An official website of the United States government.

The .gov means it’s official.
Federal government websites always use a .gov or .mil domain. Before sharing sensitive information online, make sure you’re on a .gov or .mil site by inspecting your browser’s address (or “location”) bar.

This site is also protected by an SSL (Secure Sockets Layer) certificate that’s been signed by the U.S. government. The https:// means all transmitted data is encrypted — in other words, any information or browsing history that you provide is transmitted securely.

Data Acquisition, Development of Predictive Models For Food Safety and Their Associated Use in International Pathogen Modeling and Microbial Databases

Investigators
Oscar, Thomas; Juneja, Vijay
Institutions
USDA - Agricultural Research Service
Start date
2016
End date
2021
Objective

Mathematical models that predict behavior of pathogens in food can be used to verify critical control points in Hazard Analysis and Critical Control Point (HACCP) programs. For example, they can be used to assess whether or not a process deviation results in a one log cycle increase of Clostridium perfringens during cooling of a cooked meat product during commercial processing. Models that predict behavior of pathogens can be integrated with data for pathogen contamination to predict dynamic changes in pathogen prevalence and number in food across unit operations of a production chain. Predictions of consumer exposure can then be used in a dose-response model to form a process risk model that predicts consumer exposure and response to pathogens in food produced by specific scenarios. Process risk models have great potential to improve food safety and public health by providing a better assessment of food safety and identification of risk factors. In the past, we have developed predictive models and process risk models that have proven highly useful in providing regulatory agencies and the food industry with an objective means of assessing food safety and identifying risk factors. The goal of the proposed research is to elevate that successful effort to the next level of sophistication by considering additional variables and developing new and improved models and more effectively transferring this new research to the food industry by providing updated and improved versions of our software products: the Predictive Microbiology Information Portal, ComBase, and the Pathogen Modeling Program. 1: Develop and validate predictive models for behavior of stressed and unstressed pathogens in food with added antimicrobials. This includes development of validated dynamic models for spores and vegetative foodborne pathogens for evaluating heating and cooling process deviations. 2: Develop and validate process risk models for higher risk pathogen and food combinations. 3: Expand and maintain the ARS-Pathogen Modeling Program and Predictive Microbiology Information Portal. Continue to support the development and utilization of ComBase with our associated partners the Institute of Food Research (IFR) and the University of Tasmania (UTas) as an international data resource.

Funding Source
Agricultural Research Service
ARS (NP108)
Project source
View this project
Project number
8072-42000-079-00D
Accession number
430152
Categories
Bacterial Pathogens