An official website of the United States government.

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Genetic Engineering Cotton for Enhanced Resistance to Aspergillus Flavus

Institutions
Louisiana State University
USDA - Agricultural Research Service
Start date
2008
End date
2011
Objective
  • Identify cotton plastid promoters that demonstrate high expression levels in both green and non-green plant tissues for use in development of cotton plastid transformation vectors.
  • Determine levels of expression of reporter genes in both green (leaf and outer boll) and non-green (cottonseed and root) cotton tissues under control of select, engineered plastid promoters. Generate cotton plastid transformation vectors that place antifungal genes and selectable marker genes under control of selected cotton plastid promoters and transform cotton. Test transformed tissues for expression of antifungal genes and selectable marker genes under both light and dark growth conditions. Perform in planta bioassays for antifungal activity in transplastomic cotton plants.
More information
Approach: Total RNA isolated from developing cotton plants and cottonseed will be hybridized with PCR-generated probes for selected cotton plastid genes using standard Northern hybridization technology. The promoters from those genes that demonstrate high levels of expression in green and/or non-green cotton tissues based on Northern hybridization results will be cloned and characterized using standard molecular biological methods. Promoter fragments of select plastid genes will be fused to reporter genes (GUS, GFP, etc.) and transformed into tobacco and cotton plastids in order to identify the minimal functional promoter sequences. While tobacco plastid transformation protocols have been developed, the same cannot be said of cotton, and protocols will have to be optimized for this plant. Once an efficient cotton plastid transformation system has been developed, cotton plastid will be transformed with transformation vectors in which reporter, antifungal, and selectable marker genes are placed under control of selected cotton plastid gene promoters. Transplastomic cotton plants will be analyzed for expression and production of reporter, antifungal, and selectable marker genes by standard molecular biological techniques (PCR, Northern and Western blotting). In planta antifungal bioassays will be performed to determine levels of resistance to A. flavus, as well as other cotton fungal pathogens.
Funding Source
Agricultural Research Service
Project number
6435-42000-019-18S
Accession number
413466
Categories
Chemical Contaminants
Mycotoxins