An official website of the United States government.

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Genetic Analysis of Salmonella Virulence

Investigators
Heffron, Fred
Institutions
Oregon Health & Science University
Start date
1987
End date
2002
Objective
This application focuses on three key steps in Salmonella infection; how the bacteria adhere to cells, kill or disarm phagocytic cells, and then replicate in only specific tissues of the body.
More information

The mechanism by which Salmonella colonizes the small intestine is not known. The investigator has identified a new class of pili that adhere to M cells. A mutant strain missing this pilus is partially attenuated for virulence (five fold) suggesting alternative adherence factors (Baumler et al., 1995).

The investigators will use several approaches to identify these other adherence factors and study the surface components of the cell to which they bind. Once the bacteria are within the lymphatic system or the spleen and liver they pursue a lifestyle that is partly extracellular. Salmonella bacteria kill and lyse the macrophage after about 24 hours of infection in vitro. The goal of Salmonella may be to reach and disarm the macrophage and use the host cells nutrients for its own growth.

The investigators have selected transposon mutants that grow in macrophages at the same rate as the parent strain but without killing. The first two independent mutants that were analyzed are located about 300 bp apart in ompR, a member of the two component regulator family. These mutants are totally avirulent. Several other mutants were identified in the same selection but have not yet been characterized. They will clone and sequence the cognate genes and determine their role in pathogenesis in the mouse.

Finally, Salmonella lives within a limited number of cell types within the host. In part, this tissue tropism is defined by nutrition, e.g., none of the known mechanisms to take up Fe(III) or Fe(II) appears to play any role in virulence. We have identified a new Salmonella iron uptake mechanism that is essential for virulence.

Funding Source
Nat'l. Inst. of Allergy and Infectious Diseases
Project number
5R01AI022933-15
Categories
Bacterial Pathogens
Salmonella