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1. INTRODUCTION

Following the results of ref (1) and what anticipated in

the last paragraph of that paper, the present report is

dealing with the rigorously mathematical and statistical problem

of finding the best methodological procedure to determine in

a way as unbiased as possible the quantity of TCDD deposited

on the ground within the limits of the so-called "zone-A" around

the Icmesa Factory in Seveso (Italy).

The main features of the problem have been anticipated in

ref. (1) here, in Section 2 we shall define our data sample

while in Section 3 we shall go through all major mathematical

aspects in order to prepare the actual procedure applied in

Section 4. Finally in Section 5 the graphycal result of the

interpolation is presented.

2. DEFINITION OF THE DATA SAMPLE

It is important to qualify and certify the data used in

the integration process: the data used are those obtained in

the 1976 Campaign (December '76) limited, to zone A (for the

reasons given in ref. (1)).

The topographical distribution of the coordinates belon-

ging to the points in which the ground sample has been col-

lected is shown in fig. 1.

Zone A has an extention of about IKm in the East-West

direction and of about 2 Km in the North-South direction and the

collecting points follow an approximately regular grid of

about 50 m x 50 m.

The values of TCDD concentration on the ground vary from

a minimum of 0.75 yg/m (corresponding to the detectable limit

of the analitical measurements-denoted as N.V.) and a maximum

of 5477 yg/m2.
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single sample of the 1976 campaign.



EV./0.5

loss limit

40

30

20

10

X = 2.34

V = 2.39

38O EV.

33 N.V.

I I I I . I It I I I I I I I ' O

3. 4. 5. 6. 7. 8. 9. ln (TCDD^g/m )-3. -2. -1. O. 1. 2.

Fig. 2.2: Histogram of all samples and gaussian curve fitted using only the right part of

data starting from the "loss limit"; numerical results of procedures fit.



4.

In order to take into account the main indications of a

previous analysis of the overall TCDD distribution^ , in the pre

sent report we use as a quantification parameter the logarithm

of the TCDD density since this is the quantity showing a gaussian

distribution (see fig. 2.2) thus being the most suitable va-

riable to .be used in an optimization process.

With this variable, the contaminant ranges from a minimum

fvalue of - 0.287 iln(yg/m ) and a maximum value of 8.608

ln(yg/m

3. THEORY OF THE MATHEMATICAL METHOD

3 .1 Introduction

In this Section we define the problem in its general

aspects and propose the algorithms which have been included

in the program used for the numerical solution of it.

Let D be the quantity of TCDD under consideration which

depends upon the values directly measured of the location

(?c,y ) which define the coordinate vector(hereafter referred to

as vector x = (x,y)).

Given a set of data providing the values D- of the quan-

tity D(x) in several points X.J, = (x.,y.) in a 2-dimensional

space, our target will be to find a explicit function of the

independent vector-coordinate variable

7 = f(x)

To this end a program^ ' will be used to find by means of

a least square fit,a reasonable approximation, of the type
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n
D - Et c. f (x) (3.1.1)

1

approximating the measured values Di distributed within the

set of measured coordinates (x,y).

In (3.1.1) c. are constant coefficients and f.(x) are

proper polynomial functions of the vector variable x..

The following Sections shall be devoted to the study of

the mathematical functions, to their choice and to the choice

(and definition) of the constant coefficients c..

For sake of semplicity we shall treat the case of a sin

gle independent variable x, which can be easily extended to a mo

re general multidimensional space x.

3.2 Approximation of an arbitrary function by means of a set

of given functions.

We propose the general problem of representing an arbitra.

ry function f(x), by means of a finite number of functions

chosen with a certain degree of arbitrarity, for instance po-

lynomial of increasing power such as:

po(x), p1(x), P2(x), ..... Pn(
x) (3.2.1)

or rather by means of arbitrary linear combinations of the type:

+anpn(x)

where the coefficients a, can be choosen, within the linear comb_i

nation, in such a way that the difference

dn(x) = f(x)-Sn(x) (3.2.3)

be "the smallest possible" (in the most general sense still to

be discussed) .
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It is more than clear that the criterion of "small er

ror" as given by (3.2.3) is largely arbitrary and driven by the

principal interest of using the approximation S (x) instead of

the function f(x) (which might well be unknown).

Among the most frequently used criteria there is the least-

-square criterion which requires to minimize the average quadra

tic error in the range (a,b) for x

dn2 'bh |. dn°° 2dx (3'2'4)

that is to determine a, by means of a least square fit.

The use of a quadratic form is largely considered an opti^

mal application to the practical calculations. A least square

fit approximation may give locally large discrepancies but it

gives in general a rather accurate global representation of the

function f(x).

3.3 Conditions on the coefficents a._ k

- 2
The most obvious condition to be imposed is that d be

the minimum possible as a consequence of the choice made on

a, ; being d a positive polynomial in the variables a ,a1}..aic n o x IT
it indeed admits a minimum.

Thus zeroing the first derivatives with respect to a, we

shall obtain an unique solution corresponding to a minimum.

Thus:

= 0 k = 0,1,2,..., n (3.3.1)

From (3.2.4) and (3.2.3) we get, by deriving with respect to
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a, within the integral:

3d 2n
••• = —

3a, bk

l- f 2[f(x)-Sn(x)]̂ [f(x)-Sn(x)]dx

2a f»
j -pk(x)[f(x)-Sn(x)]dx (3.3.2)

k = 0,1 , 2. . . .n

where we take advantage of the fact that the arbitrary function

f(x) is independent of a, , while S for the (3.2.2) depends li-
K. XI

nearly on ak through the choosen polynomials pk(x).

Formula (3.3.1) thus becomes:

rb ,b
| pk(x)Sn(x)dx = I pk(x)f(x)dx k=0,l,2,...n (3.3.3)
Ja ja

and, given the (3.3.2) for S (x) , formula (3.3.3) assumes the

shape :

fb fb r
I pk(x)f(x)dx=aQ| pk(x)pQ(x)dx+a1
*u »Q J *a

+ a | p , ( x ) p (x)dx k = 0 , l , 2 , . . , n ( 3 . 3 . 4 )
11 j 1\ II

or rather in a compact form, for any k :

fb n fb
| p (x ) f (x )dx = La | p, (x)p (x)dx (3 .3 .5
i K I | i K jja o j J Ja J

We have thus obtained a linear system of (n+1) equations in the

(n+1) unknowns a..

The solution of such a system is uniquely determined provided the
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M - <-oo »o

£2 = Cj o a0 + G!! ax

f *™ f* Q - i / ^ Q A /*• Q
3 ^20 ** 0 ^ 2 1 ** 1 ^-22 *2

(3.4.1)

r = c a 2 + c &i ^ 3. _ f t j *•••«+ c _ an no ni * n2 nn n

this selections allows us to add the significant conditions

| p. (x)p.(x)dx = 0 j>k,j,k=0,l,2, . . .n (3.4.2)
J J

It is important to note at this point that, as j and k are two

indices restricted by the relation k<j , but otherwise arbitrary

integers, eq. (3.4.2) must hold also when k and j are inter-

changed, i.e. k>j so that (3.4.2) implies a more restricted con

dition:

,fb , , , ,, . . ,, ORTHOGONALITY f. . ..i p,(x)p (x)dx = 0 j?̂ k (3.4.3)
Ja J CONDITIONS

Thus imposing the triangularization of the linear system

we automatically obtain its diagonalyzation*- * this is due to

the fact that the coefficient matrix |C., | (3.3.7) is symmetric

as it immediately appears by inspecting the definition (3.3.6).

If the orthogonality conditions are verified by the system

of the Pv.(x) functions chosen as a basis for the approximation,

then the system (3.3.5) is now reduced to the form, for any k:
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determinant of the coefficient matrix

Ckj = Pk(x)p..(x)dx (3.3.6)
3.

be different from zero; i.e.:

Det |Ckj| | ? 0 (3.3.7)

It has to be clear that, if n is large, the expression to solve

the system (3.3.5) which can be rewritten as:

7. C, .a. - F, (3.3.8)Li ki i k ^ J

o J

where F. =:i = I Pi (x)f(x)dx, may be anything but a simple problem.
K I K

a
In such a case the use of the approximation S (x) would be a

f 4)bad and unconfortable choice.

3.4 Choice of the functions Pi,(x)

In order to overcome the difficulty we have to perform a

suitable choice on all possible functions {p, (x)} in such a way

that the solution of the system (3.3.5) be as simplified as pos_

sible.

Among the most interesting choices is a selection of the

functions pv(x) such that the system (3.3.5) be reduced to a.K

triangular form, without lack of generality. That is a selection

on the basis of which in the K-th equation only the un-

knowns a. with j$k appear,'i.e. :
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f 2 r

k I Pk(x) dx = | pk(x)f(x)dx (3.4.4)
JQ JQ
\

'a

since only the integral having j=k turns out to be different

from zero in the left-hand side of (3.3.5).

It follows immediately then that a, is simply given by

av = ~T~ I PvCx)f(x)dx for any k (3.4.5)

where

p(x) dx (3.4.6)f 2

is a positive normalization constant; i.e. a positive number

which depends exclusively upon the functions P^CX) but not

upon the function f(x) to be approximated.

In this subsection we have thus reached the following re

suit: if the functions P^Cx) are orthogonal (and it is always

possible to select a set of well -known orthogonal functions)

the problem of approximating an arbitrary function f(x) is sol-

ved by (3.4.4) .

3.5 Legendre Functions and Tchebychev Functions

In the previous Sections we have introduced the problem

of the least-square approximation and clearly underlined the

need to select a system of functions having the requisite of

obeying the orthogonality conditions since in such a case the

solution of (3.3.5) is particularly simplified.
f 4)The ortogonalization process suggested by Gram-Schmidt^

provides a tool to select from among a finite or an infinite

set of linearly independent functions defined in the range (a,b)

a set of functions which are orthonormal in (a,b).
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In this section we briefly propose two important and well

known orthogonal systems which will constitute the alternative

basis of our data handling.

The first system is provided by the Legendre polynomial^ '

functions. They are defined by the formula:

(2n-l)(2n-3)...1 n n(n-l) n-2 ,. . ̂
- ft 1 X -2(̂ l7X + (3-5'1)

and alternatively by the recurrence formula

p, , -,(x) = - : — xp (x) -- - p , (x) (3.5.2)*(n+l) n+1 *n n+1 *n-l

from which the very first components are easily derived:

P0(x) = 1

PjCx) - x

p(x) = (3x2-l) (3.5.3)

= -r(5x -3x)

It is of fundamental importance the result >

1
pm(x)pn(x)dx = 0 m y n (3.5.4)

which is a consequence of the orthogonality conditions. It implies

that the Legendre Polynomial Functions are orthogonal in the ran

ge (-!,+!).
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The second example of orthogonal system is provided by the

Tchebychev polynomial functions which-are defined by the formula

tn(x) = cos (n cos x) (3.5.5)

From (3.5.5), by using the De Moivre Theorem and the Theorem on

the binomial's power we can rewrite:

T (x)=xn-fnWn~2fl-x)2+/Itn~4fl-x)4 + (3 S 6)l l A j - A 1 7 1 *• ' I A.J *• ' •••' I.J.O.UJ

and alternatively write the recurrence formula:

X) = 2X VX) - Vl (3'5'7)

from which the very first components can be easily derived

To(x) - 1

T (x) = x

T2(x) - 2x
2-l (3'5'8)

T3(x) = 4x
3-3x

The Tchebychev polynomial functions are orthogonal in the range

(-!,+!) since for

[ Tm(x)Tn(x) dx = 0 (3.5.9)

As a general matter, in a non-orthogonal model, in order

to estimate the value of a coefficient a^ one has to know all the

other preceeding coefficients a.(j<k) as well as all the fol-

lowing coefficents a.(i>k) as one has to invert the matrix

(3.3.6). In an orthogonal model, on the contrary, all coeffi-
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cients can be separately evaluated since we are dealing with a

diagonal matrix.

However an orthogonal model has to be preferred not only

for a matter of convenience and mathematical semplicity; the

method appears to be very sure against the dangerous round-off

errors which so often become relevant in computer working.

We conclude this section by stating that the Tchebychev

polynomal functions are practical to minimize the MAXIMUM ER-

ROR, while the Legendre polynomial functions are practical to

minimize the ERROR OF THE MEAN.

3.6 Multidimensionl parametrization.

In this Section we indicate the most natural procedure to

extend the proceeding algorithm to an n-dimensional space,

limiting however one computation to the case under considera-

tion which requires a 2-dimensional space.

In our case, then, for the approximation of a two dimensi£

nal function D(x,y) by means of a linear combination of Tcheby-

chev polynomial functions we can write:

D(x,y) = Z 1C T (x) T_(y) (3.6.1)
m n mn n m

Let

n

Then we can write

D(x,y) = I' a (x) T (y) (3.6.3)
m m 1U

Clearly in the two dimensional case a strategy for the selection

of the most convenient functions is needed, since all possible
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combinations Tv(x)-T.(y) constitute a very large variety ofJ
possibilities.

An obvious procedure, which incidentally economizes o.n

computer time, suggests to consider first the lower order fun

ctions; in addition, for each given function taken into account

prove if its contribution to the reduction of the squares of the

residuals is large enough (step by step improvement).

To prove this latter point, even using a non orthogonal

model, it is not strictly necessary to invert the matrix but an

orthogonalization can be reached by applying the Modified
(4)

Gram-Schmidt procedure.

In this way an orthogonal model is easily built in which

the potential reduction in the sum of the squared residuals

AS? is easily evaluated for the different choices of the fun-

ctions f., in the available measured values of the represen-

tative function D(x) to be approximated D^(x.,y.)«

In summary we can handle our multidimensional approxima-

tion problem if we can reduce the large number of possible ar-

bitrary functions to a few dozens and if we can perform an or-

thogonal transformation able to reduce the approximation to

the one-dimensional case, which implies a single inversion of

a triangular matrix, at the most.

4. PSEUDOMEASUREMENTS.

4.1 Introduction

The data sample is provided by the 1976 campaign during

which carets have been collected every A, 50 m.

However in order to perform a two-dimensional fit the

starting sample has to be increased by producing new pseudo-mea

surements in a much denser grid. In fact for a convergent ap-
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proximation of the function D(x,y) described in Capt. 3 at least

50 measurements per coefficient is desirable.

Then our target here is to construct a new data sample

which preserves the structure and the characteristics of the

original one, by properly interpolating the TCDD values in in-

termediate points.

The starting experimental data are not sufficient to gua-

rantee the applicability of the model; from them the results

obtainable in a straight forward way are those of Ref. 1.

4.2 General Comments on the Interpolated data.

The interpolation needed to guarantee a sufficient number

of starting measurements in order to perform the approximation

of D(x,y) is based on the following procedure:

given in a limited region of the x,y plane a number of mea

surements D.(x.,y.) in the points (x.,y.)» look for a function

g(x,y) able to designate a reasonable value of D in any arbitra

ry point (x,y).

The domain in which our experimental function is defined

has a non-geometrical form (since the limits of zone A are i_r

regular as well as the distribution of the original measurement

points (x.,y.)).Then we replace the contour with a rectangle

subdivided into a regular grid both in x and y. The crossing

points of the new grid are the reference points in which we in-

tend to evaluate the new interpolating function g(x,y).

Two basic methods provide a solution of the problem:

- the first one consists in building a function g which interpp_

lates exactly the measured values, i.e.:
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g(xi,yi) = Di i-1,2, ..... n (4.2.1)

This method gives excellent results only when the values

D. are known with high accuracy;

- The second method consists in building a function g as a

weighted average of the experimental observations and it is

desirable when the starting experimental data are likely to

be subject to inaccuracies and large unavoidable fluctuations.

Due to the nature of our data we choose the weighted interpo-

lation, suggested by D.Shepard and recently used by others. ' '

Essentially the weighted interpolation of sparse data

irregurarly scattered can be represented by the following for_

mula:

J"
(4.2.2.)

where :

D,, is the measured value in the point (x, ,y, )

W(r, )is a proper weighting function

r, is the distance between the points (x, ,yv) and (x.,y.)K K K 1 J

Note that the value g(x.,y.) represents the weighted avera

ge of the observations of the entire sample in the case of a

"global interpolation"; it represents the weighted average va-

lue of the sorroundings observations for a "local" interpolation.
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4 . 3 Shepard's Method

f 7a)The Shepard's interpolation method, in its general form is

applicable to measurements arbitrarily scattered.

Given in the plane a point (x,y), let r. be the distance

between (x,y) and the n points(x.,y.) in which measurements

have been made, for any i = l,2,...n.

The Shepard's interpolation formula reads:

?. D(x. ,y.) W (r .)^ i ^ i 71 r
g(x,y) = if r^O

V W f r ^li w UiJ
1 (4.3.1)

g(x,y) = D (xi,yi) if ri=0

Note that (4.3.1) is defined in all points of the plane

R and that it interpolates exactly the values D. in the given

points (x.,y.)> while the value g(x,y) in the "new points" is

given as the weighted average of all given measurements. The

contribution of the i-th measurement is weighted as a function

of the distance between the point (x,y) under consideration and

the given points (x.,y.)-

It is obviously inconvenient to use this method when n is

very large; however in such a case the method would not be

needed.

Furthermore the method increases in selectivity when the

interpolation is performed in local form.

Let us fix a radius R>0 and define a weighting function
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W(r) = W(r) if r $ R (4.3.2)

W(r) = 0 if r > R

Thus in the local form formula (4.3.1) becomes:

Zi D(xi>yi) W (r.)

g(x,y) = ̂  if ?i £ R (4.3.3)

Z. W (r.)
I1

g(x,y) = 0 if r ^ R

Formula (4.3.3) is still defined in every point of the

plane, but now the value of the function in the point (x,y) is

given by the weighted average of the measurements D(x.,y.) only

in the neighbouring circle of radius R.

Therefore the problems is now lying in a reasonable choice

of the values for the cut-off radius R in such a way that for

any point (x,y) of the plane there is an adeguate number of

measurements included in a circle of radius R, so as to compen-

sate fluctuations.

This second method opens up the new possibility of choosing

different values of R, in different regions of the domain

within which D(x,y) is defined.

Theoretically the choice of R, in this kind of procedure

depends upon the statistical sample under consideration.

In our particular case we want to define a variable R de-

pending upon the distance from the ICMESA Factory having in mind

both the topographycal distribution of the measurement points

and the TCDD concentration. Infact maximal TCDD concentration is
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found immediately around ICMESA and, due to the transport

phenomenon caused by the wind, along a maximum concentra-
( 8 1

tion bound in the south-east direction, while, perpen-

dicular to such a line and away from it the TCDD concentra_

tion values are significantly decreased.

Therefore the choice for R has been done in order to

maintain these particular characteristics.

4 . 4 Choice of the Weighting functions W(r)

In the practical case with which we are dealing we wish

to introduce weighting factors W(r) able to preserve stati-

stically the same characteristics of the original sample, a

point which has been clearly pointed out from the beginning.

The choice is suggested by the successfull use, (found in
f 71the literature) in metheorology to solve analogous problems

such as, for instance, the distribution of the ozone concen-

tration in the bay around Los Angeles (U.S.A.). A reference
(7b)

to the papers by Gustafson, Kortanek, Sweigart , Goodin,

McRae, Seinfeld and by Glahn is imperative.

To perform the calculations of Sect. 5 we have selected

three weighting functions.

The first choice is:

W(r) = ̂ 2"̂  (4.4.1)
R + r

The second is :

W(r) = i+T(r)~ S2(r) (4.4.2)

where

S(r) = i if 0<r4-|

„ , 27 R-r2 .. R
4R

having defined
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T ( r )

m
I

*-i ( 4 . 4 . 5 )
m
I Ŝ (r)

in which:

- m is the number of measurement points lying within the disk

of radius R

- a is the angle defined by the segment (see fig. 4.1)

( x k , y k ) - ( x i , y . ) and (xi,y )-(x1,

JCMESA

Fig. 4.1
the third choice is

W ( r ) = ( l + T ( r ) . ) S ( r )

S( r ) =

MAXIMUM
CONCENTRATION
LINE

Fig. 4.2

T ( r ) as defined by ( 4 . 4 . 3 )

In the first choice, formula (4.4.1), the weighting factor

depends only on the distance between the point (x,y) in which

we want to construct a pseudo-measurement and the original mea.

surement-points (x.,y.) falling within the disk of radius R.

In the other two methods a directional dependence is also

included by (4.4.5) .

In all 5 methods R is variable in the plane according to

the increase in the width of the contaminating cone in the wind
( 8 ̂

direction along the maximum contamination liner (see fig.4.2)

All the three formulae (4.4.1); (4.4.2) and (4.4.4) give

final samples which are well compared in their global characte:

ristics with the real data.
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As an example fig. 4. 3 and fig. 4. 4, obtained with the pro-
(9)

gram HBOOK , give the scatter plots of the original data

while fig. 4. 5 and fig. 4. 6 give the scatter plots of the

ched sample using (4.4.2). These are not topographycal maps;

in fig. 4. 3 In(TCDD) is plotted versus x and in fig. 4. 4 In(TCDD)

is plotted versus y for the original data sample.

Comparing fig. 4. 3 with fig. 4. 5 the density of points are

different but the structure of the two data samples is the

same; points with large TCDD values around 5000 yg/m %exp(8.5)

yg/m are very few and have small abscissa x (see fig. 2. I for

the definition of the reference frame) while the majority of

the points have values between 2.7 yg/m ̂exp(T.O) and 150 yg/

m ^exp(5 .0) .

Comparing fig. 4. 4 with fig. 4. 6, the points with large TCDD

values are fewer and located at large y coordinates (close to

the Icmesa Factory in the reference frame of fig. 2. 1). Furthe_r

more one can notice that the granularity of the information is

increased but that in the regions where there was no data in

fig. 4. 4, no pseudo-data have been invented in fig. 4. 6; an ob-

servation supporting the adeguateness of the Shepard's method

to our goal.

In conclusion we wish to point out that (4.4.4) contains

the maximum "a priori" information that can be extracted from

the original data sample as a guide-line to the finding of

the approximating function D(x,y).
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5. GRAPHICAL REPRESENTATION OF THE RESULTS

5.1 Introduction

In this final Section we shall present the results of our

investigation by showing the quantitative solution of the ap-

proximation of the contaminant distribution in zone A by means

of the analytical function built with a number of Tchebychev

polynomials.

Two different presentations of our results will be given:

1 - a quantitative presentation of the coefficient for the dif

ferent polynomials and the confidence parameters

2 - a graphycal drawing of a 3-dimensional surface as seen from

different perspective points describing the TCDD distribu-

tion in a rectangle containing zone A, using the program

SURFAC1-10-1 .

We have checked the goodness of the model adopted and com-

pared our results with those obtained in previous investigations

. The model is adequate and several characteristics,

already pointed out by others, are verified.

5.2 Numerical results of the approximation

The data constructed with the interpolation methods descri-

bed in Sect.4 have been used as input to the program MUDIFI

(Multi-DjLmensional-FJ^tting) . The principal algorithms have

been outlined in Section 3.

The program allows to fix the number of coefficients a,

that we want to introduce in the final form (3.1.1) and gives

the possibility to specify if the approximation has to be pe:r
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formed with functions product of simple monomials in the two

variables x and y or rather with orthogonal polynomial forms

such as, for instance, the Tchebychev functions of Sect.3.5.

We have, thanks to the Shepard method, a relevant number

of input points; thus the goal of a rather accurate represen

tation of the unknown function y(x,y) measured in n points

y.=D.(x.y.) can be reached by using as many as 30 free parame_

ters (coefficients a ) to build the approximant function D(x,y).
iC

We show in the present paper only the results obtained by

the use of the Tchebychev orthogonal polynomial (3.5.5) (3.5.6)

(3.5.7) and (3.5.8) mentioned in Sect.3, and on the interpola-
(1 4)tion method, mentioned in Sect.4, using only the formula (4.4.4).

The all procedure however has been applied also using the
(14)

Legendre polynomial

Due to the particular nature of the experimental data which

often show large fluctuations even between very close points,

and due to the very large ratio between the "area of zone A"

and the "total area of zone A submitted to the contamination

analysis", the results of our approximation can be considered

as sufficiently good.

In Table 5.1 the values of the residuals for each of the

coefficients are collected and the corresponding reductions

together with the value of the multiple correlation coefficient

C are given.

Table 5.2 collects in the first column the values obtained

for the 30 coefficients a , in the second column the variance
1C

and in the third column the degree of the Tchebychev polynomials

to which they refer.

As an explicative example, the second line quotes the coe-

fficient a (col.1) = (0.759 ± 0.140) related to the combination
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(col.3) 01. This means that a-ĵ  refers to the product T (x)T..(y). .

The second coefficient (line 3) is related to the combination

20 which means that a2 refers to the product T£(X) T (y) .

Explicitely:

D(x,y) = (2,61± .183)+(.759± .14)T()(x)T1 (y) - (5.2.1)

- (0.268* .101)T2(x)To(y)-....+ai.T.(x)T.(y)

and from (3.5.8) :

D(x,y) = (2.61± .183)+(.759± .140)y-(0.268± .101)-

• (22 -1)+ (5.2.2)

The parameter C of Table 5.1 gives an indication for the

goodness of the approximation. The closer C is to unity, the

better the fit can be considered.

As one can notice in Table 5.1, coium 5, the sum of the

residuals is reduced by about a factor 10 per coefficient; the

multiple correlation coefficient iŝ O.87 close enough to 1.0

for our purposes. Finally in Table 5.2 the errors on the diffe

rent coefficients are very reasonable.

As a matter of principle the "mathematical" result could

improve for instance by allowing a larger number of coefficents,

which would require a larger number of data points. Alternative;

ly we could "eliminate" so.me "bad point" giving a value of

TCDD drastically different from the nearby values and refle-

cting an anomalous large fluctuation.

In this paper however by all means we do want to give an

unbiased interpolated description without any arbitrary elimi.

nation of any value.

Therefore we claim that the result presented is the best

possible in the given circumstances.
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COEFF
MO

SUM OF SQUARES
OF RESIDUALS

REDUCTION OF
OF SQUARES

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

0.3536308594E+04
0.2996910889E+04
0.24290?5947E+04
0.2265266357E+04
0.2099861084E+04
0.1831718872E+04
0.1688964111E+04
0.1568103638E+04
0.1356953613E+04
0.1051628662E+04
0.9939321899E+03
0.9610200806E+03
0.8918918457E+03
0.8129942017E'+03
0.7688598633E+03
0.7501573486Ef03
0.7405953979E+03
0.7146628418E+03
0.6897740479E+03
0.6724725342E+03
0.6638720093E+03
0.6075493774E+03
0.5990665894E+03
0.5884318848E+03
0.5616769409E+03
0.5530006714E+03
0.5437915039E+03
0.5315605469E+03
0.5212128906E+03
0.5128872681E4-03

0,3754131775E'f03
0.5393977661E+03
0.5678148804F+03
0.1638295898E+03
0.1654051971E+03
0.2681422729E+03
0.1427547302E+03
0.1208605042E+03
0.2111499786E+03
0.3053250122E+03
0.5769648743E+02
0.3291210556E+02
0.6912826538E+02
0.7889766693E-K-2
0.4413433838E+02
0.1870249748E+02
0.95A1931610E+01
0»2593254089E+02
0.2488878632E+02
0.1730154228E+02
0.8600533485E+01
0.5632264328F. + 02
0.8482768059E+01
0.1063469791E+02
0.2675496292E+02
0«8674253319E+01
0.920918J786E+01
0»1223097420E+02
0.1034767246E+02
0.8325633049E+01

MULTIPLE CORRELATION COEFFICIENT 0.868885E+00

Tab. 5.1: Results of the function weight

W(r)=[S(r)32(l+T(r))

S(r) =
2 2

R - r
2 2

R + r



COEFFICIENTS

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

VALUE

0.2611816406E+01
0.7591783404E+00
-0.2681191862E+00
•0.8827306628E+00
-0.4400894046E-01
0.5425338745E+00
0.6950988173E+00
0.6278941631E+00
0.5745822191E+00
0.2406100035E+00
0.1857A45333E+00
-0.3786304593E+00
0.3746468425E+00
0.2251543403E+00
0.6250208616E+00
0.392A346600E+00
0.2824673951E+00
0.4311328530E+00
0.6149656773E+00
0.6629428864E+00
-0.4905254394E-0"!
-0.5814285B74E+00
-0.6244755387E+00
-0.6606221199E-01
0.2131620049E+00
-0.3567886055E+00
-0.1992565244E+00
0.5482710898E-02
-0.2291990817E+00
0.1528140604E+00
-0.1678609997E+00

VARIANCE
POWERS OF VARIABLES

IN MONOMIAL

0 0
0.182943E + 00 () 1
0.140330E+00 2 0
0.100968E+00 4 2
0.479781E4-00 1 1
0.116808E+00 3 0
0.242769E+00 3 1
0.129216E+00 1 5
0.132157E+00 5 2
0.974676E-01 3 5
0.13815lEfOO 5 3
0.5A6410E-01 0 5
0.667838E-01 2 6
0.998844E-01 5 4
0.917134E-01 7 5
0.762477E-01 7 6
0.259199E+00 1 0
0.149761E+00 0 2
0.224754E+00 1 2
0,199875EtOO 2 2
0.532743E-01 A 0
0.121924E+00 3 3
0.993173F.-01 1 6
0.462425E-01 0 8
0.700691E-01 4 5
0.7A5648E-01 7 2
0.877238E-01 7 3
0.753213E-01 8 4
0.666651E-01 8 5
0.782392E-01 7 7
0.760031E-01 8 6

Tab. 5-2: Results of the function weight W(r)=[s(r)J (l+T(r)) ; S(r)= —R -r
2 2

R +r CM
O
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5.3 Graphycal Results of the approximation.

Having obtained the analytical form of the function

D(x,y) completing (5.2.2) with all the terms indicated in

Table 5.2 (that is having obtained the mathematical descri^

ption of the TCDD distribution on the ground),we can graphy^

cally visualize the result so as to give a direct check of

the overall properties of the distribution function and of

the approximation procedure adopted. (The graphycal visua- .

lization could also suggest general comments on the topogra.

phycal distribution in comparison with the equal density line

description given in ref.8).

To solve the graphycal problem,we have used the program

SURFAC *• . It is a multipurpose program which produces a

prospectic view of a function given in cartesian coordinates.

The resulting figure draws the intersections of the sur

face with parallel planes orthogonal to the axes. To obtain

the visualization of possible "hidden points" of the surface

it is possible to rotate the entire figure by a variable an-

gle (which can be properly chosen) from -90° and *90°.

In fig.s 5.1, 5.2,5.3,5.4 the function D(x,y) given by

(5.2.2) is shown from different points of view under different

angles. The vertical axis (In TCDD concentration) is not rele-

vant here and is reported only on fig. 5.1.

Let us comment on fig: 5.1 which shows the function rotated

by 30° clockwise with respect to the North-South direction.

We can clearly notice that there are two pronounced peaks

in the vicinity of the ICMESA Factory; then the function decre

ases along the y axis maintaining however large TCDD values
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along the well defined band of maximum concentration mentio-

ned in Sect. 4.4 and determined in ref. 8 .

Note that zone A is included in the rectangle (fig.5.1); the

contours of the function are not always slowly degrading but

show secondary maxima. This is due to the fact that the analy_

sis has been limited to zone A where the TCDD concentration is

maximal, but which does not cover all the domain of the conta

minated region. Nonetheless, the secondary maxima are not very

relevant and coincide with those shown in ref.8 .

Fig. 5.3 seen from,an angle of 60° clockwise, shows the

surface from a direction almost perpendicular to the maximum

concentration line.

Fig. 5.4, seen from an angle of 60° counterclockwiset

shows the surface almost along the maximum concentration line

clearly showing the decrease of the TCDD concentration with the

distance from the ICMESA Factory.

It is important to point out that the weak points of

the analysis is concentrated at the boundaries. There the

number of measured points _ls small.

It is however interesting to note that,in spite of this

the surface is satisfacorily reproducing the known overall

characterics of the distribution (even if the knowledge is re-

latively scanty).

A quick subdivision of zone A into small rectangles gives

the average TCDD concentrations reported in Table 5.3.

The graphycal description reproduces also quantitatively

the numerical description.

We can thus conclude that the empirical model proposed in this

paper is adeguate to reproduce the reality with sufficient accu
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racy and proves that the approach used may be interesting

for applications to similar problems.

5.4 Concluding remarks

The analysis performed in this paper is one of the possi-

ble investigations which can be performed in connection with

the ICMESA accident. Although with a much lower significance

one could extend the analysis to all the contaminated region

taking nontrivial risks, but providing a tentative complete

mathematical description of the phenomenon.

We certainly believe that the procedures used could be

applied to similar cases since, by using relatively simple

and handy mathematical formulae it is possible to build a

descriptive function over a given geographycal extension of

an area interested by a measured phenomenon, putting in evi-

dence both the global and local characteristics of the measu

rement.

As of the value of the integral we prefer to be as cautious

as possible.

As explicitely stated in ref.8 and in ref.1 the multipli-

cation factor between analyzed area and contaminated area is
c

R=3.04x10^ for zone A.

This imposes a priori an enormous incertainty on any poss_i

ble result. The numerical integration performed here is however

the best mathematical calculation which can be performed, given

the original measurements.
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TCDD=
3.720

ICMESA

TCDD=
1.7H

TCDD=

0.681

TCDD=
2.502

TCDD=
2.890

TCDD=
4. 104

TCDD=
5.081

TCDD=

1.116

TCDD=
2.911

TCDD=
2.233

TCDD=
2.015

TCDD=
2.102

TCDD=

3.589

TCDD=
3.811

TCDD=
2.657

TCDD=
2.371

TCDD=
0.312

TCDD=

1.185

TCDD=
1.702

TCDD =
2.167

T C D D =
2.752

Table 5-3: Average concentrations of the logarithm of TCDD
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