An official website of the United States government.

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.


Colbert, Christopher L
North Dakota State University
Start date
End date
PROJECT SUMMARY/ABSTRACT The CDC recently released a report detailing antibiotic resistant threats in the US. Of particularemphasis in the CDC report is the increased prevalence of multidrug-resistant, Gram-negative bacteria (MDR-GNB) and the need to develop the next generation of antibiotics to combat them. All Gram-negative bacteriarely on a set of homologous, yet highly-specific, outer membrane TonB-dependent transporters (TBDTs) toimport critical nutrients from their environment, especially metals like iron, which are bound by high-affinity,metal chelating compounds called siderophores. Recent antibiotic developments have shown thatsiderophore-antibiotic conjugates can be selectively targeted to specific bacteria, and that this deliverymechanism overcomes several key antibiotic resistance mechanisms. A significant limitation of this deliverysystem is the low expression levels of the TBDTs. However, a subset of these TBDTs controls their ownexpression through a cell-surface signaling (CSS) process that up-regulates their own expression. The long-term objective of this research is to understand the CSS regulatory process and manipulate TBDT expressionto enhance siderophore-antibiotic conjugate therapy for treatment of MDR-GNB infections. Research outlinedin this proposal will help elucidate the structural basis for CSS by a sigma-regulator. As a model system, thepseudobactin BN7/8 transport system of Psuedomonas putida, which consists of the TBDT, PupB, the innermembrane ?-regulator, PupR, and the cytoplasmic ?-factor, PupI, is being used. To accomplish thisproposal's objective the following three specific aims will be pursued: 1) establish that PupR anti-?-factordomain dimerization influences transcriptional activation by PupI, 2) identify the structural determinants anddelineate the role of the PupR:PupB periplasmic interactions on the stability of the PupR periplasmic C-terminal CSS domain (CCSSD), and 3) determine changes in the full-length PupB:PupR CCSSD complex inthe presence and absence of its cognate siderophore, pseudobactin BN7/8. These aims will be accomplishedusing a multidisciplinary approach; including X-ray crystallography, small-angle X-ray scattering, molecularbiology, cellular assays, and biophysical techniques such as isothermal titration calorimetry and circulardichroism spectroscopy. This research will provide critical structural information about a ?-regulator; explainhow it interacts with a ?-factor at the inner membrane, and the extent to which periplasmic conformationalchanges between the TBDT and ?-regulator lead to proteolytic degradation that is important for controllingtranscriptional activation.
Funding Source
Nat'l. Inst. of General Medical Sciences
Project source
View this project
Project number
Antimicrobial Resistance
Chemical Contaminants
Bacterial Pathogens