1,2,3,4-Diepoxybutane	-	0.04	4.5	100	870	1933
, , ,	+	0.04	4.2	100	653	1555
Bromacil	-	0.05	5.7	128	7	12.3
	_	0.10	5.4	120	5	9.3
	-	0.25	5.5	122	5	9.1
	-	0.50	4.9	108	1	2.0
	+	0.05	4.9	117	4	8. 2
	.	0.10	4.7	112	5	10.6
	+	0.25	4.8	114	6	12.5
	+	0.50	4.9	117	1	2.0

Table 96

IN VITRO ASSAYS WITH SACCHAROMYCES CEREVISIAE D3 - CACODYLIC ACID

				•		4 4
	• • •	Percent		ivors		combinants
	Metabolic	Concentration	Cells/ml	Percent of	per ml	per 10 ⁵
Compound	Activation	(v/v or v/v)	$(x \ 10^{-7})$	Control	$(x 10^{-3})$	Survivors
		•				
we as the part of the		EXPERIMENT 1				
Negative control	-		7.4	100	7.5	10,1
, ,	+		7.7	100	5	6.5
Cacodylic acid	_	5	5.6	76	20	35.7
	+	5	6.3	82	11	17.5
		EXPERIMENT 2				
Negative control	-		7,1	100	3.5	4.9
	+		6.5	100	3	4.6
1.1.						
Cacodylic acid	-	5	15.5	217	1,187	766
	+	5	17.5	270	1,159	662

Table 97

IN VITRO ASSAYS WITH SACCHAROMYCES CEREVISIAE D3 - CAPTAN

		Percent		ivors	Mitotic Re	
	Metabolic	Concentration	Cells/ml	Percent of	per ml	per 10 ⁵
Compound	Activation	(w/v or v/v)	$(x \ 10^{-7})$	Control	$(x 10^{-3})$	Survivors
		12UTMINTERINA				
		EXPERIMENT 1				
Negative control	-		7.1	100	3,5	4.9
	+		6,5	100	3.0	4.6
Captan	-	0.003	6.0	84	205	342
	+	0.003	9.1	140	145	159
•		EXPERIMENT 2				
		darintent i				
Negative control	-		7.5	100	1.5	2.0
	+		6.0	100	4	6.7
Captan	-	0.003	.77	10	37	481
	+	0.003	5.1	85	58	114

Table 98

IN VITRO ASSAYS WITH SACCHAROMYCES CEREVISIAE D3 - CHLOROPYRIFOS

Compound	Metabolic Activation	Percent Concentration (w/v or v/v)	Survi Cells/ml (x 10 ⁻⁷)	Percent of Control	per ml	per 105 ,a Survivors
		EXPERIMENT 1				
Negative control	-		7.5	100	1,5	2.0
	+		6.0	100	4	6.7
Chloropyrifos	-	5	7.7	103	7	9.1
	+	5	8.0	133	10	12,5
		EXPERIMENT 2				
Negative control	-		6,3	100	1.5	2.4
	+		7.4	100	3.5	4.7
Positive control,	-	0.1	3,8	60	1,045	2,750
1,2,3,4-diepoxybutane	+	0.1	5,2	70	903	1,737
Chloropyrifos	_	5	7.9	125	3	3,8
	+	5	7.4	100	10	13.5

. 154

		Percent	Survivors		Mitotic Recombinants	
	Metabolic	Concentration	Cells/ml	Percent of	per ml	per 10 ⁵
Compound	<u>Activation</u>	(W/V OF V/V)	$(x 10^{-7})$	Control	(x_10^{-3})	Survivors
		EXPERIMENT 1				
Negative control	-		6.3	100	1,5	2.4
	+		7.4	100	3.5	4.7
Positive control,	-	0.1	3,8	60	1,045	2,750
1,2,3,4-diepoxybutane	+	0.1	5,2	70	903	1,737
Dinoseb	-	0.2	6.2	98	9	14.5
	+	0.2	4.0	54	1	2.5
	-	0.3	.3	5	5	167
	+	0.3	2.4	32	5	20.8
		EXPERIMENT 2				
Negative control	-		5.5	100	2.5	4.5
	+		5.2	100	2.0	3.8
Dinoseb	-	0.1	4.4	80	3	6.8
	+	0.1	4.0	77	4	10.0
	-	0.2	4.1	75	8	19.5
	+	0.2	4.3	83	8	18.6

Table 100

IN VITRO ASSAYS WITH SACCHAROMYCES CEREVISIAE D3 - DSMA

		Percent	Surv	ivors	Mitotic Recombinants		
Compound	Metabolic Activation	Concentration (w/v or v/v)	$\frac{\text{Cells/ml}}{(x \ 10^{-7})}$	Percent of Control	per ml (x 10 ⁻³)	per 10 ⁵ -	
		EXPERIMENT 1					
Negative control	-		7.4	100	7.5	10.1	
	+		7.7	100	5	6.5	
DSMA	-	4,5	1,1	15	0		
	+	4.5	5.2	68	0		
		EXPERIMENT 2					
Negative control	-		7.1	100	3,5	4.9	
•	+		6.5	100	3	4.6	
DSMA	-	5	4.7	66	3	6.4	
	+	5	3.4	52	7	20.6	

		Percent	Survivors		Mitotic Recombinants	
Compound	Metabolic Activation	Concentration (w/v or v/v)	Cells/ml (x 10 ⁻⁷)	Percent of Control	$\begin{array}{c} \text{per ml} \\ (\text{x } 10^{-3}) \end{array}$	per 10 ⁵ Survivors
						
		EXPERIMENT 1				
Negative control	-		6.3	100	1,5	2.4
	+		7.4	100	3,5	4.7
Positive control,	-	0.1	3.8	60	1,045	2,750
1,2,3,4-diepoxybutane	+	0.1	5.2	70	903	1,737
Fenthion	-	5	6,6	105	9	13.6
	+	5	7,5	101	5	6.7
		EXPERIMENT 2				
Negative control	-		7.5	100	1,5	2.0
	+		6,0	100	4	6.7
Fenthion	-	5	7.8	104	4	5.1
	+	5	7.1	118	6	8.5

Table 102

IN VITRO ASSAYS WITH SACCHAROMYCES CEREVISIAE D3 - FOLPET

Compound	Metabolic Activation	Percent Concentration (w/v or v/v)	Surv: Cells/ml (x 10 ⁻⁷)	Percent of Control	per ml (x 10 ⁻³)	per 105 Survivors
		EXPERIMENT 1				
Negative control	-		7.5	100	1,5	2.0
	+		6.0	100	4	6.7
Folpet	-	0.003	4.0	53	119	298
	+	0.003	3.8	63	65	171
		EXPERIMENT 2				
Negative control	-		6.3	100	1,5	2.3
	+		7.4	100	3.5	4.7
Folpet	-	0.003	9,5	151	89	94
•	+	0.003	9,1	123	82	90

Table 103

IN VITRO ASSAYS WITH SACCHAROMYCES CEREVISIAE D3 - AZINPHOS-METRYL

Compound	Metabolic Activation	Percent Concentration (w/v or v/v)	Surv: Cells/ml (x 10 ⁻⁷)	Percent of Control	per ml (x 10 ⁻³)	per 10 ⁵ Survivors
		EXPERIMENT 1				
Negative control	-		5.7	100	4.5	7.9
	+		5.8	100	4.5	7.8
Positive control	-	0.1	5.8	102	1,650	2,845
1,2,3,4-Diepoxybutane	+	0.1	4.6	79	1,435	3,120
Azinphos-methyl	-	4.5	5.3	93	15	28.3
	+	4.5	5.8	100	15	25.9
		EXPERIMENT 2				
Negative control	-		9.1	100	8	8,8
	+		8.6	100	9.5	11.0
Azinphos-methyl	-	5	5.7	63	68	119.3
	+	5	6.2	72	80	129

Table 104

IN VITRO ASSAYS WITH SACCHAROMYCES CEREVISIAE D3 - MALATHION

		Percent	Survivors		Mitotic Recombinants	
Compound	Metabolic Activation	Concentration (w/v or v/v)	Cells/ml (x 10 ⁻⁷)	Percent of Control	per ml (x 10 ⁻³)	per 10 ⁵ Survivors
		EXPERIMENT 1				
Negative control	-		5.7	100	4.5	7.9
Proceedings and Armed States	+		5.8	100	4.5	7.8
Positive control,	-	0.1	5.8	102	1,650	2,845
1,2,3,4-diepoxybutane	+	0.1	4.6	79	1,435	3,120
Malathion	-	5	7.8	137	11	14.1
	+	5	6.3	109	7	11.1
		EXPERIMENT 2				
Negative control	-		9.1	100	8	8.8
	+		8.6	100	9.5	11.0
Malathion	-	5	8.1	89	13	16.0
	+	5	7.6	88	8	10.5

Table 105

IN VITRO ASSAYS WITH SACCHAROMYCES CEREVISIAE D3 - METHOMYL

		Percent	Survivors		Mitotic Recombinants	
Compound	Metabolic Activation	Concentration (w/v or v/v)	Cells/ml (x 10 ⁻⁷)	Percent of Control	per ml (x 10 ⁻³)	per 10 ⁵ Survivors
		EXPERIMENT 1				
Negative control	_		6,6	100	4.5	6.8
	+		5,8	100	2.5	4.6
Positive control,	-	0.1	1.8	27	266	1,478
1,2,3,4-diepoxybutane	+	0.1	1,5	29	184	1,227
Methomy1	-	2.0	5.0	76	4	8.0
	+	2.0	2,7	50	0	
	_	3.0	3.7	56	8	21.6
	+	3.0	4.1	76	6	14.6
		EXPERIMENT 2				
Negative control	-		5,5	100	2,5	4.5
	+		5.2	100	2.0	3.8
Methomy1	_	3	4.7	85	13	31.9
	+	3	4.4	85	10	22.7

162-

Table 106

IN VITRO ASSAYS WITH SACCHAROMYCES CEREVISIAE D3 - MONURON

		Percent	Survivors		Mitotic R	ecombinants
Compound	Metabolic Activation	Concentration (w/v or v/v)	Cells/ml (x 10 ⁻⁷)	Percent of Control	per ml (x 10 ⁻³)	per 10 ⁵ Survivors
		EXPERIMENT 1				
Negative control	_		6.6	100	4,5	6.8
	+		5,4	100	2.5	4.6
Positive control,	_	0.1	1.8	27	266	1,478
1,2,3,4-diepoxybutane	+	0.1	1,5	29	184	1,227
Monuron	_	5	3.5	53	3	8.6
	+	5	3,8	70	i	2.6
		EXPERIMENT 2				
Negative control	-		5.5	100	2.5	4,5
	+		5.2	100	2.0	3.8
Monuron	_	5	6.9	125	2	2.9
	+	5	6.2	119	9	14.5

Table 107

IN VITRO ASSAYS WITH SACCHAROMYCES CEREVISIAE D3 - MSMA

		Percent	Survivors		Mitotic Recombinants	
Compound	Metabolic Activation	Concentration (w/v or v/v)	Cells/ml (x 10 ⁻⁷)	Percent of Control	per m1 $(x 10^{-3})$	per 10 ⁵ Survivors
eompowid	NOCT WELOW	(#/ V OI V/ V)	<u> </u>	Control	<u>(X 10)</u>	BUIVIVOIS
		EXPERIMENT 1				
Negative control	-		7.4	100	7.5	10.1
	+		7.7	100	5	6.5
MSMA	-	5	4.3	58	1	2,3
	+	5	5.4	70	3	5.6
		EXPERIMENT 2				
Negative control	-		7.1	100	3.5	4,9
	+		6.5	100	3	4.6
MSMA	~	5	4.9	69	10.2	20.8
	+	5	5.8	89	10.4	17.9

Table 108

IN VITRO ASSAYS WITH SACCHAROMYCES CEREVISIAE D3 - PARATHION

		Percent	Survivors		Mitotic Recombinants	
Compound	Metabolic Activation	Concentration (w/v or v/v)	Cells/ml $(x 10^{-7})$	Percent of Control	per ml (x 10 ⁻³)	per 10 ⁵ Survivors
		<u> </u>	<u> </u>		<u> </u>	
		EXPERIMENT 1				
Negative control	-		5,7	100	4.5	7.9
	+		5,8	100	4.5	7.8
Positive control,	-	0.1	5.8	102	1,650	2,845
1,2,3,4-diepoxybutane	+	0.1	4.6	79	1,435	3,120
Parathion	_	5	6.5	114	3	4.6
	4	5	5,8	100	5	8.6
		EXPERIMENT 2				
Negative control	-		9.1	100	8	8.8
	+		8.6	100	9.5	11,0
Parathion	-	5	8.8	96	4	4.5
	+	5	8,2	95	5	6,1

কূ

Table 109

IN VITRO ASSAYS WITH SACCHAROMYCES CEREVISIAE D3 - PARATHION-METHYL

	Percen		Surv	ivors	Mitotic Recombinants		
Compound	Metabolic Activation	Concentration (w/v or v/v)	$\frac{\text{Cells/ml}}{(\text{x }10^{-7})}$	Percent of Control	per ml (x 10 ⁻³)	per 10 ⁵ Survivors	
		EXPERIMENT 1					
Negative control	-		5.7	100	4.5	7.9	
	+		5,8	100	4.5	7.8	
Positive control, 1,2,3,4-diepoxybutane	_	0.1	5.8	102	1,650	2,845	
	+	0.1	4.6	79	1,435	3,120	
Parathion-methyl	-	5	7.7	135	16	20.8	
	. +	5	5.4	93	15	27.8	
		EXPERIMENT 2					
Negative control	-		9.1	100	8	8.8	
	+		8.6	100	9,5	11.0	
Parathion-methyl	-	5	7.4	81	19	25.7	
	+	5	7,2	84	25	34.7	

Table 110

IN VITRO ASSAYS WITH SACCHAROMYCES CEREVISIAE D3 - QUINTOZENE (PCNB)

			Percent	Survivors		Mitotic Recombinants	
	Compound	Metabolic Activation	Concentration (w/v or v/v)	$\frac{\text{Cells/ml}}{(\text{x }10^{-7})}$	Percent of Control	per m1 (x 10 ⁻³)	per 10 ⁵ Survivors
			EXPERIMENT 1				
	Negative control	-		5,7	100	4.5	7.9
		+		5,8	100	4,5	7.8
	Positive control,		0.1	5.8	102	1,650	2,845
	1,2,3,4-diepoxybutane	+	0.1	4.6	79	1,435	3,120
166	Quintozene (PCNB)	-	2	3.7	65	3	8.1
•		· +	2	4.2	72	4	9.5
			EXPERIMENT 2				
	Negative control	-		9.1	100	8	8.8
		+		8.6	100	9,5	11.0
	Quintozene (PCNB)	-	1	5.8	64	4	6.9
		+	1	7.0	81	7	10.0
		-	2	6.8	75	3	4.4
		+	2	7.5	87	10	13.3

166

Table 111

IN VITRO ASSAYS WITH SACCHAROMYCES CEREVISIAE D3 - PHORATE

		Percent		ivors	Mitotic Re	combinants
Compound	Metabolic Activation	Concentration (w/v or v/v)	$\frac{\text{Cells/ml}}{(x \ 10^{-7})}$	Percent of Control	per ml (x 10 ⁻³)	per 10 ⁵ Survivors
		EXPERIMENT 1				
Negative control	-		9,1	100	8	8.8
	+		8.6	100	9.5	11.0
Phorate	••	5	8.7	96	9	10.3
	+	5	7.5	87	3	4.0
		EXPERIMENT 2				
Negative control	-		5.7	100	4.5	7.9
	+		5.8	100	4.5	7.8
Phorate	-	5	7.5	132	4	5.3
	+	5	7.2	124	7	9.7

Table 112

IN VITRO ASSAYS WITH SACCHAROMYCES CEREVISIAE D3 - SIMAZINE

		Percent	Survi	ivors	Mitotic Re	combinants
Compound	Metabolic Activation	Concentration (w/v or v/v)	Cells/ml (x 10 ⁻⁷)	Percent of Control	per m1 (x 10 ⁻³)	per 10 ⁵ Survivors
		EXPERIMENT 1				
Negative control	-		6,6	100	4.5	6.8
	+		5.4	100	2.5	4,6
Positive control,	-	0.1	1.8	27	266	1,478
1,2,3,4-diepoxybutane	+	0.1	1.5	29	184	1,227
Simazine	-	5	3.8	58	3	7.9
	+ ,	5	2.0	37	1	5.0
		EXPERIMENT 2				
Negative control	-		5,5	100	2,5	4.5
, •	+		5,2	100	2	3.8
Simazine	-	5	7.0	127	7	10.0
	+	5	7.0	135	4	5.7

6

Table 113

IN VITRO ASSAYS WITH SACCHAROMYCES CEREVISIAE D3 - TRIFLURALIN

Compound	Metabolic Activation	Percent Concentration (w/v or v/v)	$\frac{\text{Surv}}{\text{Cells/ml}}$ $\frac{(x \ 10^{-7})}{}$	Percent of Control	per ml (x 10 ⁻³)	per 10 ³ Survivors
		EXPERIMENT 1				
Negative control	-		7.5	100	1.5	2.0
	+		6,0	100	4	6.7
Trifluralin	-	5	8.4	112	5	5.9
	+	5	6.0	100	2	3,3
		EXPERIMENT 2				
Negative control	-		6,3	100	1,5	2.4
	+		7.4	100	3,5	4.7
Positive control,	-	0.1	3.8	60	1,045	2,750
1,2,3,4-diepoxybutane	+	0.1	5.2	70	903	1,737
Trifluralin	-	5	8.7	138	7	8.0
	+	5	8.4	114	3	3.6

Table 114

IN <u>VITRO</u> MUTAGENESIS WITH <u>SALMONELLA TYPHIMURIUM</u>

SUMMARY DATA FOR EPA PESTICIDES
Positive Response, +; Negative Response, -

	TAL	.00	TAI	535		537	TA 1	.538
		+ Metabolic			- Metabolic			+ Metabolic
Pesticide	Activation	Activation	Activation	Activation	Activation	Activation	Activation	Activation
Monocrotophos	-	-	-	-	~	_	-	-
Bromacil	-	-	-	-	-	-	-	-
Cacodylic Acid	-	-	•	-	-	-	-	-
Captan	+	+	+	+	-	-	-	-
Chlorpyrifos	-	-	-	-	-	-	-	-
Dinoseb	-	-	-	-	-	-	-	-
DEMA	-	-	-	-	-	-	-	-
Fenthion .	· -	-	-	-	-	-	-	-
Folpet	•	+	+	+	-	-	-	-
Azinphos-methyl	-	~	-	-	-	-	-	~
Malathion	-	-	-	-	-	-	-	~
Methosyl	-	-	-	-	-	-	-	-
Monurom	-	-	-	-	-	-	-	-
MEMA	-	-	-	-	-	-	-	-
Perathion	-	-	-	-	-	-	-	-
Parathion-methyl	-	-	-	-	-	-	-	-
Quintozene (PCMB)	-	-	-	-	-	-	-	-
Phorate	•	-	-	-	~	-	-	-
Simazine	-	-	-	-	-	-	-	-
Trifluralin	•	-	-	- .	-	-	-	-

APPENDIX A

MUTAGENESIS STUDIES OF PESTICIDE COMPOUNDS MOUSE HERITABLE TRANSLOCATION TEST CAPTAN

SUMMARY

SRI conducted a heritable translocation study of Captan in mice to investigate whether heritable mutagenic events occur when the compound is ingested repeatedly over an extended period.

For 8 weeks, adult male mice were administered Captan in their diet; 60 mice received 2500 ppm, and 61 received 5000 ppm. A control group of 60 adult male mice received an untreated diet during this time. A positive control group containing 66 adult male mice was treated as a control group for 4 weeks and then received the known mutagen triethylenemelamine (TEM) in the drinking water for 4 weeks. After treatment, all males were bred with two virgin females each to produce an F₁ generation, the males of which were raised to maturity. Selected (200 per group) F₁ males were bred to three virgin females each, and presumptive translocates were rebred to three additional females each. A third breeding was conducted with selected nonbreeder and/or presumptive males.

Evaluation of the data on fertility, breeding, and litter size distribution for \mathbf{F}_0 and \mathbf{F}_1 generations does not suggest the presence of translocation heterozygotes in control or Captan-treated male mice. Data on dead implants and rebreeding did, however, suggest the presence of translocation heterozygotes in the group treated with 5000 ppm Captan.

Meiotic cell preparations of the testes of the presumptive males were evaluated cytogenetically. Normal meiotic chromosomes were found in the following numbers of \mathbf{F}_1 males derived from the group specified: 8 of 8 controls, 8 of 8 from the 2500 ppm Captan group, 8 from the 5000 ppm Captan group, and 2 of 2 from the 5000 ppm Captan-treated group derived from traumatized \mathbf{F}_0 females. Five of 5 TEM-treated \mathbf{F}_1 males and i of 8 from the 5000 ppm Captan-treated males showed reciprocal translocations.

The results of this study show that under the experimental procedures employed, Captan at 5000 ppm in the diet of male mice for 8 consecutive weeks can produce a heritable mutagenic event in \mathbf{F}_1 generation male mice.

INTRODUCTION

: 4

The EPA is reviewing and evaluating the health hazard of pesticides and of substitute candidate pesticides according to available data. Additionally, the Agency is obtaining supplemental laboratory data. The objective is to enable the EPA to select those chemicals that are minimally hazardous when used according to labeling restrictions. SRI is participating in this Substitute Chemical Program by investigating the mutagenic potential of selected materials by in vitro and in vivo procedures.

Captan has been shown to respond in a positive manner in <u>Salmonella</u> typhimurium, <u>Escherichia coli WP2</u>, <u>Saccharomyces cerevisiae</u>, <u>E. coli</u> (relative toxicity), <u>Bacillus subtilis</u>, WI-38 unscheduled DNA synthesis (UDS) with metabolic activation, and <u>Drosophila melanogaster</u> experiments. It was not positive in a mouse dominant-lethal test. Based on positive responses in both Tier I (<u>in vitro</u> test) and Tier II (<u>Drosophila</u>) mutagenic studies, it was recommended that a heritable translocation test (Tier III) in the mouse be conducted to further assess the mutagenic potential of Captan.

In this study, young adult male JCR/SIM mice from a closed, random-bred colony were administered Captan in the diet for 8 weeks. After treatment, each male was mated to two virgin females to produce an \mathbf{F}_1 generation, the males of which were raised to maturity and bred to three virgin females each. Pregnant females were evaluated against predetermined selection criteria for identification of suspect \mathbf{F}_1 males, which were rebred and evaluated again. Presumptive \mathbf{F}_1 males were examined cytogenetically.

Through this procedure, a heritable mutagenic response can be detected. Potential mutagenic effects were identified by examination of fetuses during the middle to later stages of gestation. Cytogenetic

examinations were made of meiotic cell preparations of the testes from suspect males for confirmation of findings obtained from the breeding studies.

Reported here are the results of the heritable translocation study of Captan.

MOUSE HERITABLE TRANSLOCATION TEST

Background

Human populations frequently are exposed to man-made chemicals, often at barely detectable levels, for extended periods. To evaluate the genetic hazards of such chemicals, a prudent approach is to study them in mammalian systems so as to maximize detection of a mutagenic response. The study reported here was such an investigation of Captan for its potential to produce heritable genetic defects.

Chemical induction of chromosomal aberrations in the mouse is a valuable and important experimental aid in understanding the many genetic defects due to chromosomal anomalies in humans. To date, mammalian evaluations of chemically induced chromosomal aberrations have been attempted with the dominant-lethal test and cytogenetic studies of somatic and germinal cells. Although these procedures can provide useful information, they do not measure heritable genetic effects, the most important mutagenic occurrences that are permanent and transmissible. A need exists for a method to reliably identify compounds that cause heritable chromosomal aberrations in mammalian systems. The mouse translocation procedure appears to be such a system.

A well-defined translocation test will demonstrate the fertility of an \mathbf{F}_1 male population derived from \mathbf{F}_0 males treated with a test agent. Confirmation of a nonbreeder, sterile, or partially sterile response can be obtained by cytological examination of the germ cells from suspected males. Sterility and partial sterility are closely correlated with the induction of translocation beterozygotes.

The procedure used in conducting this translocation test was based on experimental techniques described by Leonard and DeKnudt, Cattanach et al., Falconer et al., and Generoso. We modified this approach, in consultation with government and industry scientists actively engaged in mutagenesis research.

Materials and Methods

<u>Animals</u>

MaJe and female ICR/SIM mice were purchased from Simonsen Laboratories, Cilroy, California. The ${\bf F_0}$ males were 8 to 10 weeks old. The females used in the breeding phases were 10- to 12-week-old virgin stock.

Chemical Supply

A supply of Captan sufficient for all aspects of the experimental program was received from Battelle Columbus Laboratory and EPA-RTP. Lot number SX-640, Chevron Chemical Company, was used for all treatment periods. The excess material has been placed in storage in case it is needed for future reference.

Dosage Selection and Compound Administration

SRJ and EPA staff selected the two dosage levels of Captan to be used in this experimental program. For 8 weeks, Captan was fed in the diet at 2500 and 5000 ppm.

An appropriate amount of Captan was dissolved and/or suspended in corn oil. Then the compound-oil concentrate was added at a level of 3% to a finely ground commercial diet (Purina) of known composition. The use of corn oil assured even distribution of Captan and prevented its stratification in an otherwise dry diet. Diets prepared at 2-week intervals were refrigerated at 4°C until fed to the animals. The diet was replaced in the feed containers twice weekly to minimize the possibility of compound loss. Body weights and food consumption were recorded weekly during the 8-week exposure period.

Reference Control

Males in the reference control group were fed the Purina diet with only corn oil added at a level of 3%. These mice were treated in the same manner as those in the compound test groups. Body weights were recorded weekly, as was food consumption.

শাধ Positive Control

For the positive control group, the known mutagen triethylenemelamine (TEM) was administered in the drinking water at 0.32 mg/liter for 2 weeks and then at 0.124 mg/liter for 2 weeks. TEM treatment was initiated after the males had been on the control diet for 4 weeks. Body weights and food consumption were recorded weekly. TEM is one of the chemical mutagens that have the demonstrated effect of inducing translocations in the F_1 progeny of F_0 treated males.

Genetic Tests

After 8 weeks of treatment, the males in each treatment group were mated to two adult virgin females each. After 1 week, each female was housed individually and allowed to deliver its litter. The \mathbf{F}_0 males were discarded. All litters were raised to weaning age, at which time the females were discarded. The \mathbf{F}_1 males were raised to maturity. At maturity (10 to 12 weeks of age), 200 \mathbf{F}_1 males from each experimental group were selected randomly and housed individually.

Three adult virgin females were housed with each \mathbf{F}_1 male for the first breeding. They were examined daily for the presence of vaginal plugs. These females were sacrificed 14 days after mating, and a uterine analysis was performed for determination of the number of total, live, and dead implants. Males bred to females that produced litters fitting our criteria for presumptive classification as sterile, partially sterile, or nonbreeder were rebred to three new virgin females each. The same evaluation was made for the second breeding.

Our criteria for presumptive classification of a male as "partially sterile," "sterile," or "nonbreeder" are:

• "Partially Sterile" Male

- If all 3 females are pregnant, each must have 9 or fewer live implants, with at least 1 having 6 or fewer live implants.
- If only 2 of 3 females are pregnant, both must have 9 or fewer live implants, with 1 having 6 or fewer live implants.

- If only 1 of 3 females is pregnant, this female must have 6 or fewer live implants.

• "Sterile" Male

 None of 3 females pregnant--previously identified by presence of vaginal plug.

• "Nonbreeder" Male

 None of 3 females pregnant--not previously identified by presence of vaginal plug.

Any \mathbf{F}_1 male that did not fit one of these descriptions was considered "normal" and was discarded. For each \mathbf{F}_1 male in the control and compound-treated groups suspected of being a translocate or nonbreeder after 2 or 3 breedings, a cytogenetic evaluation was made of meiotic cell preparations of its testes. Five males from the positive control group were also subjected to cytogenetic evaluation.

Evaluation of Breeding Data

 ${\rm F}_1$ males were identified as sterile, partially sterile, or non-breeders by the methods outlined above. Individual data were totaled to give the number of observed (presumptive) translocations per treatment group, using a data base of 600 to 800 females per group. Also, for an accurate review of such findings, the ${\rm F}_0$ breeding and litter data were thoroughly evaluated. The various measured evaluated included percentage of pregnancies, average litter size, average number of males and females, average number of males with females having zero to five or more dead implants, average number of females having zero to five or more dead implants, percentage of females with plugs, and percentage of pregnancies with and without plugs.

Meiotic Cell Cytogenetic Studies

Cytogenetic examinations were made of the testes of 31 F_1 mice, with the two testes from each mouse being examined separately. The procedures

used for the cytogenetic preparations are as follows. CO, was used to sacrifice the mice. The testes were removed, weighed, and placed in an isotonic solution of 2.2% sodium citrate. The tunica of each testis was punctured to release the tubules, which were then rolled on a glass plate to release the cell contents into the isotonic solution. The resulting cell suspension was centrifuged at 800 rpm for 5 minutes; the supernatant was removed, and each pellet of cells was resuspended in 5 ml of 1% sodium citrate hypotonic and held at room temperature for 15 minutes. The cells were centrifuged again at 800 rpm for 5 minutes and the supernatant was discarded. The cells were then treated with Carnoy's fixative (3 parts methyl alcohol and 1 part glacial acetic acid) to give a total volume of 5 ml, and immediately centrifuged again at 800 rpm for 5 minutes. This procedure was performed twice. Then the cells, suspended in an appropriate amount of fixative, were dropped onto clean, wet microscope slides and allowed to air-dry. The slides were stained with 2% buffered Giemsa for 5 minutes. Coverslips were attached with Permount. The slides were coded to preclude bias on the part of the scorers.

RESULTS AND DISCUSSION

General

Table 1 presents the average body weights for mice in the various groups. The body weights of the control, TEM, and 2500 ppm Captan group were within normal limits and comparable throughout the experiment. The 5000 ppm Captan-treated group showed a depressed body weight for 5 weeks before demonstrating a recovery trend during Weeks 6 to 8.

This body weight depression appeared to be due to the inability of the male mice to acclimate to such a high level of compound in their diet.

Table 2 summarizes the average food consumption by treatment group. Both Captan-treated groups (2500 and 5000 ppm) showed a lower average weekly food intake than did the control and TEM-treated groups.

During the week immediately following the 1-week \mathbf{F}_0 generation vating, one animal rack holding some females that had been mated with the mice given 5000 ppm Captan was accidentally tipped and some cages were spilled onto the fllor, resulting in our inability to identify which males had been mated with these females. There were, however, sufficient numbers of \mathbf{F}_1 generation males from those females that were not traumatized to allow us to randomly select 200 \mathbf{F}_1 males for use in subsequent \mathbf{F}_1 generation breedings. In addition, we held all females that had been traumatized by the tipping of the rack and maintained them throughout the remainder of the study is a separate group. From this separate group we selected 50 \mathbf{F}_1 males (at least one per female retained) for use in the \mathbf{F}_1 generation breedings and evaluations.

F. Generation

Information on the breeding performance, litter size, sex distribution, and clinical effects of the \mathbf{F}_0 generation should be included in the evaluation of translocation data, because it may provide valuable reference data.

Table 3 symmarizes the breeding and litter performance of the \mathbf{F}_0 generation. No adverse effects were observed in the control and 2500 ppm Captan groups. The two 5000 ppm Captan groups showed a reduced pregnancy rate; the rate for the traumatized females was 29% below that of the controls. Litter sizes for the 5000 ppm groups were slightly below control values. As expected, the TEM group had a reduced pregnancy rate and a litter size 47% below the control level.

Table 4 presents litter-size distributions of live young from the F_0 generation mating. Although the distribution patterns for the control and Captan-treated animals were within normal ranges for our strain of mouse, there was evident a definite pattern of decreasing litter size and increasing variance and standard deviations between the different experimental groups. As expected, the TEM-treated animals showed the classic shift toward smaller litters. Figure 1 graphically presents the data on the F_0 generation litter-size distribution.

F, Generation

Table 5 summarizes breeding data from the first mating of the \mathbf{F}_1 generation male mice. In the females mated with TEM males and with males from the 5000 ppm Captan group of traumatized \mathbf{F}_0 mothers, there were 10% fewer females with mating plugs and an increased percentage of nonpregnant females in comparison with control values; also, these two male groups had an increased percentage of males with no pregnant females. Results from males in the 2500 and 5000 ppm Captan groups were within normal limits for this strain of mouse and comparable with values from control males.

Litter-size distributions of live implants derived from the first mating of F_1 generation males are presented in Table 6. Responses of control and Captan groups were within normal limits and readily comparable. The TEM group showed approximately a 13% reduction in litter size. Mean litter sizes were 11.72 for the control group, 1J.73 for the 2500 ppm Captan group, 11.56 for the 5000 ppm Captan group, 11.88 for the 5000 ppm (traumatized F_0 female) group, and

10.24 for the TEM-treated group. The data on the \mathbf{F}_1 generation litter-size distribution are presented graphically in Figure 2.

Tables 7 and 8 summarize the data on dead implants per F₁ male and dead implants per female, respectively. The 2500 and 5000 ppm Captan groups showed a slight increase in total dead implants for both males and females at the 4, 5, and >5 levels when compared with controls. TEM animals showed significant increases in dead implants for both males and females.

Table 9 summarizes the breeding results by treatment of those \mathbf{F}_1 males classified as presumptive sterile, partially sterile, or non-breeders after three breedings. Table 10 identifies these \mathbf{F}_1 males individually by number and treatment.

Details of the breeding and rebreeding data for presumptive F₁ males are presented in Table 11. In the reference control group, 24 of the 200 males were considered as presumptive translocates. When rebred, 12 males remained in this classification. A third mating of selected questionable and/or nonbreeder males reduced the number of presumptive males to eight: 1 nonbreeder, 1 presumptive sterile, and 6 partially sterile (3 of which were questionable partially sterile).

For the TEM group, 83 of 200 F_1 males were identified as presumptive mutants after the first breeding. When rebred, 53 still met the original criteria. A third breeding reduced this number to 49; 4 continued to be nonbreeders, 14 were presumptive sterile, and 31 were partially sterile (6 of which were questionable partially sterile).

In the 2500 ppm Captan group, 30 of 200 F₁ males were identified as presumptive mutants after the first breeding. When rebred, 11 still met the criteria: 5 were nonbreeders, 1 was a presumptive sterile, and 2 were partially sterile (1 cf which was questionable partially sterile).

The 5000 ppm Captan group also had 30 of 200 F_1 males identified as presumptive mutants after the first breeding. The second mating reduced this number to 9. After a third breeding, 8 males still met the

original criteria: 2 were nonbreeders, 1 was a presumptive sterile, and 5 were partially sterile.

For the group of \mathbf{F}_1 males derived from traumatized \mathbf{F}_0 females and males treated with 5000 ppm Captan, 12 of 50 \mathbf{F}_1 males were identified as presumptive mutants after the first mating. A second breeding reduced this number to 4 and a third breeding further reduced to 2 the number of \mathbf{F}_1 males that still met the original criteria; both were partially sterile, with one of them being questionable partially sterile.

The data on the \mathbf{F}_0 and \mathbf{F}_1 generations' fertility, breeding, and litter-size distribution as well as the data on the \mathbf{F}_1 generation's dead implants and rebreeding show that Captan tends to induce dose-related effects on the reproductive performance of male mice. The data also suggest the presence of translocation heterozygotes in the 5000 ppm Captan group.

Review of the data on dead implants, breeding, and rebreeding for the \mathbf{F}_1 generation of the TEM-treated group showed, as expected, the potential for the presence of translocation heterozygotes in 24.5% of the \mathbf{F}_1 males.

Cytogenetic Studies

Table 12 presents the findings from the cytogenetic evaluation of meiotic cell preparations from \mathbf{F}_1 males in the Captan groups characterized as nonbreeder, presumptive sterile, or partially sterile. Also, eight control males and 5 of 49 TEM males were evaluated.

Whenever possible, 25 spermatocytes per testis were scored. The slides were decoded only after all scoring was completed. The results are summarized as follows:

- All eight males examined in the control group were cytogenetically normal.
- The five TEM males all showed positive reciprocal translocations.
- All eight males in the 2500 ppm Captan group were cytogenetically normal.
- Seven males in the 5000 ppm Captan group were cytogenetically normal; however, the eighth male (No. 657) showed as a positive reciprocal translocation.

ullet The two males examined in the 5000 ppm Captan group derived from traumatized F_0 iemales were cytogenetically normal.

Discussion

Increased use of the translocation procedure has revealed that a meaningful relationship exists between the incidence of dead implants in F₁ matings and the occurrence of a heritable translocation event. Previous experiments at SRI and at Oak Ridge National Laboratories have demonstrated this correlation. The following paragraphs discuss occurrences of dead implants in this study.

When females had a total implant count of less than six or when all their implants were identified as dead, we generally considered this to be a result of first breeding or of some factor other than compound treatment (such as background incidence) and excluded those females from this evaluation. Tables 13 through 17 present the total, dead, and live implantation data for suspect translocates of the control, the TEM group, and the three Captan groups.

The control group (Table 13) showed a normal implant distribution, with the exception of one \mathbf{F}_1 male (No. 122) for whom the number of implants was high. In the TEM group (Table 14), the expected increase in dead implants and the resultant decrease in live implants occurred, although the numbers of total implants were generally normal. This pattern occurred during all breeding periods.

The 2500 ppm Captan group (Table 15) contained seven males in the first breeding with females having high dead implant counts but normal live litter size, according to the criteria. Also, 3 males showed high dead implant counts during the first breeding, with live implant counts fitting the criteria for partially sterile males. This increase in dead implant occurrence was not repeated in subsequent breeding, and all F₁ males were classified as normal after the breeding phases.

-10:

Five \mathbf{F}_1 males in the 5000 ppm Captan group (Table 16) showed an increase in dead implants during the first breeding. In the rebreeding of these males, only male No. 657 continued to show the increase in dead implants and the resultant decrease in live implants. All other \mathbf{F}_1 males in this group had a normal distribution of dead and live implants for all breedings.

Table 17 presents the implant data for $\mathbf{F_1}$ males derived from traumatized females in the 5000 ppm Captan group. With the exception of an occasional female showing an increase in dead implants, the distribution of total, dead, and live implants was normal.

The numbers of total implantations were generally within normal limits for all experimental groups in all breedings.

REFERENCES

- 1. A. Leonard and G. H. DeKnudt. Mutation Res. 9, 127 (1970).
- 2. B. M. Cattanach, C. E. Pollard, and J. H. Isaacson. Mutation Res. 6, 297 (1968).
- D. S. Falconer, D. M. Slizynski, and C. Auerbach. J. Genet. <u>51</u>, 81 (1952).
- 4. W. M. Generoso. Proc. Second Annual Environmental Mutagen Soc., p. 9 (March 1971).

Table 1

AVERAGE BODY WEIGHTS IN GRAMS FOR MICE RECEIVING VARIOUS LEVELS OF CAPTAN IN THEIR DIETS

Week of Test	<u>Control</u>	TEM	of C	Levels aptan diet) 5000
Initial	33.8	33.4	33.8	33.6
1	32.5	32.9	33.3	31.8
2	33.7	34.6	33.7	31.4
3	34.8	35.4	34.4	32.1
4	34.6	35.8	34.4	31.4
5	34.8	35.9	36.0	33.0
6	37.3	38.1	37.5	35.3
7	37.7	38.9	39.3	35.8
A	39.2	39.8	38.9	36.9

Table 2

AVERAGE FOOD CONSUMPTION FOR MICE RECEIVING VARIOUS LEVELS OF CAPTAN IN THEIR DIETS (Grams of Food Consumed/Mouse/Day)

Week of Test	Control	TEM	Dietary of Ca (ppm of 2500	ptan
1	4.01	4.05	3.74	3.25
2	4.82	5.00	4.72	4.38
3	4.91	5.08	4.90	4.40
4	5.28	5.33	4.93	4.45
5	5.08	5.55	5.44	4.95
6	5.36	5.56	4.95	4.75
7	5.81	6.14	5.63	5.27
8	5.55	5.74	5.13	4.83

Table 3

TRANSLOCATION STUDY OF CAPTAN

FO GENERATION MICE
SUMMARY OF BREEDING AND LITTER DATA

Parameter	<u>Control</u>	TEM	2500 ppm	5000 ррд	5000 ppmª
Number of Fo males	60	66	60	31	30
Number of F females	120	132	119	61	59
Number pregnant	93	77	91	38	33
Percent pregnant	77.5	58.3	76.5	62.3	55.9
Number of nonbreeder males	8	19	8	5	
Percent nombreeders	13.3	28.8	13.3	16.1	
Average live litter size	12.30	6.55	12.16	11.68	11.33
Average number of males weamed/litter	5.84	3.26	5.68	6.29	5.25

^eGroup of females accidentally tipped off rack following 1 week of mating with 5000 ppm-treated mates. These traumatized females, and their offspring, most of which could not be identified back to a particular F_0 male, were considered as a separate group for the remainder of the study.

Litter				Captan (ppm_dlet)	
Size	Control	TEM	2500	5000	5000 ^a
1	0	1	0	0	0
2	0	2	0	1	0
3	0	3	0	0	0
4	0	8	0	0	1
5	0	10	1	0	0
6	0	15	2	1	1
7	1	12	0	0	1
8	2	8	3	0	0
9	9	8	3	1	3
10	6	2	8	6	3
11	8	3	9	5	7
12	18	1.	24	8	5
13	22	0	20	9	8
14	18	1	10	6	1
15	6	0	6	1	3
16	3	0	3	0	0
17	0	0	2	0	0
18	0	0	0	0	0
Mean (µ)	12.30	6.55	12.16	11.68	11.33
Variance (σ²)	3.89	5.84	4.97	5.73	6.09
Standard Deviation (σ)	1.97	2.42	2.23	2.39	2.47

 $^{^{\}rm a}$ Traumatized ${\rm F_o}$ females.

. 1

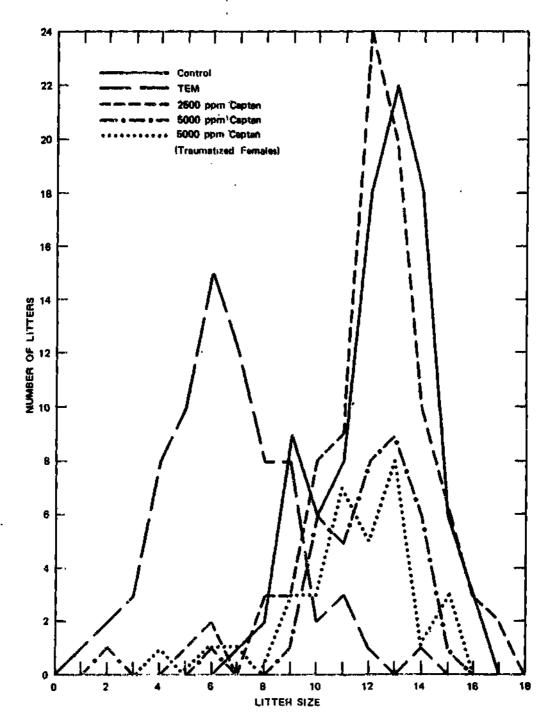


FIGURE 1 LITTER SIZE DISTRIBUTION $\mathbf{F}_{\mathbf{0}}$ GENERATION

Table 5

TRANSLOCATION STUDY OF CAPTAN

F₁ GENERATION MICE
SUMMARY OF BREEDING DATA--FIRST BREEDING

			Captan (ppm)		
Parameter	<u>Control</u>	TEM	2500	5000	5000a
Number of F1 males	200	200	200	200	50
Number of females	600	600	600	600	150
Number of mating plugs	450	376	442	439	95
Percent mating plugs	75	63	74	73	63
Number pregnant	492	383	472	477	112
Percent pregnant	82	64	79	80	75
Number pregnant with plug	434	326	419	413	94
Percent pregnant with plug	88	85	89	87	84
Number pregnant without plug	58	57	53	64	18
Percent pregnant without plug	12	15	11	13	16
Number not pregnant	108	217	128	123	38
Percent not pregnant	18	36	21	20	25
Number not pregnant with plug	16	50	2 3	26	1
Percent not pregnant with plug	15	23	18	21	3
Males with no pregnant females	13	39	14	9	7
Percent males with no pregnant females	6.5	19.5	7.0	4.5	14.0

 $^{^{\}rm a}$ Traumatized ${\rm F_o}$ females.

Table 6

TRANSLOCATION STUDY OF CAPTAN
MOUSE LITTER SIZE DISTRIBUTION OF LIVE YOUNG
DERIVED PROM F1 GENERATION ADULTS--FIRST BREEDING

Litter				aptan (ppm	
Size	<u>Control</u>	TEM	2500	5000	5000ª
1	5	4	4	3	0
2	4	9	0	3	0
3	2	12	5	1	0
4	4 /;	. 17	, 6	5	1
5	5	* * 21	4	: 6	1
6	8	11	5	8 .	4
7	7		6	11	3
8	14	17	13	19	4
9 .	35	25	35	17	2
10 .	37	21	40	53	16
11 :	73	. 53	77	77	14
12 ·	80	61	75	85	15
13 ,	89	52	87	93	17
14 ,	ı, 72	27	54	55	14
15	32	21	36	19	13
16	16	8	14	11	5
17	> · 7 ·	1	7	7	1
18	1	1	2	3	0
19	0	1	0	0	0
20	0	0	1	0	0
Mean (µ)	11.72	10.24	11.73	11.56	11.88
Variance (σ ²)	8.13	13.59	8.68	7.40	7.20
Standard Deviation (σ)	2.85	3.69	2.95	2.72	2.68

^aTraumatized F_O females.

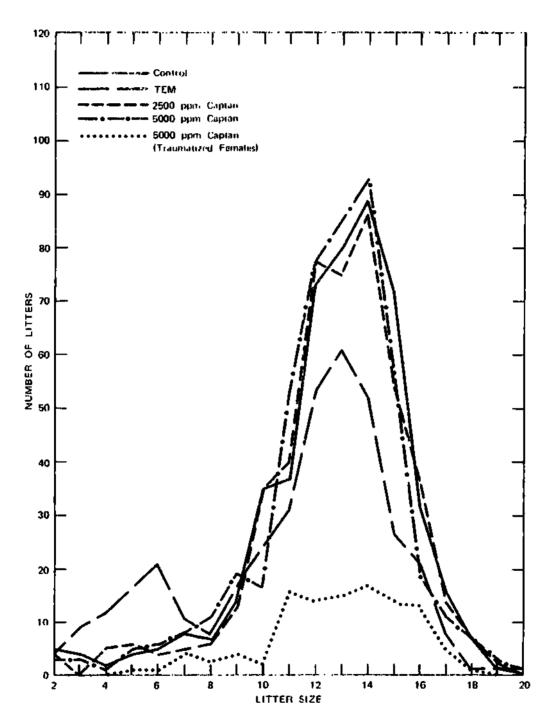


FIGURE 2 LITTER SIZE DISTRIBUTION \mathbf{F}_1 GENERATION — FIRST MATING

Table 7

TRANSLOCATION STUDY OF CAPTAN
SUMMARY OF DEAD IMPLANTS PER F1 MALE

Number of Males			0	aptan (pp	m) _
with Females Having	<u>Control</u>	TEM	2500	5000	5000 ^a
O Dead implants	68	37	69	49	20
1 Dead implant	54	36	44	68	11
2 Dead implants	30	25	31	36	7
3 Dead implants	18	16	1.3	18	2
4 Dead implants	8	9	18	9	0
5 Dead implants	2	6	4	3	2
> 5 Dead implants	7	32	7	8	1

 $^{^{}a}$ Traumatized $\mathbf{F_{o}}$ females.

Table 8

TRANSLOCATION STUDY OF CAPTAN
SUMMARY OF DEAD IMPLANTS PER FEMALE

Number of Dead			C	aptan (pp	m)
Implants/Female	Control	TEM	2500	5000	5000ª
0	320	182	295	284	79
1	109	83	113	130	23
2	39	35	37	41	9
3	18	16	16	9	0
4	3	11	7	3	0
5	0	11	2	2	0
> 5	3	45	2	8	1
Total Pregnant Females	492	383	472	477	112

 $^{^{\}mathbf{a}}$ Traumatized $\mathbf{F}_{\mathbf{O}}$ female.

			C	<u> </u>			
	<u>Control</u>	<u>TEM</u>	2500	5000	5000ª		
Total number of F ₁ males	200	200	200	200	50		
Number of nonbreeder males	1	4	5	2	0		
Number of presumptive sterile males	1	14	1	1	0		
Number of partially sterile males	6(3?)	31(6?)	2(1?)	5	2(1?)		

 $^{^{\}rm a}$ Traumatized ${\rm F_O}$ females

Table 10 $\begin{tabular}{ll} TRANSLOCATION STUDY OF CAPTAN \\ INDIVIDUAL IDENTIFICATION OF PRESUMPTIVE F_{1} MALES \\ AFTER THREE BREEDINGS \\ \end{tabular}$

Treatment	Partially Sterile	Presumptive Sterile	Nonbreeder
Control	16? 65 122? 164? 189 190	72	220
TEM	215 216 232 235? 238 245 262 264 269 280 281 290 292 299? 300 314 315 327? 344 345 350 359 360? 361 371 375 376 388 390 399? 400?	202 231 251 256 268 273 288 317 321 326 339 343 369 389	220 241 391 396

(Continued)

Table 10 (Concluded)

Treatment	Partially Sterile	Presumptive Sterile	Nonbreeder
Captan 2500 ppm	480? 526	474	449 479 496 523 583
Captan 5000 ppm	635 657 760 779 780	736	634 733
Captan 5000 ppm ^a	805 837?		

 $^{^{}a}$ Traumatized F_C females.

Table 11

TRANSLOCATION STUDY OF CAPTAN
BREEDING AND REBREEDING SUMMARY OF PRESUMPTIVE F1 MALES

(Live Implants Only)

Treatment	F ₁ Male No.	First Breeding (3 Fcmales)			Second Breeding (3 Females)			Third Breeding (3 Females)		
Control	11	-**	•	-	13	8	(15) [†]			
	16	-	-	(13)	-	-	-	-	-	-
	17	-	•	-	- o*	*	-	-	-	-
	24	-	-	-		11	-			
	39	9	0	-	0	-	-	12	11	11
	43	-	-	-	-	-	-	10	-	-
	50	4	7	6	12	11	12			
	59	0	-	-	10	9	-			
	65	4	0	5	3	6	2			
	67	-	•	-	14	11	-			
	72	-	-	-	0	-	-	-	-	-
	86	•	-	-	(12)	•	-			
	102	-	-	(11)	9	5	16	12	12	4
	122	6	2	13	7	7	14			
	129	~	-	→	-	-	-	14	-	-
	139	-	-	-	14		•			
	144	-	-	-	9	10	-			
	152	3	9	9	10	8	13			
	164	-	-	-	-	-	(9)	-	-	-
	179	-	-	-	10	-	~			
	189	0	1	0	0	0	0	0	1	0
	190	1	4	6	1	0	0	0	1	1
	192	7	(14)	-	12	11	-			
	200			=	13					
	Totals		24			12			8	
TEM	202	0	0	0	0	0	0			
	215	-	-	-	7	4	-			
	216	-	-	(9)	-	-	-	4	-	-
	220	-	-	-	-	•	-	-	-	-
	226	-	-	-	12	2	-			
	227	0	4	2	12	4	8			
	228	-	(9)	-	14	12	11			
	229	7	0	9	14	14	13			
	230	-	-	-	11	10	•			

(Continued)

 $^{^{*}}$ "O" indicates a plug was observed for a female that was not pregnant.

^{**&}quot;-" indicates a plug was not detected and the female was not pregnant.

 $^{^{\}dagger n}()^n$ indicates all implants were in early stages of development and impossible to determine if they were live or dead upon gross observation.

Table 11 (Continued)

Treatment	F ₁ Male No.	First Breeding (3 Females)			Second Breeding (3 Females)			Third Breeding (3 Females)		
TEM	231	o *	_**	_	0	0	0			
TEM	232	3	4	1	8	2	5			
	233	-	-	-	11	15	6			
	235	8	7	6	7	7	13			
	237	5	9	8	10	10	14			
	238	3	Ó	ĭ	ĭ	2	@#†			
	239	-	•	-	13	-	•			
	241	_	•	•	-	-	_	-	_	_
	244	-	_	_	10	13	11			
	245	®	0	1	1	ō	3			
	251	ŏ	Ō	Ō	G	Ó	0			
	253	3	10	_	14	11	_			
	254	4	-	-	13	14	11			
	256	0	-	-	-	-	-	-	-	-
	258	0	-	-	13	0	•			
	262	2	8	5	5	4	5			
	254	3	5	•	(P)	5	9			
	267	•	-	-	13	P	12			
	268	-	~	-	•	-	-	0	-	-
	269	-	-	-	6	7	-			
	270	0	-	-	8	-	-	9	-	-
	273	-	-	-	0	-	-	-	-	-
	280	9	7	2	8	8	5			
	281	(P)	6	-	4	l	2			
	283	9	9	8	14	0	-			
	286	•	-	-	-	-	-	10	-	-
	288	0	0	0	0	0	0			
	290	5	5	4	7	5	0			
	292	6	3	0	3	3	8			
	294	8	(18) †	9	10	12	11			
	299	8	-	-	9	4	9			
	300	6	(15)	-	8	5	2			
	302	9	-	-	13	12	15			
	314	-	-	-	2	1	4			
	315	0	3	0	0	0	0			
	317	0	0	0	0	0	-			
	318	4	4	3	9	4	11			
	321	0	0	-	0	0	-			
	322	9	-	-	- 11	11	-			

(Continued)

^{*&}quot;0" indicates a plug was observed for a female that was not pregnant.

^{**&}quot;-" indicates a plug was not detected and the female was not pregnant.

[†]"()" indicates all implants were in early stages of development and impossible to determine if they were live or dead upon gross observation.

 $^{^{\}dagger\dagger}$ " (2) " indicates female was pregnant but had no live implants.

Table 11 (Continued)

Treatment	F ₁ Male No.		ret Bree (3 <u>Fomal</u>		Seco	nd Bree 3 Femal	ding	ـــ	Third Breedi 3 Femal	ng
TEM	326	_**	_	_	.o*	_	_			
11364	327	ō	_	_	ő	(10)†	-	1	(9)	_
	333	ŏ	6	_	10	0	_	•	(3)	-
	334	-	-	_	-	-	_	12	12	_
	339	0	_	_	0	0	0	12	12	-
	343	ő	0	0	ŏ	ŏ	ŏ			
	344	3	5	-	5	4	5			
	345	6	4	5	4	4	3			
	346		-	_	12	ıi	_			
	349	•		(12)	10	8	10			
	350	4	3	2	@ #†	ŏ	ĩ			
	355	•	-	-	13	ŏ	_			
	356	-	-	_	11	-	(15)			
	359	9	4	8	7	3	7			
	360	(15)	•	-	2	(P)	-			
	361	4	4	9	3	ž	(P)			
	363	5	-	-	12	14	-			
	367	-	-	-	4	5	11			
	369	0		-	-	-	-	-	-	-
	371	4	6	-	5	5	5			
	372	(16)	-	_	10	9	-			
	375	3	-	-	5	-	7			
	376	5	0	6	1	-	1			
	381	-	•	-	11	0	-			
	382	(13)	(11)	-	-	-	-	11	10	-
	385	9	5	(6)	10	12	7			
	387	-	-	-	15	-	-			
	388	3	4	0	3	3	4			
	389	-	•	-	-	-	-	0	-	-
	390	4	3	5	3	5	3			
	391	-	•	-	-	•	-	-	-	-
	3 9 6	-	-	-	-	-	-	-	-	-
	397	-	-	(14)	11	0	0			
	399	5	4	(11)	5	2	4			
	400	2	2	(12)	4	5	2			
	Totals		83			53			49	

(Continued)

 $^{^{*}}$ "0" indicates a plug was observed for a female that was not pregnant.

^{**&}quot;-" indicates a plug was not detected and the female was not pregnant.

^{†&}quot;()" indicates all implants were in early stages of development and impossible to determine if they were live or dead upon gross observation.

 $^{^{\}dagger\dagger_{n}}(P)$ " indicates female was pregnant but had no live implants.

Table 11 (Continued)

<u>Treatment</u>	Male No.		rst Breed 3 Female			Second Breeding (3 Females)				Third Breeding (3 Females)		
Captan	430	_**	_	-	12	. 8	12					
2500 ppm	432	4	(17) †	9	11	10	12					
FF- -	436	9	5	é	11	12	13					
	449		•	-	•	-	-	_	_	_		
	450	ō*	1	14	10	13	13	_	-	_		
	451	7	0		ō	ő	10					
	452	9	10	10	13	11	13					
	455	-	-	-	10	12	11					
	461	_	-	•	13	11	9					
	469	-	-	-	-	-	11					
	472	8	10	9	0	11	10					
	474	-	-	•	0	-	-	-	-			
	479	-	-	-	-	-	-	-	-	_		
	480	(3)	0	-	(13)	-	8	2	-	_		
	484	4	14	11	11	0	12					
	489	11	12	6	9	11	14					
	496	-	-	-	-	-	-	-	-	_		
	518	-	-	-	0	11	13					
	523	-	-	-	-	-	-	-	-	-		
	526	7	3	(1)	0	5	0	2	1	0		
	528	0	-	-	14	-	-					
	546	-	-	-	-	-	-	9	13	-		
	561	-	-	-	•	_	-	15	11			
	568	8	(9)	(13)	9	11	8					
	569	-		•	11	-	10					
	582	-	-	-	8	13	7					
	583	-	-	-	-	-	-	-	-	-		
	585	9	10	12	12	13	13					
	588	-	-	(12)	9	-	-	11	-	-		
	590		0	9	0	11_	12					
	Totals		30			11			8			
Captan	601	-	(11)	(8)	11	0	-					
5000 ppm	604	7	` 9´	g	9	10	14					
, ,	620	8	•	-	9	-	-					
	622	-	-	(9)	0	12	•					
	626	-	-	•	(12)	12	•			•		
	627	8	8	8	10	6	(P)††					
	634	_	•	-	-	-	-	-	-	-		
	635	•	•	-	-	P	-	-	-	-		

(Continued)

 $^{^{\}star}$ $^{\shortparallel}0^{n}$ indicates a plug was observed for a female that was not pregnant.

^{** &}quot;-" indicates a plug was not detected and the female was not pregnant.

[&]quot;()" indicates all implants were in early stages of development and impossible to determine if they were live or dead upon gross observation.

[&]quot;(P)" indicates female was pregnant but had no live implants.

Table 11 (Concluded)

Treatment	F1 Male No.		rst Breed <u>) Fomale</u>			nd Bree Female			Third reedin Femal	ıg
Captan	638	10	6	6	10	12	11			
5000 ppm	646	10	6 _**	•	11	13	9			
	653	*o	(13) †	_	14	13	10			
	657	2	` 5´	1	2	1	4			
	660	0	10	8	14	9	12			
	668	-	-	6	9	12	12			
	67 L	-	-	-	14	11	-			
	672	-	-	-	-	-	14			
	679	6	0	8	7	12	3			
	722	-	-	•	-	-	-	12	-	-
	732	4	-	-	12	-	-			
	733	-	-	-	-	-	-	-	-	-
	734	•	-	-	11	12	-			
	736	-	-	-	-	-	-	0	-	-
	743	0	-	(15)	14	10	10			
	760	7	5	8	1	0	0			
	761	9	-	-	5	13	11			
	765	9	10	-	12	11	9			
	767	10	-	-	12	13	12			
	769	8	0	(12)	12	13	10			
	779	2	0	1	0	4	-			
	780	4	<u> </u>	.5.	0	2	4			
	Totals		30			9			8	
Captan	805	-	-	-	-	•	2	•	-	-
5000 ppma	806	-	-	-	12	14	10			
• •	815	6	9	7	13	11	10			
	816	-	(10)	(11)	9	-	-			
	817	-	-	-	7	0	-	11	2	13
	818	10	6	-	11	В	12			
	822	•	-	-	6	-	-	10	12	12
	823	•	-	-	13	-	-			
	837	-	-	-	7	-	-	-	-	-
	841	-	-	-	13	10	-			
	846	5	•	-	10	12	12			
	847	<u>(14)</u>			_10	10	14			
	Totals		12			4			2	

 $^{^{8}}$ Traumatized \vec{r}_{0} females.

 $^{^{\}star}$ "0" indicates a plug was observed for a female that was not pregnant.

^{** &}quot;-" indicates a plug was not detected and the female was not pregnant.

^{†&}quot;()" indicates all implants were in early stages of development and impossible to determine if they were live or dead upon gross observation.

Table 12

TRANSLOCATION STUDY OF CAPTAN
CYTOGENETIC EVALUATION OF F1 MALE MICE

<u>Treatment</u>	F ₁ Male <u>No.</u>	Body Weight (g)	Testes Weight (mg)	Classification-Based Upon Breeding Data	Cytogenetic Classification
Control	16	64.6	265	Partially sterile (questionable)	Normal
	17	58.5	307	Nonbreeder	Normal
	65	38.8	237	Partially sterile	Normal
	72	68.0	232	Presumptive sterile	Norma1
	122	48.7	289	Partially sterile (questionable)	Norma 1
	164	55.8	314	Partially sterile (questionable)	Norma 1
	189	49.6	245	Partially sterile	Normal
	190	47.5	222	Partially sterile	Normal
TEM	232	54.6	276	Partially sterile	Positive reciprocal translocation
	262	41.4	243	Partially sterile	Positive reciprocal translocation
	2 9 0	62.6	222	Partially sterile	Positive reciprocal translocation
	345	54.1	294	Partially sterile	Positive reciprocal translocation
	361	50.4	278	Partially sterile	Positive reciprocal translocation
Captan	449	60.2	256	Nonbreeder	Normal
2500 ppm	474	56.5	175	Presumptive sterile	Norma1
• •	479	65.1	287	Nonbreeder	Normal
	480	58.7	307	Partially sterile (questionable)	Normal
	496	60.9	242	Nonbreeder	Normal
•	523	50.7	348	Nonbreeder	Normal
	526	54.1	295	Partially sterile	Normal
	583	50.7	297	Nonbreeder	Normal

Table 12 (Concluded)

Treatment	F1 Male <u>No.</u>	Body <u>Weight (g)</u>	Testes Weight (mg)	Classification-Based Upon Breeding Data	Cytogenetic Classification
Captan	634	57.1	299	Nonbreeder	Normal
5000 թթառ	635	56.0	312	Partially sterile	Normal
	657	61.0	231	Partially sterile	Positive reciprocal translocation
	733	62.2	256	Nonbreeder	Normal
	736	57.9	256	Presumptive sterile	Normal
	760	55. 9	298	Partially sterile	Normal
	779	54.8	224	Partially sterile	Normal
	780	53.0	295	Partially sterile	Normal
Captan	805	70.0	268	Partially sterile	Normal
5000 ppm.a	837	56.9	303	Partially sterile (questionable)	Normal

 $^{^{}a}$ Traumatized F_O females.

		Control Group									
	P, Male Number	Penale Number	Total Implantations	Dead Implantations	Live <u>Implantations</u>	Initial Classification					
First breeding	11	1 2 3	_** - -	• • •	• •	Nonbreeder					
	16	1 2 3	- (13)†	- - ?	(13)	Partially sterile (questionable)					
	17	1 2 3	- -	- -	•	Nonbreeder					
	24	1 2 3	- - -	• •	• •	Nonbreeder					
	39	1 2 3	9 0*	0	9	Normal					
	43	1 2 3	- -	- - -	: :	Nonbreeder					
	50	1 2 3	4 8 7	0 1 1	4 7 6	Partially sterils					
	59	1 2 3	0 -	0 - -	0 - -	Presumptive sterile					
	65	1 2 3	5 0 5	1 0 0	4 0 5	Partially sterile					
	67	1 2 3	•	•		Noabreeder					
	72	1 2 3	•	- - •	- -	Nonbreeder					
	86	1 2 3	• •	• • •	•	Nonbreeder					
	102	1 2 3	(11)	- - ?	(11)	Partially sterile (questionable)					
	122	1 2 3	16 4 13	10 2 0	6 2 13	Normal					

 $[\]sigma_{\rm HO^{\rm H}}$ indicates a plug was observed for a female that was not pregnant.

٠. .

 $^{^{**}}$ "-" indicates a plug was not detected and the female was not pregnant.

 $^{^{\}dagger}$ "()" indicates all implants were in early stages of development, and thus difficult to determine if they were live or dead upon gross observation.

Table 13 (Continued)

	Control Group									
	F, Male	Female	Total	Dead	Live					
	Number	Number	lmplantations	<u>lmplantations</u>	Implantations	Initial Classification				
First	129	1	_**	_	_					
breeding	***	ž	_	•		Nonbreeder				
(concl.)		3	_	-	-	Notice to the second				
(139	1								
	133	ž	-	-	-	Nonbreeder				
		3	•	•	•	Nonbleagel				
	144	1								
	144	2		-		Nonbreeder				
		3	_		-	nonvisedel				
	152	1	7	4						
	132	2	-	-	3	B. 11-1111				
		_	12	3	9	Partially sterile				
		3	9	0	9					
	164	1	-	-	-					
		2	-	-	-	Nonbreedet				
		3	-	•	-					
	179	t	-	-	-					
		2	-	•	•	Nonbreeder				
		3	•	-	•					
	189	1	υ*	0	0					
		2	ī	Ō	ì	Partially sterile				
		3	0	0	0	,				
	190	1	1	0	1					
	• / •	2	4	ö	4	Portially sterile				
		3	6	Ö	6					
	192	ı	7	0	7	Fartially sterile				
	.,.	2	(14)+	?	(14)	(questionable)				
		3	-	•	-	(42200000000				
	200	1	_	_	_					
	200	2		•	_	Nonbreeder				
		3	-	-	•					
						Final Classification				
Second	11	ı	13	0	13					
breeding		2	9	ī	Ä	Normal				
		3	(15)	?	(15)					
	16	1	•		-					
		2	•	_	•	Rebred ^h				
		3	-	•	-					
	17	1	_	-	-					
	17	2	•		-	Robred ^b				
		3	-	-	•					
		-								

 $^{^{\}rm tr}{\rm c}0^{\rm tr}$ indicates a plug was observed for a female that was not pregnant.

 $^{^{46}\}mathrm{m_{\pi^{\mathrm{M}}}}$ indicates a plug was not detected and the female was not pregnant.

^{*&}quot;()" indicates all implants were in early stages of development, and thus difficult to determine if they were live or dead upon gross observation.

 $^{^{\}mathrm{b}}$ See third breeding for final classification.

Table 13 (Continued)

. .,_

		Control Group									
	F, Male Number	Female Number	Total Implantations	Dead	Live	Final Classification					
Second breeding (cont.)	24	1 2 3	0* 12_**	0 1	· 11	Normal					
(39	1 2 3	0	0 -	o -	Rebred ^b					
	43	l 2	•	•	-	Rebr e d ^b					
	50	3 1 2	12 11	0	12 11 12	Normal					
	59	3 1 2	12 10 12	0 0 3	10 9	Norma l					
	65	3 1 2	- 3 6	0	3	Partially sterile					
	67	3 1 2	2 15 11	0 1 0	2 14 11	Normal					
	72	3 1 2	0	• •	0 -	Rebred ^b					
	86	3 1 2	(12)+	- ? -	(12)	Rebred ^b					
	102	3 1 2	10 6	1 1	- 9 5	Normal					
	122	3 1 2	16 14 14	0 7 7	16 7 7	Norma l					
	129	3 1 2	2 -	9 - -	4 - -	Rebred ^b					
	139	3 1 2	15	1	- 14	Normal					
	144	3 i 2	9 10	- 0 0	9 10	Normal					
		2 3	10	0	10	Notwa i					

 $^{^{18}\}mathrm{m}^{-n}$ indicates a plug was not detected and the female was not pregnent,

[†]"()" indicates all implants were in early stages of development, and thus difficult to determine it they were live or dead upon gross observation.

bSee third breeding for final classification.

Table 13 (Continued)
TRANSLOCATION STUDY OF CAPTAM

	F 17-7-			Control Gro		
	F, Male Number		Total <u>Implantations</u>	Dead Implantations	Live Implantations	Final Classification
Second	i 52	1	11	1	10	
breeding		2	8	0	9	Normal
(concl.)		3	14	l	13	
	164	1	_****	-	•	•
		2	-	-	-	Rebred ^b
		3	(9) f	?	(9)	
	179	1	11	· 1	10	
		2	-	-	-	Normal
		3	-	-	•	
	189	1	0*	0	0	
		2	0	0	0	Rebrea
		7	0	0	0	
	190	1	1	0	1	L
		2	0	0	0	Rebred ^b
		3	0	0	0	
	192	1	13	1	12	
		2	12	1	11	Normal
		3	-	-	•	
	200	1	13	0	13	
		2	-	-	-	Normal
		3	•	-	-	
Third	16	i	-	•		Partially storile
breeding		2	•	-	-	(questionable)
		3	-	-	•	
	L7	1	-	-	-	
		2	•	-	-	Nonbreeder
		3	-	•	•	
	39	1	12	0	12	
		2	12	1	11	Normal
		3	11	0	11	
	43	1	10	0	10	
		2	-	-	-	Normal
		3	-	•	•	
	72	1	-	-	-	
		2	-	-	-	Presumptive sterile
		3	-	-	-	
	86	1	14	2	12	_
		2	14	2	12	Normal
		3	5	1	4	

[&]quot;"O" indicates a plug was observed for a female that was not pregnant.

 $^{^{\}lambda^{\frac{1}{2}}}$ indicates a plug was not detected and the female was not pregnant.

 $^{^{\}dagger}$ " indicates all implants were in early stages of development, and thus difficult to determine if they were live or dead upon gross observation.

[&]quot;See third breeding for final classification.

	Control Group										
	F. Male Number	Penale Number	Total Implantations	Dead Implantations	Live Implantations	Final Classification					
Third	129	1	14 _**	· o	14						
breeding		2	_**	•	•	Normal					
(concl.)		3	-	-	•						
	164	1	•	•	•	Partially sterils					
		2	-	-	•	(questionabla)					
		3	-	-	-						
	189	1	0*	0	Q						
		2	ı	0	l	Partially sterile					
		3	•	•	•						
	190	1	C	0	0						
		2	1	0	1	Partially sterile					
		3	1	0	1						

^{*&}quot;""" indicates a plug was observed for a female that was not pregnant.

1

 $^{^{**}}$ "." indicates a plug was not detected and the female was not pregnant.

	TEM Group									
	F Malc Number	female Number	Total Implantations	Dead	Live	Initial Classification				
First breeding	202	1 2	o* 0	0	0	Presumptive sterile				
	215	3 1 2	0 _ ** -	0 -	Q - -	Nonbreeder				
	216	3 1	-	-	-	Partially sterile				
		2 3	(9) +	?	(9)	(questionable)				
	220	1 2 3	• •	- -	-	Monbreader				
	226	1 2 3	-	• •	- -	Nonbreeder				
	227	1 2 3	0 11 11	0 7 9	0 4 2	Partially sterile				
	228	1 2 3	(9)	?	(9)	Partially sterile (questionable)				
	229	1 2 3	8 0 10	1 0 1	7 0 9	Normal				
	230	1 2 3	- -	· •	- - -	Nonbreeder				
	231	l 2 3	0	0 -	0	Presumptive sterile				
	232	1 2 3	12 9 10	9 5 9	3 4 1	Partially sterile				
	233	ւ 2 3	• •	•	• •	Nonbreeder				
	235	1 2 3	15 11 11	7 4 5	8 7 6	Partially sterile				
	217	l 2 3	5 12 12	0 3 4	5 9 8	Partially sterile				

 $^{^{5}\}mathrm{n}0^{\mathrm{m}}$ indicates a plug was observed for a female that was not pregnant,

 $^{^{5.8}\}mathrm{n_{e}n_{e}}_{\mathrm{h}}$ indicate: a plug was not detected and the female was not pregnant.

 $^{^{*}}$ "()" indicates a.1 implants were in early stages of development, and thus difficult to determine if they were live or dead upon gross observation.

Table 14 (Continued)
TRANSLOCATION STUDY OF CAPTAN

	TEM Group F, Mala Female Total Dead Live									
	F _l Mala <u>Number</u>	Female Number	Total <u>Implantations</u>	Dead Implantations	Live Implantations	Initial Classification				
Piret	238	1	14	11	3					
breeding		2	0*	Q	٥	Partially Sterilo				
(cont.)	-	3	9	8	ı					
	239	ı	_**	•	-					
	•	2	-	•	•	Nonbreeder				
		3	-	-	-					
	241	1	-	-	-					
		2	-	-	_	Nonbreeder				
		3	-	-	-					
	244	1	_	_	_					
	244	2	-	-	•	Nonbreeder				
		ŝ	-			HOUDTERGET				
			_							
	245	1	6	6	0					
		2	0	0	0	Partially sterile				
		3	4	3	1					
	251	l	0	0	0					
		2	0	0	0	Presumptive sterile				
		3	0	0	0					
	253	1	12	9	3					
	-20	2	12	2	10	Normal				
		3	-	-	-					
	254	1	6	2	4					
	234	2	-	-	-	Partially sterile				
		3	•	-	-	ratitally otellic				
			_	_	_					
	256	1	0	0	0					
		2 3	-	•	-	Presumptive sterile				
			•	•	•					
	258	1	0	0	0					
		2	-	•	-	Presumptive sterile				
		3	-	-	-					
	262	ı	12	10	2					
		2	12	4	8	Partially sterile				
		3	15	10	5	•				
	264	l	8	5	3					
		2	8	ž	5	P rtially sterile				
		3	-	-	•					
	24.7									
	267	1 2	•	:	-	Nonbreeder				
		3	-	-	-	MOUDTEROCT				
			<u>₹</u>	=	_					
	268	1	-	•	-					
		2		-	-	Nonbreeder				
		3	•	-	•					
	269	ı	•	-	-					
		2	-	-	•	Nonbreeder				
		3	-	-	•					

 $^{^{}p}{}_{n}\mathrm{O}{}^{n}$ indicates a plug was observed for a female that was not prognant.

 $^{^{*}P}$ n." indicates a plug was not detected and the female was not pregnant.

Table 14 (Continued)

	TEM Group							
	F, Male		Total	Dead	Live			
	<u>Number</u>	Number	Implantations	<u>Implantations</u>	Implantations	Initial Classification		
First	270	ı	0*	Ó	0			
breeding		ž	_**	-	-	Presumptive sterile		
(cont.)		3	-	-	-	• • • • • • • • • • • • • • • • • • • •		
	273	ı	-	_	•			
		ź	-	-	-	Nonbreeder		
		3	-	-	-			
	280	1	13	4	9			
		2	17	5	7	Partially sterile		
		3	3	1	2			
	281	1	4	4	0			
		2	12	6	6	Partially scertle		
		3	-	-	-			
	283	1	12	3	9			
		2	11	2	9	Normal		
		3	9	1	8			
	286	1	•	-	-			
		2	-	-	-	Nonbreeder		
		3	•	-	-			
	288	1	0	0	0			
		2	0	0	0	Presumptive sterile		
		3	0	0	0			
	290	ı	9	4	5			
		2	14	9	5	Partially sterile		
		3	11	7	4			
	292	1	14	6	6			
		2	10	7	3	Partially sterile		
		3	0	0	0			
	294	1	8	0	8	Partially sterile		
		2	(18)+	?	(18)	(questionable)		
		3	11	2	9			
	299	1	11	3	8			
		2	-	-	•	Normal		
		3	•	-	•			
	300	1	9	3	6	Partially sterile		
		2	(15)	?	(15)	(questionable)		
		3	-	-	-			
	302	l	11	2	9			
		2	•	-	•	Normal		
		3	-	-	-			
	314	1	-	-	•			
		2	•	•	-	Nonbreeder		
		3	-	-	-			

 $^{^{\}bigstar}{}_{\rm H}{\rm O}^{\rm H}$ indicates a plug was observed for a female that was not pregnant.

^{***} indicates a plug was not detected and the female was not pregnant.

 $^{^{\}dagger}$ "()" indicates all implemes were in early stages of development, and thus difficult to determine if they were live or dead upon gross observation.

Table 14 (Continued)

	TEM Group						
	F, Male Number	Female Number	Total Implantations	Dead	Live	Initial Classification	
first breeding (cont.)	315	1 2 3	0* 3 0	0 0 0	0 3 0	Partially sterile	
	317	1 2 3	0 _**	0 - -	0 -	Prasumptive sterile	
	318	1 2 3	9 13 13	5 9 10	4 4 3	Partially sterile	
	321	1 2 3	0	0 0	0 0	Presumptive sterile	
	322	1 2 3	10	1 -	9 - -	Normá L	
	326	1 2 3	• •	•		Nonbresder	
	327	! 2 3	0 - -	0	0 - -	Presumptive sterile	
	333	1 2 3	0 11	0 5	0 6 -	Partially sterile	
	334	1 2 3	:		- -	Nonbreeder	
	339	1 2 3	0 - -	0 -	0 -	Presumptive sterile	
	343	1 2 3	0 0 0	0 0 0	0 0 0	Presumptive sterile	
	34%	1 2 3	10 12	7 7 -	3 5	Partially sterile	
	345	1 2 3	14 10 10	8 6 5	6 4 5	Partially sterile	
	346	1 2 3	-	•	- -	Nonbreeder	
٠.	349,,,	1 2 . 3	; (12)*	- - ?	- - (12)	Partially sterile (questionable)	

[&]quot;"" indicates a plug was observed for a female that was not pregnant.

^{**} p-" indicates a plug was not detected and the female was not pregnant.

^{*&}quot;()" indicates all implants were in early stages of development, and thus difficult to determine If they were live or dead upon gross observation.

Table 14 (Continued)

	TEM Group						
	F, Male Number	Female Number	[otal Implantations	De ad	Live	Initial Classification	
First	350	L	12	ð	4		
breeding		2	11	ð	3	Partially sterile	
(cont.)		3	В	6	2		
	355	1	- 1-14	₩	•		
		2	-	-	-	Nonbreeder	
		3	-	-	-		
	356	l	-	-	-		
		2	-	-	-	Nonbraeder	
		3	-	-	-		
	359	i	15	6	9		
		2	12	8	4	Partially sterile	
		3	16	8	8		
	360	1	(15)+	2	(15)	Partially sterile	
		2	-	•	-	(questionable)	
		3	-	-	-		
	361	1	12	8	4		
		2	14	10	4	Partially sterile	
		3	11	2	9		
	363	1	9	4	5		
		2	_	-	-	Partially sterile	
		3	-	-	-	•	
	367	ı			-		
	•	ž	-	_	•	Nonbreeder	
		3	•	-	-		
	369	1	0_{a}	0	0		
	,	2	-	-	-	Presumptive sterile	
		3	-	-	-	•	
	371	l	10	6	4		
	•••	2	13	ž	6	Partially sterile	
		3	•	-	•	•	
	372	1	(16)	*	(16)	Partially sterile	
		2	-	-	-	(questionable)	
		3	-	-	-	,,	
	375	- 1	14	11	1		
	3//	2	-	•	<u>,</u>	Partially sterile	
		3	•	•	•		
	376	1	11	6	5		
	,,,,,	4	0	ő	ó	Partially sterile	
		3	Ϊ́O	ĭ	ő		
	381	ı	_	_	_		
	317.1	2	-	•	-	Nonbreeder	
		3	-	•	-		

 $^{^{26}\}mathrm{no^{11}}$ indicates a plug was observed for a female that was not prognant.

 $^{^{\}rm dec}n^{\rm op}$ indicates a plug was not detected and the female was not pregnant.

 $^{^4}u()^n$ indicates all implants were in early stages of development, and thus difficult to determine if they were live or dead open gross observation.

Table 14 (Continued)

	TEM Group							
	F, Måle Number	Pemale Number	Total Implentations	Dead <u>Implantations</u>	Live	Initial Classification		
First breeding	382	1 2	(13) † (11) _**	? ?	(13) (11)	Partiully storile (questionable)		
(concl.)	385	3 1 2	9 6	0 1	9 5	Partially sterile		
	387	3 1 2	(6) - -	? - -	(6) - -	Nonbreeder		
	388	3 1 2	- 14 9	- 11 5	- 3 4	Partially sterile		
	389	3 1	9 6* -	0	<u>0</u> -	·		
	290	2 3 1	- 11	- - 7	- - 4	Nonbreeder		
	201	3	12 14	9 8	3 5	Partially storile		
	391	1 2 3		-	:	Nonbreeder		
	396	1 2 3	- -	- -	- -	Nonbreeder		
	397	1 2 3	(14)	- - ?	(14)	Partially sterile (questionable)		
	399	1 2 3	11 9 (11)	6 5 ?	5 4 (11)	Partially sterile (questionable)		
	400	1 2 3	12 9 (12)	10 7 ?	2 2 (12)	Partially sterile (questionable)		
						Final Classification		
Second breeding	202	1 2 3	0 0 0	0 0 0	0 0 0	Presumptive sterile		
	215	1 2 3	11 9	4 5 -	7 4 -	Partially sterile		

 $^{^{4}}$ "O" indicates a plug was observed for a female that was not pregnant.

 $^{^{48}\}mathrm{n}_{-}\mathrm{n}$ indicates a plug was not detected and the female was not pregnant.

 $^{^{+}}$ n() $^{+}$ indicates all implemes were in early stages of development, and thus difficult to determine if they were live or dead upon gross observation.

TRANSLOCATION STUDY OF CAPTAN
IMPLANTATION SUMMARY OF PRESUMPTIVE F, MALES

 $^{^{5^{\}circ}}$ MO $^{\circ}$ indicates a plug was observed for a female that was not pregnant.

 $^{^{}h\dot{\phi}}$ n-" indicates a plug was not detected and the female was not pregnant.

^bSee third breeding for final classification.

Table 14 (Continued)

	TEM Group							
	F, Male Number	Female Number	Total Implantations	Dead Implantations	Live Implantations	Final Classification		
Second breeding (cont.)	244	1 2 3	12 13 11	2 0 0	10 13 11	Normal		
	245	լ 2 3	1 0* 7	0 0 4	1 0 3	Partially sterile		
	251	1 2 3	0 0 0	0 0 0	0 0 0	Presumptive sterile		
	253	1 2 3	16 11 _**	2 1	14 11	No mai		
	254	1 2 3	13 14 11	0 0 0	13 14 11	Normal		
	256	1 2 3	-	-	-	Rebred ^b		
	258	1 2 3	13 0 -	0 0 -	13 0 -	Normal		
	262	1 2 3	8 12 10	3 8 5	5 4 5	Partially sterile		
	264	1 2 3	9 11 12	9 6 3	0 5 9	Partially sterile		
	267	1 2 3	14 1 14	1 1 2	1.3 0 12	Normal		
	268	1 2 3	-	•	•	Rebred ^b		
	269	1 2 3	6 7 -	0 0	6 7 -	Partially sterile		
	270	1 2 3	8 - -	0 - -	8 - -	Rebred ^b		
	273	l 2 3	0 - -	0 - -	0 - -	Rebred ^b		
	280	1 2 3	11 11 10	3 3 5	8 8 5	Partially sterile		

 $^{^{\}circ}$ "O" indicates a plug was observed for a female that was not pregnant.

 $^{^{\}mathrm{MW}}\mathrm{n}^{-n}$ indicates a plug was not detected and the female was not pregnant.

^bSee third breeding (or final classification.

Table 14 (Continued)

TPANSLOCATION STUDY OF CAPTAN
IMPLANTACION SUMMARY OF PRESUMPTIVE P MALES

 $^{^{\}pm}$ "O" indicates a plug was observed for a female that was not pregnant.

 $^{^{**}}$ " indicates a plug was not detected and the female was not pregnant.

See third breeding for final classification.

Table 14 (Continued)

176

	TEM Group								
	F, Male Number		Total Implantations	Dead Implantations	Live Implantacione	Final Classification			
Second	322	1	11	0	11				
breeding		2	11 _**	0	11	Normal			
(cont.)		3		-	•				
	326	1	0*	0	0				
		2	-	•	-	Presumptive storilo			
		3	-	•	•				
	327	1	13	13	0	h			
		2	(10)†	?	(10)	Rebred			
		3	-	-	-				
	333	1	12	2	10				
		2	0	0	0	No musi			
		3	-	••	-				
	334	ı	_	-	-				
		2	•	-	-	Rebred ^b			
		3	-	-	•				
	339	1	0	0	0				
	337	2	ő	0	ŷ	Presumptive sterile			
		3	ŏ	ő	ő	f February profits			
	243	1							
	34)	2	0 0	0 0	0 0	Presumptive sterile			
		3	0	0	ő	transliberae accrete			
	344	l	10	5	5				
		2	10 11	6 6	4 5	Partially sterile			
		=							
	345	1	6	2	4				
		2	12	8	4	Partially sterile			
		3	4	ı	3				
	346	1	12	0	12				
		2	12	1	11	Normal			
		3	•	-	-				
	349	1	10	0	10				
		2	11	3	8	Norma1			
		3	12	2	10				
	350	1	8	8	0				
	330	ž	ō	ő	ñ	Portially sterile "			
		Š	10	ý	i				
	355	i	13	0	13				
	ردر	2	0	Ö	0	Norma i			
		3	•	-	-	MATERIAL S			
	20.	-							
	356	1	11	0	LI	Named			
		2	(15)	?	(15)	Normal			
		J	(133	•	(13)				

 $^{^{\}mbox{\scriptsize π}}\mbox{\scriptsize "O"}$ indicates a plug was observed for a female that was not pregnant.

 $^{^{\}hbar\hbar}$ "-" indicates a plug was not detected and the female was not pregnant.

tu()" indicates all implants were in early stages of development, and thus difficult to determine if they were live or dead upon gross observation.

 $^{^{\}mathrm{b}}\mathrm{Sec}$ third breeding for final classification.

Table 14 (Continued)

TRANSLOCATION STUDY OF CAPTAN
IMPLANTATION SUMMARY OF PRESUMPTIVE F, MALES

Total Dead Live F, Male Female Number Number Implantations Implantations Implantations Final Classification Second ŁO breeding Partially sterile (cont.) Partially sterile (questionable) ı Partially storile Normal Normal ı Rebred^b l Partially sterile ı u Normal Partially sterile ı ı Partially sterile u 0* Normat Rebred l L2 Normal Ŧ ι Normal

- 6

ι

Partially sterile

[&]quot;"0" indicates a plug was observed for a female that was not pregnant.

 $^{^{+6}}$ m- $^{+0}$ indicates a plug was not derected and the female was not pregnant,

See third breeding for final classification.

Table 14 (Continued)

	TEM Group						
	F Male	Female	Total	Dead	Live		
	<u>Number</u>	Number		<u>Implantations</u>	<u>Implantations</u>	Final Classification	
Second	389	ı	_***	-	-		
breeding		2	-	-	-	Rebred ^b	
(concl.)		3	-	•	-		
	390	ι	14	11	2		
	2,,,	ž	12	7	5	Partially sterile	
		3	12	9	3	•	
	391	1	•	-	-	_	
	**-	2	•	•	-	Rebred ^b	
		9	-	-	-		
	396	ı		_	-	_	
		2	-	-	-	Rebrod	
		3	-	-	-		
	397	1	11	0	11		
	3,,	Ž	0*	ō	0	Normal	
		3	o	0	0		
	399	ι	14	9	5	Partially sterile	
	2,,	2	7	Ś	2	(questionable)	
		3	4	0	4	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	400	1	9	5	4	Partially sterile	
	100	2	13	9	5	(questionable)	
		3	3	1	2	•	
Third	216	1	9	5	4	Partially sterile	
breeding		2	-	-	-	(questionable)	
_		3	-	-	-	-	
	220	l	-	_	_		
		2	-	-	-	Nonbreeder	
		3		-	-		
	24 l	1	_	-	-		
		2	-	•	-	Nonbreeder	
		3	-	-	-		
	256	1	-	-	-		
		2	•	-	•	Presumptive sterile	
		3	-	-	-		
	268	1	0	0	0	***	
		2	-	-	-	Presumptive sterile	
		3	-	-	-	" 1,	
	270	ı	9	0	9		
		2	-	-	-	Normal	
		3	-	-	-		
	273	ι	-	•	-		
		2	-	-	-	Presumptive sterile	
		3	•	-	-		

 $^{^{\}star}{}^{n}0^{n}$ indicates a plug was observed for a female that was not pregnant.

 $^{^{\#\#}_{H^{-1}}}$ indicates a plug was not detected and the female was not pregnant.

^bSec third breeding for final classification.

Table 14 (Concluded)

	TEM Group							
	F Male Number	Female Number	Total Implançations	Dead Implantations	Live Implantations	Final Classification		
Third	286	1	11	1	10			
breeding		2	_**	-	•	Normal		
(concl.)		3	•	-	-			
	327	1	ιι	10	1	Pactially sterile		
		2	(9) †	,	(9)	(questionable)		
		3	•	-	-			
	334	t	14	2	12			
		2	12	0	12	Normal		
		3	-	-	-			
	269	3	-	-	-			
		2	•	-	-	Presumptive sterile		
		3	•	-	-	·		
	382	1	11	0	11			
		2	10	O	10	Normal		
		3	•	-	•			
	389	1	0*	0	ŋ			
		2	-	**	-	Presumptive sterile		
		3	-	-	•	•		
	391	1	-	_	-			
		2	-	-	-	Nonbreeder		
		3	•	-	-			
	396	l	-	-	•			
		2	•	-	-	Nonbreeder		
		3	-	-	-			

 $^{^{*}}$ "O" indicates a plug was observed for a female that was not pregnant.

 $^{^{**}{\}rm n}_{\rm e}{\rm n}$ indicates a plug was not detected and the female was not pregnant.

 $^{^{\}dagger}$ "()" indicates all implants were in early stages of development, and thus difficult to determine if they were live or dead upon gross observation.

Table 15

TRANSLOCATION STUDY OF CAPTAN
IMPLANTATION SURMARY OF PRESUMPTIVE F

MALES

٠.

	7500 ppm Group F, Male Female Total Dead Live							
	r, mete Number	Nompet Lemate		<u>Implantations</u>		Initial Classification		
	MANDEL	MARINET		Taib tanteactoria	Tubyentactoire	Internal Classification		
First	430	1	_***	-	-			
breeding		2	-	-	-	Nonbreeder		
•		3	-	-	-			
	432	ı	4	4	4	Partially sterile		
		2	(17)†	?	(17)	(questionable)		
		3	9	9	9			
	436	1	14	5	9			
		2	7	2	5	Partially sterile		
		3	11	3	8			
	449	1	_	-				
	44,7	2	-	-	•	Nonbreeder		
		3	•	-	-	3-		
	450	1	0*	0	U			
	470	2	5	4	1	Normal		
		ž	14	õ	14	normer		
		_		4				
	451	1 2	11 0	0	7 0	Normal		
		3		-	-	NOTMAL		
		-						
	452	1	10	1	9			
		2	12	2	10	Normal		
		3	13	3	lo			
	455	1	-		-			
		2	-	-	-	Nonbreeder		
		3	-	•	-			
	461	1	•	-	-			
		2	-	-	-	Nonbreeder		
		3	-	-	-			
	469	1	-	-	-			
		2	-	-		Nonbreeder		
		3	-	-	-			
	472	L	9	1	8			
		2	11	1	10	Nocmal		
		3	12	3	9			
	474	1	_	•	-			
	414	2	•	-	-	Nonbreeder		
		3	-	-	-	-		
	479	1	_	_	_			
	417	2	-	<u>-</u>	•	Nonbreeder		
		3	_	_	-			
	480	1	(3)	7	795			
	400	2	(3)	0	(3) 0	Partially sterile		
		5	-	•	-	, attends, steeling		
	,			7				
	484	l 2	11 16	2	4 14	Normal		
		3	11	ő	14 11	DA EMBY		

 $^{^{\}star}$ "O" indicates a plug was observed for a female that was not pregnant.

 $^{^{\}star\star}$ "-" indicates a plug was not detected and the female was not prognant.

 $^{^{+}}$ "()" indicates all implants were in early stages of development, and thus difficult to determine if they were live or dead upon gross observation.

Table 15 (Continued)

	2500 ррш Стопр							
		Female	lotal	Dead	Live			
	Number	Number	Implantations	<u>Implantations</u>	Implantetions	Initial Classification		
First	489	1	14	3	11			
breeding		2	13	ī	12	Normal		
(concl.)		3	8	2	6			
	496	1	_**	_	-			
		2	-	-	-	Nonbreeder		
		3	-	•	-			
	518	ŧ	-	-	-			
		2	-	-	-	Nonbreeder		
		3	•	-	-			
	523	l	-	-	-			
_		2	_	-	•	Nonbreeder		
•		3	•	-	-			
	526	ŧ	7	D	,			
		2	4	1	3	Partially storile		
		3	(1) +	?	(1)			
	528	1	0*	0	0			
		2	•	-	-	Presumptive sterile		
		3	-	-	-			
	546	1	•	-	-			
		2	_		-	Nonbreeder		
		3	-	-	-			
	561	ı	•	_				
		2	•	-	-	Nonbreeder		
		3	-	-	-			
	568	i	12	4	8	Portially sterile		
		2	(9)	?	(9)	(questionable)		
		3	(13)	?	(13)	•		
	569	1	_	-	-			
		2	-	-	-	Nonbreeder		
		3	-	-	•			
	582	l	_	_	_			
		2	-	-	-	Nonbreeder		
)	-	-	•			
	583	1	-	-	_			
		2	-	-	-	Nonbreeder		
		3	•	-	-			
	585	1	10	1	9			
		2	11	l	10	Normal		
		3	15	3	12			
	588	1	-	-	-	Partially sterile		
		2	-	-	-	(questionable)		
		3	(12)	<i>t</i>	(12)			
	590	ı	11	3	8			
		2	0	0	0	Normal		
		3	9	0	9			

 $^{^*}$ " $^{\circ}$ " indicates a plug was observed for a female that was not pregnent.

 $^{^{\}otimes n}$ H-H indicates a plug was not detected and the female was not pregnant.

^{*&}quot;()" indicates all implants wore in early stages of development, and thus difficult to determine if they were live or dead upon gross observation.

Table 15 (Continued)

	2500 ppm Group							
	P. Male Number	female Number	Total Implantations	Dead	Live	Final Classification		
Second breeding	430	1 2 3	12 8 14	0 0 2	12 8 12	Norma l		
	432	1 2 3	12 11 13	1 1 1	11 10 12	Normal		
	436	1 2 3	12 12 13	1 0 0	11 12 13	No rma 1		
	449	1 2 3	_*** -	- - -	- -	Rebred ^b		
	450	1 2 3	11 13 14	1 0 1	10 13 13	Normal		
	451	1 2 3	0* 0 11	0 0 1	0 0 10	Normal		
	452	1 2 3	14 11 13	1 0 0	13 11 13	Normal		
	455	1 2 3	10 12 12	0 0 1	10 12 11	Normal		
	461	1 2 3	13 11	0 0 2	13 11 9	Normal		
	469	ໂ 2 ງ	- 12	- - 1	- - 11	Normal		
	472	l 2 3	0 12 11	0 1 1	0 11 10	Normal		
	474	l 2 3	0 - -	0 - -	0	Rebred ^b		
	479	1 2 3		- -	• •	Rebred ^b		
	480	1 2 3	(13)† 	?	(13)	Rebred ^b		

 $^{^{\}mathrm{tric}}\mathrm{re}^{\mathrm{s}}$ indicates a plug was not detected and the female was not pregnant.

 $^{^{\}dagger}$ " indicates all implants were in early stages of development, and thus difficult to determine If they were live or dead upon gross observation.

 $^{^{\}mathrm{b}}\mathrm{See}$ third breeding for final classification.

Table 15 (Continued)

 $[\]mathring{}^{*}$ "0" indicates a plug was observed for a female that was not pregnant.

 $^{^{\}rm ext}$ e- $^{\rm o}$ indicates a plug was not detected and the female was not pregnant.

^bSee third breeding for final classification.

Table 15 (Concluded)

				2500 ppm Gro		
	P, Male		Total	Dead	Live	
	Number	Number	Implantations	Implantations	<u>Implantations</u>	Final Classification
Second	590	1	o*	0	0	
breeding		2	13	2	11	Normal
(concl.)		3	12	Ō	12	
Third	449	1	_##			
breeding		2	_	-	•	Nonbreeder
		3	-	-	-	
	474	ı	-	-	-	
		2	-	-	-	Presumptive sterile
		3	-	-	•	•
	479	1	-	-	-	
		2	-	-	-	Nonbreeder
		3	•	-	-	
	480	1	10	8	2	Partially storile
		2	-	-	-	(questionable)
		3	-	-	-	
	496	ı	-	-	-	
		2	•	-	-	Nonbreeder
		3	-	-	-	
	523	1	•	-	-	
		2	-	-	-	Nonbreeder
		3	-	-	•	
	526	1	2	0	2	
		2	1	0	1	Partially sterile
		3	0	0	0	
	546	1	9	0	9	
		2	13	0	13	Normal
		3	-	-	-	
	561	1	15	0	15	
		2	11	0	11	Normal
		3	-	-	-	
	583	1	-	-	-	
		2	-	•	-	Nonbreeder
		3	-	-	-	
	588	1	12	1	11	
		2	•	-	-	Normal
		3			-	

 $^{^{*}\}mathrm{"0"}$ indicates a plug was observed for a female that was not pregnent.

 $^{^{\}pm\pm}$ "-" indicates a plug was not detected and the female was not pregnant.

 $\begin{tabular}{ll} Table & 16 \\ \hline TRANSLOCATION & STUDY & OF & CAPTAN \\ IMPLANTATION & SUMMARY & OF & PRESUMPTIVE & F_1 & MALES \\ \end{tabular}$

	S000 ppm Group							
	F Male <u>Number</u>	Pemale Number	Total Implantations	Dead	Live Implantations	Initial Classification		
First	601	1	_**	-	-	Partially sterile		
browding		2	(11)+	?	(11)	(questionable)		
_		3	(6)	7	(8)			
	604	1	7	0	7			
		2	11	2	9	Normal		
		3	14	5	9			
	620	1	8	0	8			
		2	-	-	*	Normal		
		3	•	-	-			
	622	1	•	•	•	Partially sterile		
		2	-	•	-	(questionable)		
		3	(9)	?	(9)	•		
	626	ı	-	-	-			
		2	-	-	•	Nonbreeder		
		3	-	-	-			
	627	1	9	1	8			
		2	11	3	Ą	Normal		
		3	8	0	8			
	634	1	•	_	-			
		?	•		-	Nombreeder		
		3	-	-	-			
	635	1		-	-			
		2	-	-	-	Nombreeder		
		3	_	-	-			
	628	1	10	0	10			
		2	6	Ö	6	Normal		
		3	6	Ö	6			
	646	1	12	2	LQ			
		2	•	-	- •	Normal		
		3	-	-	-			
	653	1	o*	0	0	Partially sterile		
	0,,	2	(13)	?	(1 3)	(questionable)		
		3	-	•	-	(40000000000)		
	657	ı	9	7	2			
	0,,,	2	13	á	5	Partially sterile		
		3	8	7	ĺ	, 5000371		
	660	J	0	0	0			
	UIIU	2	ű	i	10	Normal		
		3	8	ő	Ä			
	668	1	_	_	_			
	200	2	-	-		Partially sterile		
		3	7	1	6	,		

 $^{^{\}rm w}{}_{\rm PO}{}^{\rm H}$ indicates a plug was observed for a female that was not pregnant.

 $^{^{\}dot{\alpha}\dot{\alpha}}{}_{\mu}{}_{\mu}{}^{\nu}$ indicates a plug was not detected and the female was not pregnant.

[†]"()" indicates all implants were in early stages of development, and thus difficult to determine if they were live or dead upon gross observation.

Table 16 (Continued)

	5000 ppm Group F, Male Female Total Dead Live								
	F _l Male <u>Number</u>	Female <u>Mumber</u>	Total Implementations			Initial Classification			
Firet	671	1	_**	-	•				
reeding		2	-	-	•	Nonbreeder			
cont.)		3	-	•	•				
	672	ı	_	•	-				
	4,-	2	•	-	-	Nonbreeder			
		3	-	•	-				
	679	1	6	0	6				
		2	0*	Ö	0	Partially sterile			
		3	12	4	8				
	722	1	_	_	-				
		ž	_	_	•	Nombreeder			
		3	•	-	•				
	732	1	4	0	4				
	.32	2	-	-	-	Partially sterile			
		3	_	-	-				
	733	ı		_	_				
	7,33	2	-	-	-	Nonbreeder			
		3	_	-	-	(10),020001			
	734	ı	_	_	_				
	,,,,	2	-	-	_	Nonbreeder			
		3	- -	_	•	Hallaterari			
	736	ı	_	_	_				
	7.50	2	-	-	-	Nonbreeder			
		3	-	-	-				
	743	ı	0	0	0	Partially sterile			
	145	2	•	-	•	(questionable)			
		3	(15)+	?	(15)	(40000000000000			
	760	1	. 8	1	7				
	,,,,	2	5	ō	5	Partially sterile			
		3	9	i	ě	10172012, 5701217			
	761	1	12	3	9				
	7***	2	-	-		Normal			
		3	•	-					
	765	i	12	3	9				
	/05	2	11	ĭ	10	Normal			
		3	-	•	-	NOTWAL			
	767	i	12	2	10				
	/0/	2	-	-	AU.	Normal			
		3	-	:	-	(IO I III G L			
	769	ı	8	8	8	Partially sterile			
	107	2	•	•	-	(questionable)			
		i	(12)	9 .	(17)	, , , , , , , , , , , , , , , , , , , ,			

 $^{^{2}\}mathrm{"0"}$ indicates a plug was observed for a female that was not pregnant.

 $^{^{58}}$ "-" indicates a plug was not detected and the female was not pregnant.

^{*&}quot;()" indicates all implants were in early stages of development, and thus difficult to determine if they were live or dead upon gross observation.

 $\label{thm:continued} Translocation study of Capian \\ {\tt implantation summary of presumptive } \mathbf{F}_1 \text{ males}$

		حييد	5000 ppm Group				
	f Male <u>Number</u>	Female Number	Total Implantations	Dead Implantations	Live [mm]entations	Initial Classification	
		710000	AMP 146 COLORS	Total Tall Care Total	THIP TOTAL TOTAL	Tribusa - or engage independent	
First	779	1	2,	0	2		
breeding		2	O ₂	3	0	Partially sterile	
(concl.)		3	ì	0	1		
	760	1	4	0	4		
		2	1	Ů	1	Partially storile	
		3	5	0	5		
						Final Classification	
Second	601	1	12	ı	n		
breeding	.,41	ž	, <u>, , , , , , , , , , , , , , , , , , </u>	Ö	 9	Normal	
orecorng		3	_K.F	-	-	Trost and C	
	604	ι	g	0	9		
	***	2	10	Ö	10	Normal	
		j	15	l	16		
	620	1	10)	9		
		2	•	•	-	Normal	
		3	-	-	-		
	622	1	0	0	0		
		2	17	0	12	Normal	
		3	-	-	-		
	626	1	(12) †	?	(12)		
		2	12	0	12	Normal	
		3	-	•	-		
	627	1	13	3	10		
		2	Ú	0	6	No rma l	
		3	ı	1	0		
	634	1	-	-	-	h	
		2	-	-	-	Rebred ^b	
		3	•	-	-		
	635	1		-	-	h	
		2	ι	1	0	Kobred ^b	
		3	•	-	-		
	638	l	10	0	10		
		2	12	0	12	Normal	
		3	11	O	11		
	646	1	LL	0	11		
		2	13	0	13	Normal	
		3	10	1	9		
	653	1	14	0	14		
		2	13	0	13	Normal	
		J	10	0	10		

 $^{^{\}prime\prime}{}^{\prime\prime}0^{\prime\prime\prime}$ indicates a plug was observed for a female that was not pregnant.

 $^{^{\}rm vir}{\rm u}_{\gamma^{\rm H}}$ indicates a plug was not detected and the female was not pregnant.

 $^{^{}t}$ "()" indicates all implants were in early stages of development, and thus difficult to determine if they were like or dead upon gross observation.

bee third breeding for final classification.

Table 16 (Continued)

.

	F, Male	Pemale	Total	5000 ppm Gro Dead	Live	 -
	Number	Number	Implantations			Final Classification
Second	657	ı	7	5	2	
breeding		2	9	8	1	Partially sterile
(cont.)		3	5	1	4	
	- 660	1	14	0	14	
		2	10	1	9	No rma l
		3	12	0	12	
	668	1	.9	0	9	
		2 3	13	1 1	12	Norma l
			13		12	
	671	1	14	0	14	N 1
		2 3	11 _**	0 -	11 -	Normal
	672	1 2	-	- -	-	Normal
		3	14	0	14	COTHICE
	679	1	7	0	7	
	٧.,	2	12	ő	12	No maa 1
		3	4	l	3	
	722	ι	-	-		
		2	-	-	-	Rebred ^b
		3	•	-	-	
	732	1	12	0	12	
		2	-	-	-	Normal
		3	-	-	-	
	733	1	-	-	-	h
		2	•	•	-	Robred ^b
		3	•	-		
	734	1	11	0	11	h
		2	12	0	12	Norma L
			•			
	736	լ 2	-	-	-	Rebred
		3	-	-	-	venten
	743	-	14	0	1.6	
	743	1 2	10	0	14 10	Normal
		ž	iĭ	ĭ	10	,,oqua (
	760	1	1	0	ı	
		2	o*	ŏ	ō	Partially sterile
		3	0	0	0	·
	761	1	5	0	5	
		2	14	1	13	Normal
		3	1,2	1	11	
	765	l	15	3	12	
		2	11	0	11	Normal
		3	9	0	9	

 $^{^{*}{}^{0}0^{\}prime\prime}$ indicates a plug was observed for a female that was not pregnant.

 $^{^{95}\,\}mathrm{m}_{\gamma^{\prime\prime}}$ indicates a plug was not detected and the female was not pregnant.

See third breeding for final classification.

Table 16 (Concluded)

	5000 ppm Group								
	F, Male	Female	Total	Dead	Live				
	<u>Number</u>	Number	<u>Emplantations</u>	<u>Implantations</u>	Implantations	Final Classification			
Second	767	1	14	2	12				
breeding		2	13	0	13	Normal			
(concl.)		3	12	0	12				
	769	Ĺ	12	U	12				
		2	13	0	13	Normal			
		3	10	0	10				
	779	ŀ	0*	0	0				
		2	4	0	4	Partially sterile			
		3	_ #Yt	•	-				
	780	1	n	0	0				
			2	Ü	2	Partially sterile			
		2 3	ī	1	4				
Third	634								
_	0.34	i	•	-	-	Nonbreeder			
breeding		2 3	•	•	•	MONDLEGAGE			
		,	•	-	-				
	635	1	-	-	•				
		2	-	-	•	Partially sterile			
		3	•	-	-				
	722	1	13	ì	12				
		2	-	-	-	Normal			
		3	-	-	•				
	733	1	•	-	-				
		2	-	-	-	Nonbreeder			
		3	-	-	-				
	736	1	0	0	0				
		2	•	•	-	Presumptive storile			
		3	-	-	-				

 $^{^{\}text{tr}}00^{\text{tr}}$ indicates a plug was observed for a female that was not pregnant.

 $[\]ensuremath{^{\mathrm{tot}}}_{\mathrm{u-ii}}$ indicates a plug was not detected and the female was not pregnant.

	F, Male	E1	Live			
	Number Number	Female <u>Number</u>	Total Implantations	Dead <u>Implantations</u>	Live <u>Implantations</u>	Initial Classificatio
	1774-765	1.0.00 (1.	•	==P10::101 :V	Chip Louis G C Loying	202247 92299 1229
irst	805	ι	_**	•	•	
reeding		2	-	-	-	Nonbreeder
_		3	-	-	•	
	806	1	-	_	-	
		2	-	-	-	Nonbreeder
		3	-	-	-	
	815	ι	6	0	6	
		2	9	Ō	9	Partially sterile
		3	7	0	7	,
	816	ı	_	-	_	Partially sterile
		2	(10)†	?	(10)	(questionable)
		3	(11)	?	(11)	(4,
	817	1		_		
		2	-		-	Nonbreeder
		ž	•	-	-	
	818	ı	10	0	10	
	510	2	6	ŏ	6	Normal
		3	-	-	-	
	822	1	-		_	
	V	2	•	-	_	Nonbreeder
		3	-	-	-	
	823	ı	-	•	-	
		2	-	-	-	Nonbreeder
		3	•	•	-	
	837	1	-	-	-	
		2	-	-	-	Nonbreeder
		3	-	-	-	
	841	i	•	•	-	
		2	•	•	-	Nonbreeder
		3	-	-	-	
	846	ı	5	0	s	
		2	-	•	-	Partially storile
		3	-	-	-	
	847	1	(14)	7	(14)	Partially sterile
	• • • •	2		<u>.</u>	-	(questionable)
		ž	-	•	-	,,,
						Final Classification
						Frunt Organitication
Second	805	ι	-	-	-	h
reeding		2		-	•	Rebred ^b
		3	2	0	2	

[&]quot;Indicates traumatized F₀ females.

 $^{^{2}\}mathrm{m}0^{\prime\prime}$ indicates a plug was observed for a female that was not programt.

 $^{^{\}rm 200}\rm H_{\odot}^{-10}$ indicates a plug was not detected and the female was not pregnant.

[&]quot;()" indicates all implants were in early stages of development, and thus difficult to determine if they were live or dead upon gross observation.

h See third breeding for final classification.

Table 17 (Continued)

	5000 ³ ppa Group							
	F. Male Number	Female Number	Total Implementations	Dead	Live	Pinal Classification		
Second breeding	806	1 2	13 14	1 0	12 14	Norma1		
(concl.)		3	10	0	10			
	815	1	14	1 0	13	M		
		2 1	11 13	3	11 10	Normal		
	816	ι	11	2	9			
		2	**	-	-	Normal		
		"	-	-	-			
	817	1 2	11 0*	4 0	7 0	Rebred ^b		
		ž	<u>"</u>	-		M.DET G		
	818	1	11	0	11			
		2	.8	0	8	Normal		
		3	13	1	12			
	822	1 2	6 -	0	6 -	Rebred ^b		
		,	-	•	-	RODLEG		
	823	1	13	0	13			
	_	2	-	-	-	Normal		
•		3	-	-	-			
	B37	1 2	8	1 -	, ,,	Relired b		
•		3	-	-	-	Kentea		
	84 L	1	15	2	13			
		2	10	0	to	Norma I		
		3	-	-	-			
	846	l "	10	0	10 12	Normal		
		2	12 12	0	12	70TWZ I		
	847	1	il	ı	to			
		2	10	0	10	Normal		
		3	15	0	14			
Third	805	1	-	•	• .			
breeding		2	-	-	•	Partially sterile		
	817	,	13	2	11			
	017	2	9	7	2	Normal		
		3	11	0	13			
	822	1	10	0	to			
		2	12 12	0 0	1? 12	Normal		
		,	1.2	v	r.			

 $^{^{}a}$ Indicates traumatized \mathbf{F}_{0} iemales.

 $^{^{7909}}$ indicates a plug was observed for a female than van not pregnant.

 $^{^{\}mathrm{MC}_{H_{2}^{\mathrm{H}}}}$ indicates a plug was not detected and the female was not pregnant.

See third breeding for final classification.

Table 17 (Concluded)

				5000 ppm Group		
	F. Male Number	Female Number	Total Implantations	Dend <u>Implantations</u>	Live <u>Implantations</u>	Final Classification
Third	837	i.	_**	-	-	
breeding		2	-	-	-	Normal
(concl.)		3	-	-	-	

 $^{^{}a}$ Indicates traumatized F_{0} females.

SHATELL FROM WILLS