An official website of the United States government.

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Collaborative Research: The Antimicrobial Properties Of Silver Nanoparticles: Mechanisnms And Water Chemistry Effects

Investigators
Smith, James A
Institutions
University of Virginia
Start date
2009
End date
2012
Abstract

Smith Nanosilver, the active component of more than 20% of the nanoproducts currently available on the market, is the most commonly used nanomaterial for commercial applications. Approximately 88% of these products have some form of antibacterial or antimicrobial activity. Silver nanoparticles exhibit physical properties that are different from both the ion and the bulk material. Because of their strong antibacterial properties, several studies have shown the potential use of silver nanoparticles in biomedical and environmental applications, such as the treatment of wounds and burns and water disinfection. While the antibacterial properties of silver nanoparticles have been extensively demonstrated, their disinfectant mechanism(s) and kinetics in the inactivation of bacteria, viruses, and protozoa have not yet been elucidated. Indeed, there have been no studies testing the ability of silver nanoparticles to deactivate protozoan pathogens like Cryptosporidium parvum and Giardia lamblia. Previous studies have not addressed the effect of environmental conditions on the antimicrobial properties of silver nanoparticles. The researchers hypothesize that there are three possible antimicrobial processes for silver nanoparticles: (1) direct interaction of the silver particle with the cell membrane and subsequent damage to the membrane and complexation with intracellular components, (2) release of Ag+ ions and subsequent disinfection, and (3) formation of reactive oxygen species (ROS). None of these mechanisms have been conclusively confirmed, nor has the relative importance of each mechanism in the inactivation of different types of pathogenic microorganisms been elucidated. This work will synthesize silver nanoparticles with different mean particle sizes and specific surface areas and quantify their effects on pathogen disinfection mechanism and rate. Pathogens proposed for study include a virus (MS2), a bacteria (E. coli), and a protozoa (Cryptosporidium parvum). Experimental design will allow us to identify each potential mechanism individually and determine its relative contribution to the overall disinfection rate for each pathogen. It is anticipated that this work will have broader impacts in several ways, including a summer program for high-school students, adding an environmental nanotechnology course module to an existing course, and working with the University of Rhode Island chapter of Engineering Students without Borders (ESWB) to develop a service project involving the manufacture and distribution of nanosilver particles specifically designed for use in ceramic water filters manufactured by Potters for Peace. They envision this latter effort to be a sustainable service project for the student chapter that will teach them about developing-world water problems, introduce them to silver nanotechnology, and provide funds to support their student chapter service efforts.

Funding Source
United States Nat'l. Science Fndn.
Project source
View this project
Project number
854047
Categories
Bacterial Pathogens