Htan Dhumber 02183

Author Smith, R.M.

Corporita Author

Renart/Artlele Tith $\begin{aligned} & \text { Typescript: Analysis of a Binghamton Soot Sampie for } \\ & \text { Tetrachiorodibenzofurans and Tetrachlorodibenzo-p- }\end{aligned}$ dioxins, October 1, 1981

Jourua/Book Titie

Yegr

Month//Iay

color
Murner of manges 21
Dasarittan Notes

Analysis of a Binghamton Soot Sample for Tetrachlorodibenzofurans and Tetrachlorodibenza-p-dioxins
R.M. Suith, D.L. Hilker, P.W. O'Keefe, S. Kumar, J. O'Brien, B.L. Jelus-Tyror, K. Aldous

A fire caused by a malfunctioning PCB-filled transformer in the Binghamton state office building on February 6, 1981 released an unknown amount of incomplete combustion products into the 18-story building. A sample of soot (Tox. No. 811711965) was collected from an unspecified area of the building using a vacuum cleaner. A portion of the homogenized soot, intended to be used for animal toxicology studies, was soxhlet extracted for 16 hrs in benzene and analyzed for $T C D F^{\prime} s$ and $T C D D^{\prime} s$ by capillary GC/High resolution mass spectrometry (HBMS).

PROCEDURE

Fifty $\mu \mathrm{l}$ of the benzene extract (corresponding to 46 mg soot) was spiked with 6 ng of ${ }^{13} \mathrm{C}$ labelled $2,3,7,8-\mathrm{TCDD}$ and cleaned-up prior to GC/HRMS injection using sequential liquid chromatographic colums containing $P X-21$ adsorptive carbon, 2% deactivated silica gel, and activated Florisil. An aliquot of the concentrated sample was then injected onto a $40 \mathrm{~m} \times 3 \mathrm{~mm}$ 0v275 coated soda glass GC capillary which is interfaced to the MS -50 HRMS through a jet separator. The temperature was appropriately programed and mass profile data was accumulated for the $\mathrm{m} / \mathrm{e} 306$ (TCDF), 322,320 (TCDD) and 334 (${ }^{13} \mathrm{C}$ TCDD) ions. Standards (${ }^{13} \mathrm{C} 2,3,78-\mathrm{TCDD}$ and unlabelled $2,3,7,8-\mathrm{TCDF}$) were run prior to sample injection. A control sample of Fisher activated coconut charcoal was sirailarly spiked and analyzed.

RESULTS AND DISCUSSION

The sample was found to contain a complex mixture of TCDFs as shown in the chronatogram in Figure 1. At least twelve distinct TCDF peaks are present. 2,3,7,8-TCDF eluted as peak No. 12 as detertuined by comporison with an injection of authentic 2,3,7,8-TCDE. The presence of amounts of tetrachlorodibenzomp-dioxins in the sample are indicated by the M3 chromatogram
" in Figure 2. Closer inspection of the data revealed the presence of an interferent. However the data system allowed consideration of the intensity due to tetrachlorodioxin ions which were partially resolved from the interferents (Figure 3). The interferent appears at an m/e value very similar to that of the $\left[M^{+}-C 1\right]$ fragment of heptachlorobiphenyl. Signal detected in the dioxin ion position in the m/a 321.8936 mass region which occurred at the same time in the chromatogram as the ${ }^{13} \mathrm{C}-2,3,7,8 \cdots$ TCDD were taken as being due to native $2,3,7,8-T C D D$. This implies a relative retention time of 1.00 for native $2,3,7,8-T C D D$.

The quantitative results of the analysis of the samples are sumarized in Table 1 . The figures given in the table denote only "detectable" TCDF and TCDD. The sample clean-up procedure that was used requires the use of isotypically labelled standards to correct for low recovery. Presently, no labelled TCDF is avallable and the assumption was made that the recovery of all TCDF and TCDD isomers was the same as that of the ${ }^{13}$ C labelled 2,3,7,8TCDD internal standard based on preliminary TCDE recovery experinents. Although the capillary GC column gives a high degree of isomer separation, the analysis should not be considered completely $2,3,7,8 \mathrm{TCDD}$ or TCDE isomer specific as other isomers may cowelute. The unexpectedly large anounts of TCDFs found in the sample exceeded the linear range of the HRMS, making a second infection using less sample necessary (Fig. 4) for proper quantitation (All calculations and several important mass profiles are included in the appendix). No TCDDs or TCDFs were found in the control carbon.

The results show that concentrations of TCDDs and TCDFs in this soot appear to be similar to those found in soot TOX No. 811710280 and air particulate sample Tox No. 811710977 previously taken fron the Binghanton state office building.
rime
rime

MI

重

BJS5 HIGH RESOLUTIOH HPM

ETH

ITL :
RUMHAME FDHM8 \quad DATE $7 / 10 / 81$ TINE $21: 11$
MASS 305.8936 SCAMTIME 0.3 (SECS)

SCANS 194-205 100\% IHTENSITY 148676

RUNNAME FDHHS

IL HOW MANY AREAS?3
DS55 HIGH RESOLUTION MPH
PEAK SUMMATION REPORT

RUMNAME FDHM8 DATE 7/10/81 TIME 21:11
MASS 321.8935
SCAN WIDTH 300 PPM
SCAN TIME
SCAN NUNBERS 149-438
STANDARD fACTOR 0.0090

KAMINSXY'S BING. SOOT 2.56 OF 9.0UL

HASS	ITEM	AREA	- BASELINE	GASELINE	\%TOTAL	RELAT
CENTROID			SUSTRACTED	SKIMMED	AREA	TO STAN
321:8789	TOTAL	32772100.	YES	NO	95.17	0.00
321.8733	1	27343790.	YES	HO	75.41	0.80
321.9021	2	5367326.	YES	NO	15.59	0.00
321.9331	3	61077.	YES	NO	0.18	0.00

.720 STESEAHIGH RESOLUTION PIPM FiO. '?. SECOND LDjEcTION \because RUHNAME TDHEL \because DATE $7 / 16 / g 1$ TIME 12,28

只ETH

TIC
*DL *
DSS5 HIGH RESOLUTION MPM RUNHAME TDHM4 DATE 7/16/81 TIME 12:28

RETN

MI

Table I. Results for Sample 811711965*

TotalVFuran Concentration - 597 ppm (Detection Limit $=2.3 \mathrm{ppm}$)
2,3,7,8-Furan Concentration -48 ppm (D.L. $=.45 \mathrm{ppm})$
Total Dioxin - 1.8 ppm (D.L. $=.04 \mathrm{ppa}$) Ratio $320 / 322=0.87$
$2,3,7,8$-Dioxin -1.2 ppm (D.L. $=.008$ ppal Ratio $320 / 322=0.86$
Recovery - 4\%
Amt. of ${ }^{13} \mathrm{C}-2,3,7,8-T C D D$ spike -6000 pg
Weight of Sample - 46 mg
Conc. of Spike - . 13 ppm
Relative Retention Times:

$2,3,7,8$-tetrachlorofuran - Standard: . 1.264	Sample: 1.269
$2,3,7,8$-tetrachlorodioxin -	Sample: 1.00

* No TCDF or TCDD was found in the control carbon sample

. APPENDIX: Supp1ementary Data

1. Carbon blank
2. External standards
3. Mass profiles lst injection-Runname FDHNB
4. Second injection data-Runname TDHM4
5. Calculations

TOTAL TCDF mass prafile exceaśs linear range in ist injection

*SK AREA ID:2
DS55 HIGH RESOLUTION MPM
PEAK SUMMATION REPORT

RUNNAME FDHM8 DATE 7/10/8: TIME 21:11

MASS	
SCAN WIDTH	305.8987
SCAH TIME	390.3 PECS
SCAH HUMBERS	149.438
STAHDARD	0.0069
FACTOR	0

KAMINSKY'S BING. SOOT 2.55 OF 9.0UL

RUNNAME FDHME DATE $7 / 10 / 81$ TIME 21:11

MASS	333.9336
SCAN WIDTH	$3909 P M$
SCAN TIME	0.3 SECS
SCAN NUMBERS	$279-387$
STAHDARD	0.0008
FACTOR	0

KAHINSKY'S BING. SOOT 2.55 OF 9.0UL

MASS	ITEM	AREA	GASELINE	BASELINE	\%total	RELATIVE
CENTROID			SUBTRACTED	SKIMMED	AREA	TO STANDARD
333.9351	TOTAL	315020.	YES	NO	66.54	0.08
333.8982	1	44037.	YES	NO	9.19	0.00
333.9402	2	223480.	YES	YES	46.61	0.90
333.9746	3	17729.	YF.S	NO	3.78	0.00

RUNMAME FDHM8 DRTE $3 / 10 / 81$ TIME 21:11

MASS	321.8935
SCAN WIDTH	300 PPM
SCAN TIME	0.3 SECS
SCRN HUMBERS	$279-307$
STAHDRRD	0.0008
FACTOR	0

KAHINSKY'S BIHG. SOOT 2.55 OF 9.0UL

MASS	ITEM	AREA	BASELINE	BASELIME	\%rotal	relative
CEHTROID			SIJBTRACTED	SKIMMEB	AREA	TO STAMS
321.8228	TOTAL	7275879.	YES	10	97.33	0.00
321.8748	1	5220057.	YES	NO	69.83	0.08
321.9023	2	2050417.	YES	NO	27.43	0.00
321.9319	3	5405.	YES	NO	0.0 ?	0.00

- RUNNGME FBHIS
TIHE 21:11
MASS 319.8964 SNEEP $30 日$ (PPH) SCAHTIME 0.3 (SECS)

*SK AREA ID:2
DS55 HIGH RESOLUTION MPM
PEAK SUMMATION REPORT
RUNNAHE FDHMG DATE $7 / 10 / 81$ TIME 21:11
MASS 319.8965
SCAN UIDTH 300 PPH
SCAN TIME 0.3 SECS
SCAN NUMBERS 149-430
STAMDARD
FACTOR
0.0000

KAMINSKY'S BING. SOOT 2.55 OF 9.0UL

MRSS	ITEM	AREA	bgSELINE	BRSELIHE	\% TOTAL	RELRTIVE
CENTRO			SUBTRACTED	SKIMMED	AREA	TO STANDARD
319.8972	TOTAL	5364537.	YES	NO	72.82	0.08
319.8596	1	79597.	YES	NO	1.08	8. 96
319.8939	2	4685357.	YES	YES	63.60	0.69
319.9319	3	66501.	YES	NO	0.90	0.08

RUNHAME TDHM4 DATE $7 / 16 / 81$ TIME $12: 28$

MASS	305.8987
SCAH WIMTH	309 PPM
SCAH TIPE	0.3 SECS
SCAH HUHBERS	388.406
STANDARD	8.0900
FACTOR	8

1.EUL DILUTION OF KAMINSKY'S SOOT

MASS CEHTRAID	ITEM	9RER	$\begin{aligned} & \text { BASELIHE } \\ & \text {-SUBTRACTED } \end{aligned}$	gASELIHE SKIMMED	\%TOTAL AREA	RELATIVE TO STANDARD
305.8933	TOTAL	2059185.	YES	NO	95.36	0.00
395.8513	1	14863.	YES	NO	0.65	0.06
305.8938	2	1917649.	YES	YES	89.20	0.00
305.9302	3	11737.	YES	NO	0.55	0.00

Murnmit
Mass 395.8986
SINEEP
$30{ }^{6}\left(P P^{\prime}\right)$

- Có SERNS 214-478 100\% IHTENSITY 379262

RUNNANE TDHM4 DATE $7 / 16 / 81$ TIME 12328
MASS 385.8987
SCAH WIDTH 300 PPM
SCAN TIME 0.3 SECS
SCAN HUMBERS 214-470
STAHDARD
factor
8.0000
1.gUL DILLUTION OF KAMINSKY'S SOOT

mass	ITEM	ARER	EASELIHE	EASELIME	\%total	Relative
CEHTROID			- SUBTRGCTED	SKIMMED	AREA	
305.8348	TOTAL	25127260.	YES	MO	92.56	0.00
305.8611		64216.	Yes	No	0.24	0.60
305.8548	2	24877639.	YES	YES	88.70	0.00
385.9309	3	73307.	YES	HO	0.27	0.00

Calcułation of Response Factor of Furan to Dioxin

Amt of TCDF injected $=1.2 \mu \mathrm{~L}$ of $150 \mathrm{pg} / \mu \mathrm{L}$
Int of $T C D F$ con $=677482$
Sensitivity $=677482 / 180=3764$ counts $/ \mathrm{pg}$
Amt of ${ }^{13} \mathrm{C}$ TCDD injected $=1.0 \mu \mathrm{~L}$ of $600 \mathrm{pg} / \mu \mathrm{L}$
Int. of TCDD ion $=1949179$
Sensitivity $=1949179 / 600=3249$ counts/pg.
Response Factor of Furan is $3764 / 3249=1.16$
For equal amounts of material, the response of TCDF is 1.16 times ${ }^{13} C T C D D$.

Calculation of Furan in peak number 1 (this peak was used as internal furan standard for the second injection)

```
Amt Furan }=\mp@subsup{I}{305}{* (Amt 13
I305 = intensity of m/z 305 ion for peak no. l (the small peak delimited
    which has not saturated the amplifier)
    =8596844
Amt}\mp@subsup{13}{13}{C}=\mathrm{ Ant of 12C-TCDD spike (internal std.) added to sample
    =6 ng
I_334 = intensity of m/z 334 ion (int. std.) = 223480
R.F. = response of 2,3,7,8-TCDF compared to }\mp@subsup{}{}{13}\textrm{C}2,3,7,8-TCDD = 1.1
Amt Furan}=8.597\times(6 ng/.223480) < 1.15
    =268 ng
```

$$
\begin{aligned}
& \text { Amt }_{2378}=I_{2378} \times\left(\text { Amt }_{P 1} / I_{P I}\right) \\
& \text { Amt }_{2378}=\text { amt of } 2,3,7,8-T C D F \\
& I_{2378}=\text { intensity of } 2,3,7,8-\mathrm{TCDF} \text { ions }=1917649 \\
& \text { Amt }_{P I}=\text { amt of furan in peak } 1=268 \mathrm{ng} \\
& \mathrm{I}_{\mathrm{PI}}=\text { intensity of furan in peak } 1=235188 \\
& \\
& =1.918 \times(268 / 235) \\
& \\
& =2187 \mathrm{ng} \\
& \text { Conc }_{2378}
\end{aligned}
$$

Calculation of Total TCDF

$$
\begin{aligned}
\mathrm{ABL}_{\text {TOT }} & =\mathrm{I}_{\text {TOT }} \times(\text { Amt } / \mathrm{I}) \\
& =24 .-78 \times(268 / .235) \\
& =27459 \mathrm{ng} \\
\text { COnc }_{\text {TOT }} & =(27459 \mathrm{ng} / 46 \mathrm{mg}) \\
& =597 \mathrm{ppu}
\end{aligned}
$$

$$
\begin{aligned}
\text { Ant }_{2378} & =I_{2378} \times\left(\text { Amt }{ }^{13} \mathrm{C} / \mathrm{I}_{13}\right) \\
& =2.050417 \times(6 / .223480) \\
& =55.04 \mathrm{ng} \\
\text { Conc }_{2378} & =55.0 \mathrm{ng} / 46 \mathrm{mg} \\
& =1.2 \mathrm{ppm}
\end{aligned}
$$

Calcualtion of Total TCDD (scans 149-438)

$$
\begin{aligned}
\text { Ant }_{\mathrm{TOT}} & =\mathrm{I}_{\mathrm{T}_{\mathrm{OT}}} \times\left(\text { Ant }{ }^{13} \mathrm{C} / \mathrm{I}_{13}\right) \\
& =5.367 \times(6 / .395528) \\
& =80.4 \mathrm{ng} \\
\text { Conc }_{2378} & =80.4 \mathrm{ng} / 46 \mathrm{mg} \\
\cdots & =1.8 \mathrm{ppn}
\end{aligned}
$$

