An official website of the United States government.

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Practical Validation of Surface Pasteurization of Netted Melons

Investigators
Suslow, Trevor
Institutions
University of California - Davis
Start date
2013
End date
2014
Objective
No one wants to take cantaloupes off the shelf or foodservice menu offerings. Since 1990, cantaloupes have been associated with 36 outbreaks and pathogen-based recalls recorded in the public health database. Preventive controls are viewed as the best strategy to combat this burden on consumers and public health, the general economy, and the sustainability of this important fruit category. The essential functionality of thermal surface-pasteurization of netted melons has been recognized at the basic and applied research level for over a decade, primarily as hot water immersion and hot water brush-washing. The reported inactivation of inoculated pathogens, predominantly Salmonella enterica serotypes, has exceeded a 4.5 log reduction. With the recurring economic losses and human tragedy associated with the most recent outbreak, we seek to assist in converting these bench-top studies to a validated and verified high-throughput commercial system across extended seasons, growing districts, varieties, netted rind traits, and other commercial variables. In addition to meeting food safety goals, killing heat shocks may also positively or negatively impact the post-treatment keeping quality of cantaloupes and other more sensitive netted melons.

Therefore, our proposed research plan will develop ‘real-world’ data for this postharvest disinfection treatment to arrive at a balance in which food safety objectives do not compromise the quality and arrive at a set of Best Practice options for the industry. To achieve this goal, experimental farm trials using an attenuated isolate of Salmonella Typhimurium and Listeria innocua, a surrogate for Listeria monocytogenes, will be conducted at the UC Davis Research Farm Facility. Fruit from these open environment trial will be subjected to hot water surface-pasteurization alone or in combination with a sequentially applied labeled disinfectant to achieve at least a 4-log reduction of applied pathogen surrogates and retain or improve fruit shelf-keeping properties. The recognized scarcity of detectable populations of pathogens, such as Salmonella, on cantaloupe in arid western production regions essential precludes verification of hot water pasteurization with non-inoculated fruit in either a lab pilot system or commercial system. Based on our experience from prior studies, we have targeted log reduction of indigenous Total Coliform as the appropriate benchmark for future commercial verification studies on-site that can be correlated with 4-log reductions of stress-adapted inoculated strains from model studies at Time:Temperature regimes that both define and parallel the commercial process design and operational parameters. Therefore, hot water surface-pasteurization alone or in combination with a sequentially applied labeled disinfectant in the twin commercial process systems will be verified to achieve a regional and temporally reproducible success criterion of at least a 2-log reduction of indigenous Total Coliform on netted melon rind and retain or improve fruit shelf-keeping properties.

The outcomes of this research project will be very valuable for the cantaloupe industry and template SOPs should be extendable to other types of melons and durable fresh produce. We believe that a public information resource of this disinfection technology may be scalable, easily transferred, and successfully implemented by the global cantaloupe and netted melon supply and fresh processing industry.

Funding Source
Center for Produce Safety
Project source
View this project
Project number
2013-251
Categories
Bacterial Pathogens
Salmonella
Commodities
Produce