item 10 Number	03112 Not Scaling
Author	
Corporate Author	
Report/Article Title	Tables, notes and typescript: Statistical Data for Animal Study
Journal/Book Title	
Year	0000
Month/Day	
Celor	
Number of Images	48
Descripton Notes	Found in folder labelled "Statistical Data for Animal Study"

TABLE III.4. BODY WEIGHT AND ORGAN WEIGHT DATA FOR PEROMYSCUS POLIONOTUS A CONTROL SITE. DATA FOR PREGNANT FEMALES AND FOR MICE WITH TOTAL BODY WEIGHTS LESS THAN 10 GRAMS ARE NOT LISTED.

YEAR		BODY WEIGHT		ORG	AN WEIGHTS (N	Mg)	
COLLECTED	<u>SEX</u>	(Gms)	<u>HEART</u>	LUNGS	LIVER	SPLEEN	KIDNEY
1973	M*	12.86	70	**	660		
1973	М	11.90	70		750		
1973	M	12.30	70		880		
1973	M	10.44	100		540		
1974	М	14.65	108	119	811	17	226
1974	M	12.62	93	68	778	12	183
1974	F	11.61	77	99	642	26	171
1974	M	12.66	113	108	524	21	199
1974	F	12.55	85	164	688	16	223
1974	М	12.59	96	112	495	14	207
1974	F	10.23	84	88	679	25	170
1974	M	10.44	84	94	580	16	174
1974	М	11.70	130	92	537	16	195
1974	M	12.75	105	102	530	20	174
1974	M	11.72	90	100	726	15	211
1974	M	11.45	100	96	5 4 8	20	171
1974	M	11.05	90	87	549	4	203
1974	М	10.55	97	107	643	30	161
1974	F	12.67	121	106	704	20	225

^{*}M = Male, F = Female **Data not collected

TABLE III-8. BODY WEIGHT AND ORGAN WEIGHT DATA FOR PEROMYSCUS POLIONOTUS FROM TEST SITE. DATA FOR PREGNANT FEMALES AND FOR MICE WITH TOTAL BODY WEIGHTS LESS THAN 10 GRAMS ARE NOT LISTED.

YEAR		BODY WEIGHT		ORG	GAN WEIGHTS	(Mg)	
COLLECTED	<u>SEX</u>	(Gms)	HEART	LUNGS	LIVER	SPLEEN	KIDNEY
1973	M*	12.59	100	**	450		
1973	F	14.20	80	÷	1150		
1973	M	11.50	30				
1973	M	11.36	110	₩ =			
1973	F	15.4 3	70		1300		
1973	M	13.72	90		850	** == =	
1973	М	10.70	90		940		
1973	М	13.81	100		1300		
1973	F	14.59	80		1290		
1973	F	16.01	100		1450		
1973	М	10.48	70		760		
1973	М	12.16	90		570		
1973	M	13.50					
1973	F	10.00	80		560		
1973	F	10.79	100	*	1140		
1973	М	12.43	100		1150		
1973	F	13.93	80		1450	- •• ••	
1973	F	11.30	70		580		
1973	M	11.28	80		800		
1973	M	12.45	80		930		

^{*}M = Male, F = Female

^{**}Data not collected

TABLE III-S. BODY WEIGHT AND ORGAN WEIGHT DATA FOR PEROMYSCUS POLIONOTUS FROM TEST SITE. DATA FOR PREGNANT FEMALES AND FOR MICE WITH TOTAL BODY WEIGHTS LESS THAN 10 GRAMS ARE NOT LISTED. (CONCLUDED)

YEAR		BODY WEIGHT			- ORGAN WEIGHT:	S (Mg)	
COLLECTED	SEX	(Gms)	HEART	LUNGS	LIVER	SPLEEN	KIDNEY
1974	M	10.06	73	80	529	14	187
1974	M	13.63	97	112	696	11	196
1974	M	11.49	113	103	824	29	201
1974	М	12.25	∂9 7	124	696	16	234
1974	M	11.26	112	92	419	10	179
1974	F	15.57	111	90	926	17	216
1974	F	16.32	108	82	1044	55	241
1974	M	10.05	149	124	436	12	204
1974	F	12.25	114	121	737	11	197
1974	M	11.74	70	85	797	45	191
1974	M	11.09	84	81	635	9	174
1974	M	11.63	82	84	750	35	204
1974	М	10.61	102	151	645	17	174
1974	F	12.05	85	91	734	16	252
1974	М	12.07	92	96	902	28	232
1974	M	11.30	85	89	587	25	17 1
1974	M	12.21	75	80	847	58	173
1974	М	11.46	84	98	544	14	189

RELATIVE VARIATION VS ABSOLUTE VARIATION IN THE STUDY OF TREATMENT EFFECTS

George M. Angleton¹
Alvin L. Young²
Louis F. Wailly²
John W. Watters²

November 1974

College of Veterinary and Biomedical Sciences Colorado State University, Fort Collins, Colorado 80523

Department of Life and Behavioral Sciences United States Air Force Academy, Colorado 80840

FOREWORD

This report was prepared by Colorado State University, Fort Collins, Colorado, under Contract No. F0561174-90182.

Dr. George M. Angleton, Associate Professor of Radiation Biology and Biostatistics, Colorado State University (CSU) was program manager at CSU for this research program.

Dr. Alvin L. Young was senior scientist and final program manager for the United States Air Force (USAF) for this contract. Dr. John W. Watters was the original program manager for the USAF. Dr. Louis F. Wailly was responsible for initiating the collaborative effort between CSU and the USAF.

ABSTRACT

A fallacy of using the ratio of two response variables to study the effect of some treatment when measurements for both responses are taken on the same subject for the same time is disclosed. An alternative to the use of the ratio is proposed, namely to use one of the terms as an independent variable and take into account covariation through a regression relationship,

RELATIVE VARIATION VS ABSOLUTE VARIATION IN THE STUDY OF TREATMENT EFFECTS

The effects of a treatment are frequently studied in terms of a dependent variable which is the ratio of two responses. In the event that the two responses represent two different measurements made on one subject at a given time, their ratio may be an insensitive statistic relative to the detecting of treatment effects. The principal reason for this is that if both responses were affected proportionally then their ratio would not change. In many studies it would be more appropriate to treat one of the variables in the ratio as a dependent variable and the second variable as an independent variable.

Such situations frequently occur when the weight data obtained during a necropsy are analyzed. For example, in the case of a subject previously receiving some treatment (T) such as an exposure to ionizing radiation or an exposure to some chemical substance, the endpoints of interest might be the lung weight (L) and the total body weight (B) with the dependent variable being defined as the ratio (R) of the lung weight to the body weight. Thus,

$$R = L/B$$
.

The first order dependence of R on T is given by the linear relationship

$$R = \alpha_1 + \alpha_2 T$$

where α_1 is the expected value of R for T equal to zero and α_2 is the expected change in R per unit change in T. Alternately,

$$L/B = \alpha_1 + \alpha_2 T$$
.

Least squares estimation techniques can be used to obtain estimates of the parameters α_1 and α_2 and hence of the regression line for R.

$$\hat{R} = (L\hat{/}B)$$
$$= \hat{\alpha}_1 + \hat{\alpha}_2 T$$

If the R_{i} , that is the ratio L_{i}/B_{i} for the i-th observation set L_{i} and B_{i} corresponding to T_{i} , can be assumed to be somewhat normally distributed with constant variance about the expected values of R_{i} as estimated by the values of \hat{R}_{i} , then the hypothesis that α_{2} is equal to zero can be tested

using analysis of variance techniques.

However, it is both interesting and important to note that this is not a complete test of the simple hypothesis of no effect due to treatment. The hypothesis being tested is that the response variables L and B on a proportional scale are not affected differently by the treatment. In essence, then it can be shown that the test of the hypothesis that α_2 is equal to zero is a test of no body-weight and treatment, BT, interaction given that the response variable of principal interest is the lung weight L.

If the equation for R is rewritten in terms of L and B and then solved for L, then the fact that testing the hypothesis that α_2 is equal to zero is the same as testing the hypothesis that there is no BT interaction becomes immediately clear.

$$L/B = R$$

$$= \alpha_1 + \alpha_2 T;$$

so that

$$L = \alpha_1[B] + \alpha_2[BT].$$

The equation in this latter form states that lung weight is directly proportional to body weight when the treatment level is zero, the proportionality constant being α_1 . However, for non-zero values of T, the lung weight is also linear dependent on BT, the interactive term whose coefficient is α_2 . Hence, as the level of treatment increases the lung weight changes proportionately providing there is no effect of treatment on body weight. However, if the treatment were to lead to a change in the body weight, as might be expected in many cases, then the effect due to treatment alone could not be estimated since the only term involving T is the interactive term BT.

A more meaningful approach to the analysis would be to postulate a model whereby the terms of its equation would not impose the restrictions of the previous model. One such equation is as follows:

$$L = \alpha_1 + \alpha_2(B) + \alpha_3(T) + \alpha_4(BT)$$

In this equation both body weight and level of treatment are considered to be independent variables. The hypothesis of no significant effect due to a body-weight with level of treatment interaction could be performed by testing the hypothesis that α_4 is equal to zero. The hypothesis of no effect due to treatment

could also be tested by testing the joint hypothesis that α_3 and α_4 are both equal to zero.

Summary

The use of the ratio of two different response measurements in testing the null hypothesis of no effects due to treatment can be an insensitive and a meaningless test when the treatment affects both responses in a proportionate manner. When this is the case a more meaningful approach may be to treat one of the responses, say R_2 , as an independent variable and to formulate a four term linear model, expressing the dependence of the other response, say R_1 , on R_2 and the level of treatment T. Thus,

$$R_1 = \alpha_1 + \alpha_2(R_2) + \alpha_3(T) + \alpha_4(TR_2).$$

Null hypotheses concerning any of the parameters could be tested. A particular hypothesis of interest would be to test that α_1 is equal to zero for the data whereby T is equal to zero. Such a test as can be seen would test the basic plausibility of using ratio statistics as considered initially.

TABLE II

ANALYSIS OF VARIANCE TABLE FOR TESTING HYPOTHESES OF NO EFFECTS DUE
TO TCDD

Source of Variation	Degrees of Freedom	Sum of Squares	Mean Squares	Test Statistic F _s	Significance Level P{F>F _S }
Observations	22	22.2374			
Group I Group II	10 12	14.0716 8.1658		-	•
Hypothesis-1 $(\mu_1=0)^{n}$ $\mu_2=0$	2	2.7370	1.3685	1.40	0.26
Hypothesis-2 (μ ₁ =μ ₂)	1	2.1080	2.1080	2.16	0.16
Hypothesis-3 $(\mu_1 + \mu_2 = 0)$	1	0.6290	0.6290	0.65	0.43
Error	20	19.5004	0.9750		
Group I Group II	9 11	13.7826 5.7178	1.9500 0.5198	3.75	0.04*

^{*} Two tail

四-14

TABLE III-6. BODY WEIGHTS AND ORGAN WEIGHTS FOR PEROMYSCUS POLIONOTUS DUSTED WITH ALUMINA GEL CONTAINING NO TCDD (CONTROL GROUP) OR ALUMINA GEL CONTAINING 2.5 PPB OF TCDD (TEST GROUP)

	wn54 T	here 6			/-		ORGAN WEI	IGHTS (Mg) -			
	TREAT- MENT	<u>SEX</u>	WEIGHT (Gms)	HEART	LUNG	LIVER	SPLEEN	KIDNEY	GONADS	THYMUS	<u>ADRENALS</u>
	C*	F**	17.55	156	112	951	26	25 8	***	15	41
	С	F	16.80	112	106	980	24	255		54	49
13 -	- C	F	11.43	92	80	606	14	201		19	46
	С	M	12.60	115	95	577	10	199	88	19	26
	C	F	14.23	132	95	825	20	230		11	28
	С	M	12.72	75	95	610	10	186	93	18	22
	С	М	14.38	81	125	686	13	207	127	12	26
	С	M	13.10	130	79	645	20	1 97	96	12	30
	C	М	13.26	100	101	698	19	118	100	18	43
	С	M	12.97	110 15 %	≥= 11 g	14 718	190 14	87 196	-19 8¶	27 B	🌬 XT
	Τ	F	12.07	9 8	714 84	17 714	195 17	195	#	20	11 🗯 30
	T	М	15.72	144	107	953	★ 37	226	556	33	25
	T	М	12.77	122	90	542	20	189	93	20	32
	T	M	18.02	156	123	790	25	225	109	21	42
	T	М	13.65	105	88	805	19	246	105	15	34
	T	M	13.20	119	92	713	24	202	99	13	39
	T	M	15.57	127	90	723	33	214	83	27	59
	T	F	11.78	117	80	593	17	196		14	20

^{*}C = Control Site, T = Test Grid

^{**}F = Female, M = Male

^{**}Data not collected

DUSTING STUDY - TEST ANIMALS

IIMAL	SPECIMEN	EM #	SEX	MATURITY	STARTING Body Wt Grams	FINAL Body Wt Grams	HEART mg	LUNG mg	LIVER mg	SPLEEN mg	KIDNEY	GONADS Ing	THYMUS mg	ADRENAL mg	REMARKS: Only Thoracic thymus removed on female animals, ovaries not weighe
2	111	224	F	М		12.07	98	84	714	17	195		11	30	
4	112	996	M	М		15.72	144	107	953	37	226	556	33	25	*White spots on liver, section ta
5	113	528	M.	M		12.77	122	90	542	20	189	93	20	32	to include spots.
6	114	221	М	М	· '	18.02	156	123	790	25	225	109	21	42	
7	115	446	M	M	<u> </u>	13.65	105	88	805	19	246	105	15	34	
9	116	296	М	М		13.20	119	92	713	24	202	99	13	39	
10	117 .	742	M	·M		15.57	127	90	723	33	214	83	27	59 *	*Excess fat around adrenals.
16	118	444	F	М		11.78	117	80	593	17	196		14	20	*Adrenals in three pieces.
18	119	073	F	м		12.61	101	112	751	14	219		15	28	
20	120	641	F	М		14.99	126	113	912	14	279		10	35	
21	121	054	F	М		13.77	123	88	832	9	243		13	31	•
23	122	372	M	M		14312	116	109	779	22	226	118	11	27	
													*		

DUSTING STUDY - CONTROL ANIMALS

MAL	SPECIMEN	EM	SEX	MATURITY	STARTING BODY WT GRAMS	FINAL BODY WT GRAMS	HEART mg	LUNG	LIVER mg	SPLEEN mg	KIDNEY mg	GONADS mg	THYMUS mg	ADRENALS mg	REMARKS: Only thoracic thymus removed on female animals ovaries not weighed
1	101	696	Ė	M		17.55	156	112	951	26	258		15	41	
3	102	112	F	м		16.80	112	106	980	24	255		54	49	*OBSES (excess fat on thymus and
8	103	591	F.	M		11.43	92	80	606	14	201		19	46	adrenals. **Fatty liver.
¢ la	104	655	М	- M		12.60	115	95	577	10	199	88	19	26	
3 13	105	274	F	M		14.23	132	95	825	20	230		11	28	
# 14	106	626	М	M		12.72	75	95	610	10	186	93	18	22	
\$ 15	107	323	м	M		14.38	81	125	686	13	207	127	12	26	
717	108	669	ļ M	М		13.10	130	79	645	20	197	96	12	30	
9 19	109	628	M	M		13.26	100	101	698	19	118	100	18	43	
23	110	069	M	M ·		12.97	158	118	718	14	190	87	18	27	*One adrenal macerated.
	1							Ì							and the second s
					<i>i</i>									!	
	;]	7		
] [
•				1											
	\					:					\				
	ļ		1				ļ			ł			•		

STOTISTICAL analyses were personned on Freld animals captured in to in consecutive years (1973-1974). Table III-4 and Table III-5 present data on year, sex of specimen, total Budy weight, and individual organ weights For heart, lungs, liver, Spleen, and Kidney Sor control and Test animols respectively a mais but of fer pregnant famile, were excluded since prequancy may atter organ we and body mass. In addition animals with a Total body weight of less Than 10 grams were also excelleded since nistological examination confirmed that animal

Of less Than 10 grams body weight were general immature. There fore, the number of denimals included For STatistical analysis were 19 mature control animals and 38 mature animists From the Test grid The following STatistics, model was epplied to all data & - - - - $R_{1} = 0$, $+ d_{2}(R_{2}) + d_{3}(T) + d_{4}(R_{2})$ Where: R. whe dependent variable (e.g., lung weight) while both 1/2 and body weight) and level of treatment (Control or test (T) are considered to be independent Statistical analyses were performed by Dr. Garge Angleton's College of Verlermany. In Boundary Suice, Colonso State University, Fort Collins, Consorto 80523

Namables The analypis of Namances for the data are presented in TAbles III-6 (Body weight), III-17 (Liver weights), III-8 (hearts, weight), III-9 (Lung weights), III-10 (Fidney) weights)
III-11 (Spleen weights)

The analysis of variance table, Table III-b, was used to Test the hypothesis of no effect of treatment (Animals From control or test and) on total body weight. Howe does not appear to exist any significant effect due to

Treatment. However, is might be expected,

mice normal weight more than male mice).

In The case of analysis of liver weight date as given in Table III-7, The effect due to treatment is significant at me 0.08 level of significance but not at me 0.05 level. Hence, The hypoThesis of no effect due to treatment is accepted, but with stight degree of reservation. It is interesting to note The Significant effects due to body weight, sex and year were simultaneously noted with The levels Significance for These Tests being less Than 0,00%. In 1973 The TEST area received more Than inches above normal rain fall, That year

abandant vegetation (and seeds) were

dvailable. However, in 1974 an exceptionally

dry year occurred. So sevene was This

produced

dry period that many plant species factor

minimal

minimal

seed

YOUTZ BAJ JANICHARZ DANA

TABLE III- . ANALYSIS OF VARIANCE TABLE FOR THE ANALYSIS OF FINAL BODY WEIGHT DATA FOR PEROMYSCUS POLIONOTUS DUSTED WITH ALUMINA GEL CONTAINING 2.5 PPB OF TCDD

SOURCE OF VARIATE	ION dF	SS	MS	TEST STATISTIC -F-	LEVEL OF SIGNIFICANCE P F F
OBSERVATIONS	22	4,361.4335			
MODEL	3	4,292.8250			
INTERCEPT SEX (S) BODY WEIGHT	1 1 1	4,292.7016 0.0447 0.0786	0.0447 0.0782	0.012 0.022	0.914 0.884
ERROR	19				

Model $B = \alpha_1 + \alpha_2 S + \alpha_3 T$

Sequential Conditional Hypotheses

 H_{01} : α_3 = 0, no effect due to treatment, <u>accepted</u> at the 0.05 level of significance

 H_{02} : α_2 = 0, no effect due to sex, accepted at the 0.0t level of significance.

TABLE III- . ANALYSIS OF VARIANCE TABLE FOR THE ANALYSIS OF LIVER WEIGHT DATA FOR PEROMYSCUS POLIONOTUS DUSTED WITH ALUMINA GEL CONTAINING 2.5 PPB OF TCDD

SOURCE OF VARIATION	l dF	SS	MS	TEST STATISTIC -F-	LEVEL OF SIGNIFICANCE P F F
OBSERVATIONS	22	12,568,491.			
MODEL	5	12,465,795.			
INTERCEPT BODY WEIGHT (B) SEX (S) TREATMENT (T) INTERACTION (BT)	1 1 1 1	12,229.927. 188,584. 43,212. 2,532. 1,538.	188,584 43,212 2,532 1,538	31.22 7.15 0.42 0.25	0.001 0.016 0.526 0.623
ERROR	17	102,695.	6,040		

Model: $L = \alpha_1 + \alpha_2 B + \alpha_3 S + \alpha_4 T + \alpha_5 BT$

Sequential Conditional Hypotheses

 H_{01} : α_5 = 0; no effect due to body-weight with treatment interaction, accepted at the 0.05 level of significance

 $H_{0\,2}$: α_4 = 0; no effect due to treatment, <u>accepted</u> at the 0.05 level of significance

 H_{03} : α_3 = 0; no effect due to sex, <u>rejected</u> at the 0.016 level of significance

 $H_{0.4}$: α_4 = 0; no effect due to body weight, <u>rejected</u> at the 0.001 level of significance

TABLE III- . ANALYSIS OF VARIANCE TABLE FOR THE ANALYSIS OF ADRENAL WEIGHT DATA FOR PEROMYSCUS POLIONOTUS DUSTED WITH ALUMINA GEL CONTAINING 2.5 PPB OF TCDD

SOURCE OF VARIATION	N dF	\$\$	MS	TEST STATISTIC -F-	LEVEL OF SIGNIFICANCE P F F
OBSERVATIONS	22	26,866.00		·	
MODEL	5	25,334.71			
INTERCEPT BODY WEIGHT (B) SEX (S) TREATMENT (T) INTERACTION (BT)	1 1 1 1	24,890.90 393.32 7.80 1.99 40.68	393.32 7.80 1.99 40.68	4.37 0.09 0.02 0.45	0.052 0.768 0.889 0.511
ERROR	17	1,531.28	90.07		

Model: $A = \alpha_1 + \alpha_2 B + \alpha_3 S + \alpha_4 T + \alpha_5 BT$

Sequential Conditional Hypotheses

 H_{01} : α_5 = 0; no effect due to body-weight with treatment interaction, accepted at the 0.05 level of significance

 H_{02} : α_4 = 0; no effect due to treatment, <u>accepted</u> at the 0.05 level of significance

 H_{03} : α_3 = 0; no effect due to sex, <u>accepted</u> at the 0.05 level of significance

 $H_{0\,4}$: α_2 = 0; no effect due to body weight, <u>accepted</u> at the 0.052 level of significance

TABLE III- . ANALYSIS OF VARIANCE TABLE FOR THE ANALYSIS OF LUNG WEIGHT DATA FOR PEROMYSCUS POLIONOTUS DUSTED WITH ALUMINA GEL CONTAINING 2.5 PPB OF TCDD

SOURCE OF VARIATION	dF	SS	MS	TEST STATISTIC -F-	LEVEL OF SIGNIFICANCE PFF
OBSERVATIONS	22	220,626.0000	_		
MODEL	5	218,023.2542			
INTERCEPT BODY WEIGHT (B) SEX (S) TREATMENT (T) INTERACTION (BT)	1 1 1 1	216,414.7273 1,476.9833 78.1148 51.8922 1.5366	1,476.9833 78.1148 51.8922 1.5366	0.65 0.51 0.34 0.01	0.006 0.485 0.567 0.922
ERROR	17	2,602.7458	153.1027		

Model: $L = \alpha_1 + \alpha_2 B + \alpha_3 S + \alpha_4 T + \alpha_5 BT$

Sequential Conditional Hypotheses

 H_{01} : α_5 = 0; there exists no significant effect due to body-weight and treatment interaction: Accepted, at the 0.05 level of significance

 H_{02} : α_4 = 0; there exists no significant effect due to treatment: Accepted, at the 0.05 level of significance

 H_{03} : α_3 = 0; there exists no significant effect due to sex differences: Accepted, at the 0.05 level of significance

 $H_{0\,4}$: α_2 = 0; there exists no significant effect due to body weight: Rejected at the 0.01 level of significance

TABLE III- . ANALYSIS OF VARIANCE TABLE FOR THE ANALYSIS OF HEART WEIGHT FOR PEROMYSCUS POLIONOTUS DUSTED WITH ALUMINA GEL CONTAINING 2.5 PPB OF TCDD

SOURCE OF VARIATION	l dF	\$\$	MS	TEST STATISTIC -F-	LEVEL OF SIGNIFICANCE P F F
OBSERVATIONS	22	319,269.00			
MODEL	5	311,988.42			
INTERCEPT BODY WEIGHT (B) SEX (S) TREATMENT (T) INTERACTION (BT)	1 1 1 1	308,455.68 3,301.26 5.29 151.30 74.89	3.301.26 5.29 151.30 74.89	7.708 0.012 0.353 0.174	0.013 0.914 0.560 0.681
ERROR	17	7,280.58	428.20		

Model: $H = \alpha_1 + \alpha_2 B + \alpha_3 S + \alpha_4 T + \alpha_5 BT$

Sequential Conditional Hypotheses

 H_{01} : α_5 = 0; no effect due to body-weight with treatment interaction, accepted at the 0.05 level of significance

 H_{02} : α_4 = 0; no effect due to treatment, <u>accepted</u> at the 0.05 level of significance

 H_{03} : α_3 = 0; no effect due to sex, <u>accepted</u> at the 0.05 level of significance

 $\text{H}_{\text{0.4}}\colon \alpha_{\text{2}}$ - 0; no effect due to body weight, rejected at the 0.013 level of significance

TABLE III- . ANALYSIS OF VARIANCE TABLE FOR THE ANALYSIS OF SPLEEN WEIGHT DATA FOR PEROMYSCUS POLIONOTUS DUSTED WITH ALUMINA GEL CONTAINING 2.5 PPB OF TCDD

SOURCE OF VARIATION	l dF	ss	MS	TEST STATISTIC -F-	LEVEL OF SIGNIFICANCE P F F
OBSERVATIONS	22	9,129.00			
MODEL	5	8,578.22			
INTERCEPT BODY WEIGHT (B) SEX (S) TREATMENT (T) INTERACTION (BT)	1 1 1 1	8,056.41 386.11 48.60 74.33 12.79	386.11 48.60 74.33 12.79	11.92 1.50 2.29 0.39	0.003 0.237 0.149 0.541
ERROR	17	550.78	32.40		

Model: $S = \alpha_1 + \alpha_2 B + \alpha_3 S + \alpha_4 T + \alpha_5 BT$

Sequential Conditional Hypotheses

 H_{01} : α_5 = 0; no effect due to body-weight with treatment interaction, accepted at the 0.05 level of significance

 H_{02} : α_4 = 0; no effect due to treatment, <u>accepted</u> at the 0.05 level of significance

 $H_{0.3}$: α_3 = 0; no effect due to sex, <u>accepted</u> at the 0.05 level of significance

 H_{04} : α_2 = 0: no effect due to body weight, <u>rejected</u> at the 0.003 level of significance

TABLE III- . ANALYSIS OF VARIANCE TABLE FOR THE ANALYSIS OF KIDNEY WEIGHT DATA FOR PEROMYSCUS POLIONOTUS DUSTED WITH ALUMINA GEL CONTAINING 2.5 PPB OF TCDD

SOURCE OF VARIATION	dF	SS	MS	TEST STATISTIC -F-	LEVEL OF SIGNIFICANCE P F F
OBSERVATIONS	22	1,027,675.00		<u> </u>	
MODEL	5	1,017,622.43			
INTERCEPT BODY WEIGHT (B) SEX (S) TREATMENT (T) INTERACTION (BT)	1 1 1 1	1,004,518.23 7,046.30 4,685.37 1,371.75 0.78	7,046.30 4,685.37 1,371.75 0.78	11.916 7.923 2.320 0.001	0.003 0.012 0.146 0.975
ERROR	17	10,052.57	591.33		

Model: $K = \alpha_1 + \alpha_2 B + \alpha_3 S + \alpha_4 T + \alpha_5 BT$

Sequential Conditional Hypotheses

 H_{01} : α_5 = 0; no effect due to body-weight with treatment interaction, accepted at the 0.05 level of significance

 H_{02} : α_4 = 0; no effect due to treatment, <u>accepted</u> at the 0.05 level of significance

 H_{03} : α_3 = 0; no effect due to sex, <u>rejected</u> at the 0.012 level of significance

 $H_{0.4}$: α_2 = 0; no effect due to body weight, <u>rejected</u> at the 0.003 level of significance

TABLE III- . ANALYSIS OF VARIANCE TABLE FOR THE ANALYSIS OF GONAD WEIGHT DATA FOR PEROMYSCUS POLIONOTUS DUSTED WITH ALUMINA GEL CONTAINING 2.5 PPB OF TCDD

SOURCE OF VARIATION	l dF	SS	MS	TEST STATISTIC -F-	LEVEL OF SIGNIFICANCE P F F
OBSERVATIONS	13	430,612.00			
MODEL	4	263,353.38		,	
INTERCEPT BODY WEIGHT (B) TREATMENT (T) INTERACTION (BT)	1 1 1 1	236,655.08 24,274.02 2,423.08 1.61	24,274.02 2,423.08 1.61	1.31 0.13 0.00+	0.282 0.727 0.993
ERROR	9	167,258.21	18,584.25		

Model: $G = \alpha_1 + \alpha_2 B + \alpha_3 T + \alpha_4 BT$

Sequential Conditional Hypotheses

 H_{01} : α_4 = 0; no effect due to body-weight with treatment interaction, accepted at the 0.05 level of significance

 $H_{0\,2}$: α_3 = 0; no effect due to treatment, <u>accepted</u> at the 0.05 level of significance

 $H_{0.3}$: α_2 = 0; no effecut due to body weight, accepted at the 0.05 level of significance

TABLE III- . ANALYSIS OF VARIANCE TABLE FOR THE ANALYSIS OF THYMUS WEIGHT FOR PEROMYSCUS POLIONOTUS DUSTED WITH ALUMINA GEL CONTAINING 2.5 PPB OF TCDD

SOURCE OF VARIATION	l dF	SS	MS	TEST STATISTIC -F-	LEVEL OF SIGNIFICANCE P F F
OBSERVATIONS	22	9,229.0000			
MODEL	5	7,670.9750			
INTERCEPT BODY WEIGHT (B) SEX (S) TREATMENT (T) INTERACTION (BT)	1 1 1 1	7,236.4090 378.6052 0.0013 47.8972 8.0623	378.6052 0.0013 47.8972 8.0623	4.13 0.01 0.52 0.09	0.058 0.922 0.481 0.768
ERROR	17	1,558.0250	91.6485		

Model: $T = \alpha_1 + \alpha_2 B + \alpha_3 S + \alpha_4 T + \alpha_5 BT$

Sequential Conditional Hypotheses

 H_{01} : α_5 = 0; no effect due to body-weight with treatment interaction, accepted at the 0.05 level of significance

 $H_{0.2}$: α_4 = 0; no effect due to treatment, <u>accepted</u> at the 0.05 level of significance

 H_{03} : α_3 = 0; no effect due to sex, <u>accepted</u> at the 0.05 level of significance

 $H_{0.4}\colon\thinspace\alpha_2$ = 0; no effect due to body weight, accepted at the 0.05 level of significance

Stated as Data
Too Took St. S.

TABLE III-6. ANALYSIS OF VARIANCE TABLE FOR TOTAL BODY WEIGHTS OF PEROMYSCUS POLIONOTUS COLLECTED IN 1973 AND 1974 FROM THE CONTROL AND TEST GRID. DATA FOR PREGNANT FEMALES AND FOR MICE WITH TOTAL BODY WEIGHTS LESS THAN 10 GRAMS EXCLUDED FROM THE ANALYSIS

SOURCE OF VARIAT	ION dF	SS	MS	TEST STATISTIC -F-	LEVEL OF SIGNIFICANCE P F F
OBSERVATIONS	58	8,742.1315	· · · ·		
MODEL	4	8,630.5108			
MEAN	1	8,610.5303			
YEAR	1	2.3668	2.3668	1.1450	0.289
SEX	1	17.2892	17.2892	8.3 64 2	0.006
TREATMENT	1	0.3246	0.3246	0.1470	0.694
ERROR	54	111.6207	2.0671		

TABLE III-7. ANALYSIS OF VARIANCE TABLE FOR LIVER WEIGHTS OF PEROMYSCUS POLIONTUS COLLECTED IN 1973 AND 1974 FROM THE CONTROL AND TEST GRID. DATA FOR PREGNANT FEMALES AND FOR MICE WITH TOTAL BODY WEIGHTS LESS THAN 10 GRAMS EXLUDED FROM THE ANALYSIS

SOURCE OF VARIATION	dF	SS	MS	TEST STATISTIC -F-	LEVEL OF SIGNIFICANCE P F F
OBSERVATIONS	52	34,592,585.			
MODEL	5	33,279,682.			
MEAN YEAR SEX BODY WEIGHT TREATMENT	ן ן ן ן	31,125,642. 845,190. 483,959. 734,901. 89,989.	845,190. 483,959. 734,901. 89,988	30.256 17.325 26.308 3.22	0.001 0.001 0.001 0.0792
ERROR	47	1,312,903.	27,934		

TABLE III-8. ANALYSIS OF VARIANCE TABLE FOR HEART WEIGHTS OF PEROMYSCUS POLIONOTUS COLLECTED IN 1973 AND 1974 FROM THE CONTROL AND TEST GRID. DATA FOR PREGNANT FEMALES AND FOR MICE WITH TOTAL BODY WEIGHTS LESS THAN 10 GRAMS EXLUDED FROM THE ANALYSIS

SOURCE OF VARIATION dF		SS	MS	TEST STATISTIC -F-	LEVEL OF SIGNIFICANCE P F F
OBSERVATIONS	56	486,160.0000	·		
MODEL	5	470,417.3081			
MEAN YEAR SEX BODY WEIGHT TREATMENT	1 1 1 1	467,383.1424 2,697.6582 1.0493 334.7756 0.6821	1.0493 1.0845 0.6821	0.003 1.085 0.002	0.957 0.304 0.963
ERROR	51	15,742.6919	308.68		

TABLE III-4. ANALYSIS OF VARIANCE TABLE FOR LUNG WEIGHTS OF PEROMYSCUS POLIONOTUS COLLECTED IN 1973 AND 1974 FROM THE CONTROL AND TEST GRID. DATA FOR PREGNANT FEMALES AND FOR MICE WITH TOTAL BODY WEIGHTS LESS THAN 10 GRAMS EXCLUDED FROM THE ANALYSIS

SOURCE OF VARIATIO	N dF	SS	MS	TEST STATISTIC -F-	LEVEL OF SIGNIFICANCE P F F
OBSERVATIONS	33	350,007.00			
MODEL	4	337,384.13			
MEAN SEX BODY WEIGHT TREATMENT	1 1 1	337,037.12 174.44 38.14 134.43	174.44 38.14 134.43	0.40 0.09 0.31	0.532 0.766 0.582
ERROR	29	12,622.87	435.27		

TABLE III-10. ANALYSIS OF VARIANCE TABLE FOR KIDNEY WEIGHTS OF <u>PEROMYSCUS</u> <u>POLIONOTUS</u> COLLECTED IN 1973 AND 1974 FROM THE CONTROL AND <u>TEST GRID</u>. DATA FOR PREGNANT FEMALES AND FOR MICE WITH TOTAL BODY WEIGHTS LESS THAN 10 GRAMS EXCLUDED FROM THE ANALYSIS

SOURCE OF VARIATIO	N dF	SS	MS	TEST STATISTIC -F-	LEVEL OF SIGNIFICANCE P F F
OBSERVATIONS	33	1,594.832.			<u> </u>
MODEL	4	1,582,099.			
MEAN SEX BODY WEIGHT TREATMENT	1 1 1	1,571,782. 3,010. 5,998. 1,309.	3,010 5,998 1,309	6.85 13.66 2.98	0.014 0.001 0.095
ERROR	29	12,732.	439		

TABLE III-44. ANALYSIS OF VARIANCE TABLE FOR SPLEEN WEIGHTS OF <u>PEROMYSCUS</u> <u>POLIONOTUS</u> COLLECTED IN 1973 AND 1974 FROM THE CONTROL AND TEST GRID. DATA FOR PREGNANT FEMALES AND FOR MICE WITH TOTAL BODY WEIGHTS LESS THAN 10 GRAMS EXCLUDED FROM THE ANALYSIS

SOURCE OF VARIAT	ION dF	SS	MS	TEST STATISTIC -F-	LEVEL OF SIGNIFICANCE P F F
OBERVATIONS	33	19,418.00			
MODEL	4	15,123.36			
MEAN SEX BODY WEIGHT TREATMENT	1 1 1	14,595.00 52.03 262.61 213.69	52.03 262.61 213.69	0.35 1.77 1.44	0.559 0.195 0.241
ERROR	27	4,294.64	148.09		

C. Statistical Methods 1

The effects of a treatment are frequently studied in terms of a dopordant variable which is the ratio of two response. In the event that the two responses represent two different modernents work on one suit of a river time, their ratio may be an inseminise statistic relative to the determina of tracers of estable. The principal reason for this is that then their rate would not charge. When this is the case a more meaningful approach may be to treat one of the responses, Res as an independent Nanable and to formulate a four term limear model, expressing the dependence of the other response, R1, on R2 and the level of treatment, T. Thus

R, is the dependent variable (eq., lung weight,

In this equation, both R2 (e.g., body weight)

and lovel of treatment (T) who considered to be undependent wanables. The hypothesis of no significant effect on lung weight due to body weight with level of treatment interaction considered by testing the hypothesis that of is equal to extract the hypothesis that of no effect due to treatment could also be tested by testing the faint hypothesis that of the string the faint hypothesis that of the same of of the string the faint hypothesis that of some of the same of the

that the designation is some mice that the designation is some mice that the designation is some mice as unmature at renopsit was incorrect as judged from microscopic appearance of the ideas and overies and the production of sperm in the testicies iteal and orbitalistical analyses were performed only animals having a total body weight of 10 grams of animals howing animals (i.e., commels considered as mature).

Moreover, data from pregnant permales also excluded since pregnancy between animals since pregnancy between

ANALYSIS OF VARIANCE TABLE FOR TOTAL BODY WEIGHTS FOR FIELD DATA FOR PREGNANT FEMALES AND FOR MICE WITH TOTAL BODY WEIGHTS LESS THAN 10 GRAMS EXCLUDED FROM THE ANALYSIS

	د ًا	\alpha\	~ 6	Nest Natatistic	¿Level of
Source of Variation	Degrees of Freedom	Sum of Squares	Mean Squares	& Statistic* V-F _s -	Significance P{F>F _s }
Observations	58	8,742.1315			
Model	4	8,630.5108			
Mean Year Sex Treatment	1 1 1	8,610.5303 2.3668 17.2892 0.3246	2.3668 17.2892 0.3246	1.1450 8.3642 0.1570	0.289 0.006 0.694
Error	54	111.6207	2.0671		

TABLE III -

ANALYSIS OF VARIANCE TABLE FOR LIVER WEIGHTS FOR FIELD BEACHMOUST BASA.

DATA FOR PREGNANT FEMALES AND FOR THE PROPERTY OF THE DATA FOR PREGNANT FEMALES AND FOR MICE WITH TOTAL BODY WEIGHTS LESS THAN 10 GRAMS EXCLUDED FROM THE ANALYSIS

Source of Variation	Degrees of Freedom	Sum of Squares	Mean Squares	Test Statistic -F _s -	Level of Significance P{F>F _S }
Observations	52	34,592,585.			· · · · · · · · · · · · · · · · · · ·
Mode1	5	33,279,682.			
Mean Year Sex Body Weigh Treatment	t 1 1 1	31,125,642. 845,190. 483,959. 734,901. 89,989.	845,190. 483,959. 734,901. 89,988	30.256 17.325 26.308 3.22	<0.001 <0.001 <0.001 0.0792
Error	47	1,312,903.	27,934		

1973

Males 193.48 - 16 - 12.0925 Females 106.25 - 8 = 13.28/25

Control males 47.5 :4=11.875 Control Femilies O

Test males 145.28 ;12=12.165 Test Females 106.25 ; 8=13.28125

1974

Males 293.03 -, 55 ~ 11.7912

Femiles 103.25 = 8 = 12,90625

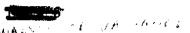
Control Males 132.18 ; 11 = 12.01 control femiles 47.06 ; 4 = 11.765

Test moles 160.85 : 14 = 11.489285 Test female 3 56.19 : 4 = 14.0475 TABLE TIL
TABLE FOR THE ANALYSIS OF LIVER WEIGHT DATA FOR NECE DUSTED WITH

ALUMINA GEL CONTAINING PPB OF TCDD

Source of Variation	Degrees of Freedom	Sum of Squares	Mean Squares	Test Statistic -F _s -	Level of Significance P{F>F _s }
Observations	22	12,568,491.			
Model	5	12,465,795.			
Intercept Body Weight (B) Sex (S) Treatment (T) Interaction (BT	1 1	12,229,927. 188,584. 43,212. 2,532. 1,538.	188,584 43,212 2,532 1,538	31.22 7.15 0.42 0.25	<0.001 0.016 0.526 0.623
Error	17	102,695.	6,040		

TARLE TO ANOVA TABLE FOR THE ANALYSIS OF THYMUS WEIGHT FOR WITH ALUMINA GEL CONTAINING PPB OF TCDD


Source of [Variation	Degrees of Freedom	Sum of Squares	Mean Squares	Test Statistic -F _s -	Level of Significance P{F>F _S }
Observations	22	9,229.0000			
Model	5	7,670.9750			
Intercept Body Weight (B) Sex (S) Treatment (T) Interaction (BT)	1 1 1 1	7,236.4090 378.6052 0.0013 47.8972 8.0623	378.6052 0.0013 48.8972 8.0623	3 <0.01 2 0.52	0.058 #0.922 0.481 0.768
Error	17	1,558.0250	91.6485	5	

The Late of the Analysis of Gonad Weight Data for Mark Dusted With Alumina Gel Containing PPB of TCDD

Source of Variation	Degrees of Freedom	Sum of Squares	Mean Squares	Test Statistic -F _s -	Level of Significance P{F>F _S }
Observations	13	430,612.00			
Model	4	263,353.38			
Intercept Body Weight (B) Treatment (T) Interaction (BT	1 1 1 1	236,655.08 24,274.02 2,423.08 1.61	24,274.02 2,423.08 1.61	3 0.13	0.282 0.727 0.993
Error	9	167,258.21	18,584.2	5	

TABLE TO ANOTAL TABLE FOR THE ANALYSIS OF SMEETS WEIGHT DATA FOR MALE DUSTED WITH ALUMINA GEL CONTAINING TO PPB OF TCDD

Source of Variation	Degrees of Freedom			Test Statistic S -F _s -	Level of Significance P{F>F _s }
				· .	······································
Observations	22	1,027,675.00			
Model	5	1,017,622.43			
Intercept Body Weight (B) Sex (S) Treatment (T) Interaction (BT	1 1	1,004,518.23 7,046.30 4,685.37 1,371.75 0.78	7,046.30 4,685.37 1,371.75 0.78	11.916 7.923 2.320 0.001	0.003 0.012 0.146 0.975
Error	17	10,052.57	591.33		

PERONOCCI POLIONOTII

ANOVA TABLE FOR THE ANALYSIS OF SPLEEN WEIGHT DATA FOR DUSTED WITH ALUMINA GEL CONTAINING PPB OF TCDD

Source of I Variation	Degrees of Freedom	Sum of Squares	Mean Squares	Test Statistic -F _s -	Level of Significance P{F>F _S }
Observations	22	9,129.00			
Mode1	5	8,578.22			
Intercept Body Weight (B) Sex (S) Treatment (T) Interaction (BT)	1 1 1 1 1	8,056.41 386.11 48.60 74.33 12.79	386.11 48.60 74.33 12.79	11.92 1.50 2.29 0.39	0.003 0.237 0.149 0.541
Error	17	550.78	32.40		

TABLE TABLE FOR THE ANALYSIS OF HEART WEIGHT FOR MESE DUSTED WITH ALUMINA GEL CONTAINING PPB OF TCDD

Source of Variation	Degrees of Freedom	Sum of Squares	Mean Squares	Test Statistic -F _s -	Level of Significance P{F>F _s }
Observations	22	319,269.00			
Model	5	311,988.42			
Intercept Body Weight (B) Sex (S) Treatment (T) Interaction (BT)	1 1 1 1	308,455.68 3,301.26 5.29 151.30 74.89	3.301.26 5.29 151.30 74.89	7.708 0.012 0.353 0.174	0.013 0.914 0.560 0.681
Error	17	7,280.58	428.20		

PERONY OU. POLICE !!

TABLE 20 - ANNOVA TABLE FOR THE ANALYSIS OF FINAL BODY WEIGHT DATA FOR NESSE DUSTED WITH ALUMINA GEL CONTAINING 24 PPB OF TCDD

Source of Variation	Degrees Freedom	of Sum of Squares	Mean Squares	Test Statistic -F _s -	Level of Significance P{F>F _S }
Observations	22	4,361.4335			•
Model	3	4,292.8250			
Intercept Sex (S) Body Weight (B)	1 1 1	4,292.7016 0.0447 0.0786	0.0447 0.0782	0.012 0.022	0.914 0.884
Error	19				

OF RECHYSCU! PANS ON A PANT CONTROL OF RECHYSCU! PANS ON A PANT CONTROL OF RECHYSCU!

GHTS PERSON FEED BEACH TOTAL BODY WEIGHT CHIEF CONTROL OF RECHYSCU!

LYSIS

TABLE III -3. ANALYSIS OF VARIANCE TABLE FOR HEART WEIGHTS POR FIRE BEACH WEIGHTS

DATA: DATA FOR PREGNANT FEMALES AND FOR MICE WITH TOTAL BODY WEIGHTS

LESS THAN 10 GRAMS EXCLUDED FROM THE ANALYSIS

Degrees of Freedom	Sum of Squares	Mean Squares	Test Statistic -F _s -	Level of Significance P{F>F _S }
56	486,160.0000	·	· · · · · · · · · · · · · · · · · · ·	
5	470,417.3081			
Į Į	467,383.1424 2,697.6582	1 0400	0.000	0 05 7
 	334.7756 0.6821	1.0493 1.0845 0.6821	0.003 1.085 0.002	0.957 0.304 0.963
51	15,742.6919	308.68		
	56 5 1 1	Freedom Squares 56	Freedom Squares Squares 56	Sum of Squares Squares Statistic Squares Squares Squares Squares Squares -F _s - 56

ANALYSIS OF VARIANCE TABLE FOR LUNG WEIGHTS FOR FIELD BEACHMOUSE DATA.

DATA FOR PREGNANT FEMALES AND FOR MICE WITH TOTAL BODY WEIGHTS LESS THAN
10 GRAMS EXCLUDED FROM THE ANALYSIS

Source of Variation	Degrees of Freedom	Sum of Squares	Mean Squares	Test Statistic -F _s -	Level of Significance P{F>F _s }
Observations	33	350,007.00			
Mode1	4	337,384.13			
Mean Sex Body Weigh Treatment	1 1 1 1	337,037.12 174.44 38.14 134.43	174.44 38.14 134.43	0.40 0.09 0.31	0.532 0.766 0.582
Error	29	12,622.87	435.27		

(See premioris Elecuption)

ANALYSIS OF VARIANCE TABLE FOR KIDNEY WEIGHTS, FOR EIGHT BEACHMOUSE DATA.

DATA FOR PREGNANT FEMALES AND FOR MICE WITH TOTAL BODY WEIGHTS LESS THAN

10 GRAMS EXCLUDED FROM THE ANALYSIS

	rees of reedom	Sum of Squares	Mean Squares	Test Statistic -F _s -	Level of Significance P{F>F _s }
Observations	33	1,594.832.			
Model	4	1,582,099.			
Mean Sex Body Weight Treatment	1 1 1	1,571,782. 3,010. 5,998. 1,309.	3,010 5,998 1,309	6.85 13.66 2.98	0.014 <0.001 0.095
Error	29	12,732.	439		

ANALYSIS OF VARIANCE TABLE FOR SPLEEN WEIGHTS, FOR FIELD BEACHMOUSE DATA.

DATA FOR PREGNANT FEMALES AND FOR MICE WITH TOTAL BODY WEIGHTS LESS THAN

10 GRAMS EXCLUDED FROM THE ANALYSIS

Source of Variation	Degrees of Freedom	Sum of Squares	Mean Squares	Test Statistic -F _s -	Level of Significance P{F>F _s }
Observations	33	19,418.00			
Model	4	15,123.36			
Mean Sex Body Weigh Treatment	t 1 1 1 1 1	14,595.00 52.03 262.61 213.69	52.03 262.61 213.69	0.35 1.77 1.44	0.559 0.195 0.241
Error	27	4,294.64	148.09		

(Ou premiera Elecupter)

ANALYSIS OF VARIANCE TABLE FOR KIDNEY WEIGHTS, FOR FIELD BEACHMOUSE DATA.

DATA FOR PREGNANT FEMALES AND FOR MICE WITH TOTAL BODY WEIGHTS LESS THAN

10 GRAMS EXCLUDED FROM THE ANALYSIS

	rees of reedom	Sum of Squares	Mean Squares	Test Statistic -F _s -	Level of Significance P{F>F _S }	
Obs ervatio ns	33	1,594.832.				
Model	4	1,582,099.				
Mean Sex Body Weight Treatment	1 1 1 1	1,571,782. 3,010. 5,998. 1,309.	3,010 5,998 1,309	6.85 13.66 2.98	0.014 <0.001 0.095	
Error	29	12,732.	439			

ANALYSIS OF VARIANCE TABLE FOR SPLEEN WEIGHTS, FOR FIELD BEACHMOUSE DATA.

DATA FOR PREGNANT FEMALES AND FOR MICE WITH TOTAL BODY WEIGHTS LESS THAN

10 GRAMS EXCLUDED FROM THE ANALYSIS

Source of Variation	Degrees of Freedom	Sum of Squares	Mean Squares	Test Statistic -F _s -	Level of Significance P{F>F _s }
Observations	33	19,418.00			
Mode1	4	15,123.36			
Mean Sex Body Weigh Treatment	t 1 1	14,595.00 52.03 262.61 213.69	52.03 262.61 213.69	0.35 1.77 1.44	0.559 0.195 0.241
Error	27	4,294.64	148.09		

BODY WEIGHTS AND ORGAN WEIGHTS FOR EXPERIMENTAL SUBJECTS DUTTED WITH ALUMINA GEL CONTAINING NO TODD (CONTROL GROUP) OR ALUMINA GEL CONTAINING PPB OF TODD (TEST GROUP)

	Body Organ Weights (mg)									
Treat- ment	Sex	Weight -gms-	Heart	Lung	Liver	Spleen	Kidney	Gonads	Thymus	Adrenals
C*	F**	17.55	156	112	951	26	258	* *	≻ 15	41
С	F	16.80	112	106	980	24	255		54	49
C	F	11.43	92	80	606	14	201		19	46
С	M	12.60	115	95	577	10	199	88	19	26
С	F	14.23	132	95	825	20	230		11	28
C	M	12.72	75	95	610	10	186	93	18	22
С	М	14.38	81	125	686	13	207	127	12	26
С	M	13.10	130	79	645	20	197	96	12	30
С	M	13.26	100	101	698	19	118	100	18	43
, c	M	12.97	158	118	718	14	190	87	18	27
` T	F	12.07	98	84	714	. 17	195		11	30
, T	M	15.72	144	107	953	37	226	556	33	25
Ţ	M	12.77	122	90	542	20	189	93	20	32
T	M	18.02	156	123	790	25	225	109	21	42
Т	M	13.65	105	88	805	19	246	105	15	34
T	M	13.20	119	92	713	24	202	99	13	39
Ţ	M	15.57	127	90	723	33	214	83	27	59
T	F	11.78	117	80	593	17	196		14	20

HA FE FEMALE, ME MALE

THE DATA NOT COLLECTED.

TABLE I, Pg. 2

Treat- ment	Sex	Body Weight -gms-	Heart	Lung	Liver	Spleen	Kidney	Gonads	Thymus	Adrenals
T	F	12.61	101	112	751	14	219		15	28
T	F	14.99	126	113	912	14	279		10	35
T	F	13.77	123	88	832	9	243		13	31
Ţ	M	14.12	116	109	779	22	226	118	11	27

ŧ

.

TABLE 7

ANOVA TABLE FOR THE ANALYSIS OF KIDNEY WEIGHT DATA FOR MICE DUSTED WITH ALUMINA GEL CONTAINING 2.24 PPB OF TCDD

Source of Variation	Degrees of Freedom	Sum of Squares	Mean Squares	Test Statistic -F _s -	Level of Significance P{F>F _S }	
Observations	22	1,027,675.00				
Model	5	1,017,622.43				
Intercept Body Weight (B) Sex (S) Treatment (T) Interaction (BT	1 1	1,004,518.23 7,046.30 4,685.37 1,371.75 0.78	7,046.30 4,685.37 1,371.75 0.78	11.916 7.923 2.320 0.001	0.012 0.146	
Error	17	10,052.57	591.33			

Model: $K = \alpha_1 + \alpha_2 B + \alpha_3 S + \alpha_4 T + \alpha_5 B T$

Sequential Conditional Hypotheses

 H_{01} : $\alpha_s = 0$; no effect due to body-weight with treatment interaction, accepted at the 0.05 level of significance

 $H_{0\,2}$: α_4 = 0; no effect due to treatment, <u>accepted</u> at the 0.05 level of significance

 H_{03} : α_3 = 0; no effect due to sex, <u>rejected</u> at the 0.012 level of significance

 H_{04} : α_2 = 0; no effect due to body weight, <u>rejected</u> at the 0.003 level of significance