An official website of the United States government.

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Intervention and Processing Strategies for Food-Borne Pathogens in Shell Eggs

Musgrove, Michael
USDA - Agricultural Research Service
Start date
End date
1. Evaluate bactericidal effects of critical processing parameters (e.g. influence of wash water parameters, sanitizers, and sanitizer application methods) on egg safety. Specifically, conduct research on effective sanitizers (chemical, UV, etc.) and parameters that influence efficacy (temperature, nozzle type, etc.): 1.A Determine role of pH in wash water; 1.B Test chemicals as post-wash sanitizers for shell eggs; 1.C Evaluate modifications in post-wash sanitizer delivery.

2. Identify intervention strategies and processing practices for shell egg facilities and equipment that will improve sanitation standard operating procedures and reduce foodborne pathogens: 2.A Identify important reservoirs of Salmonella contamination in the processing environment; 2.B Evaluate sanitation interventions.

3. Develop more sensitive methods of detection and analysis and apply them in the determination and characterization of pathogen flow through the processing environment and onto eggs: 3.A Evaluate rapid, sensitive methods for pathogen detection; 3.B Utilize enhance methods to determine effect of housing on egg microbiology; 3.C: Characterize isolates at the molecular level to demonstrate flow from production through processing.

More information
Approach: This project will promote egg safety by improving processing and intervention strategies in three critical areas. First, the bactericidal effects of critical processing parameters will be determined. Commercial egg wash detergents do an excellent job of cleaning eggs but are less lethal to bacteria when wash water pH is <10. Currently, the sanitizing chlorine solution sprayed onto eggs after washing does not reduce bacterial numbers. Research is needed to document the importance of pH and to identify an effective post-wash egg sanitizer. Second, improved sanitation procedures within processing facilities will be developed. Producing safe food requires a clean processing environment. Documentation is needed of areas and equipment in the processing facility most often contaminated with Salmonella. Such information will assist in development of effective means of removing or killing harmful bacteria. Third, better methods for detecting pathogens in egg processing environments and eggs will be developed. A recent new law requires egg producers to test for Salmonella Enteritidis (SE) in houses and flocks. Rapid, objective tests specific for SE will enable the egg industry in complying with this rule. Analyzing DNA from Salmonella collected at farms, processing facilities, and eggs allow for tracking of important contamination sources. Also, improved testing methods are required for a scientifically-based assessment of how different housing types affect egg microbiology.
Funding Source
Agricultural Research Service
Project source
View this project
Project number
Accession number
Predictive Microbiology
Bacterial Pathogens