An official website of the United States government.

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Research Publications (Food Safety)

This page tracks research articles published in national and international peer-reviewed journals. Recent articles are available ahead of print and searchable by Journal, Article Title, and Category. Research publications are tracked across six categories: Bacterial Pathogens, Chemical Contaminants, Natural Toxins, Parasites, Produce Safety, and Viruses. Articles produced by USDA Grant Funding Agencies (requires login) and FDA Grant Funding Agencies (requires login) are also tracked in Scopus.

Displaying 1 - 10 of 10

  1. Environmental Conditions After Fusarium Head Blight Visual Symptom Development Affect Contamination of Wheat Grain with Deoxynivalenol and Deoxynivalenol-3-Glucoside

    • Phytopathology®
    • Fusarium head blight (FHB) of wheat, caused by the fungus Fusarium graminearum, is associated with grain contamination with mycotoxins such as deoxynivalenol (DON). Although FHB is often positively correlated with DON, this relationship can break down under certain conditions. One possible explanation for this could be the conversion of DON to DON-3-glucoside (D3G), which is typically missed by common DON testing methods.

      • Natural toxins
      • Mycotoxins
  2. Environment, Grain Development, and Harvesting Strategy Effects on Zearalenone Contamination of Grain from Fusarium Head Blight-Affected Wheat Spikes

    • Phytopathology®
    • Fusarium head blight (FHB), caused by the fungus Fusarium graminearum, is associated with grain contamination with mycotoxins such as deoxynivalenol (DON) and zearalenone (ZEA). Unlike DON, less is known about factors affecting ZEA production during FHB epidemics. The objective of this study was to quantify ZEA contamination of wheat grain as influenced by temperature, relative humidity, FHB index (IND), grain maturation, simulated late-season rainfall, and harvest timing.

      • Natural toxins
      • Mycotoxins
  3. Intraspecific Growth and Aflatoxin Inhibition Responses to Atoxigenic Aspergillus flavus: Evidence of Secreted, Inhibitory Substances in Biocontrol

    • Phytopathology®
    • The fungus Aspergillus flavus infects corn, peanut, and cottonseed, and contaminates seeds with acutely poisonous and carcinogenic aflatoxin. Aflatoxin contamination is a perennial threat in tropical and subtropical climates. Nonaflatoxin-producing isolates (atoxigenic) are deployed in fields to mitigate aflatoxin contamination. The biocontrol competitively excludes toxigenic A.

      • Natural toxins
      • Aflatoxins
      • Mycotoxins
  4. More than a Virulence Factor: Patulin Is a Non-Host-Specific Toxin that Inhibits Postharvest Phytopathogens and Requires Efflux for Penicillium Tolerance

    • Phytopathology®
    • Mycotoxin contamination is a leading cause of food spoilage and waste on a global scale. Patulin, a mycotoxin produced by Penicillium spp. during postharvest pome fruit decay, causes acute and chronic effects in humans, withstands pasteurization, and is not eliminated by fermentation. While much is known about the impact of patulin on human health, there are significant knowledge gaps concerning the effect of patulin during postharvest fruit–pathogen interactions.

      • Natural toxins
      • Mycotoxins
  5. The Importin FgPse1 Is Required for Vegetative Development, Virulence, and Deoxynivalenol Production by Interacting with the Nuclear Polyadenylated RNA-Binding Protein FgNab2 in Fusarium graminearum

    • Phytopathology®
    • Karyopherins are involved in transport through nuclear pore complexes. Karyopherins are necessary for nuclear import and export pathways and bind to their cargos. Polyadenylation of messenger RNA (mRNA) is necessary for various biological processes, regulating gene expression in eukaryotes. Until now, the association of karyopherin with mRNA polyadenylation has been less understood in plant pathogenic fungi.

      • Natural toxins
      • Mycotoxins
  6. Biochemical and Histological Insights Into the Interaction Between the Canker Pathogen Neofusicoccum parvum and Prunus dulcis

    • Phytopathology®
    • The number of reports associated with wood dieback caused by fungi in the Botryosphaeriaceae in numerous perennial crops worldwide has significantly increased in the past years. In this study, we investigated the interactions between the canker pathogen Neofusicoccum parvum and the almond tree host (Prunus dulcis), with an emphasis on varietal resistance and host response at the cell wall biochemical and histological levels.

      • Parasites
      • Cryptosporidium parvum
  7. Logistic Models Derived via LASSO Methods for Quantifying the Risk of Natural Contamination of Maize Grain with Deoxynivalenol

    • Phytopathology®
    • Models were developed to quantify the risk of deoxynivalenol (DON) contamination of maize grain based on weather, cultural practices, hybrid resistance, and Gibberella ear rot (GER) intensity. Data on natural DON contamination of 15 to 16 hybrids and weather were collected from 10 Ohio locations over 4 years. Logistic regression with 10-fold cross-validation was used to develop models to predict the risk of DON ≥1 ppm.

      • Natural toxins
      • Mycotoxins
  8. An Analysis of Postharvest Fungal Pathogens Reveals Temporal–Spatial and Host–Pathogen Associations with Fungicide Resistance-Related Mutations

    • Phytopathology®
    • Fungicides are the primary tools to control a wide range of postharvest fungal pathogens. Fungicide resistance is a widespread problem that has reduced the efficacy of fungicides. Resistance to FRAC-1 (Fungicide Resistance Action Committee-1) chemistries is associated with mutations in amino acid position 198 in the β-tubulin gene.

      • Chemical contaminants
      • Pesticide residues
  9. Logistic Models Derived via LASSO Methods for Quantifying the Risk of Natural Contamination of Maize Grain with Deoxynivalenol

    • Phytopathology®
    • Models were developed to quantify the risk of deoxynivalenol (DON) contamination of maize grain based on weather, cultural practices, hybrid resistance, and Gibberella ear rot (GER) intensity. Data on natural DON contamination of 15 to 16 hybrids and weather were collected from 10 Ohio locations over 4 years. Logistic regression with 10-fold cross-validation was used to develop models to predict the risk of DON ≥1 ppm.

  10. Stability of Hybrid Maize Reaction to Gibberella Ear Rot and Deoxynivalenol Contamination of Grain

    • Phytopathology®
    • Trials were conducted to quantify the stability (or lack of G × E interaction) of 15 maize hybrids to Gibberella ear rot (GER; caused by Fusarium graminearum) and deoxynivalenol (DON) contamination of grain across 30 Ohio environments (3 years × 10 locations). In each environment, one plot of each hybrid was planted and 10 ears per plot were inoculated via the silk channel. GER severity (proportion of ear area diseased) and DON contamination of grain (ppm) were quantified.