Plant Physiology

The Research Publications track research that is published across national and international peer-reviewed journals. The most recent articles are available ahead of print and searchable by Journal Title, Subject, USDA Grant Funding Agencies or FDA Grant Funding Agencies. The research publications are tracked across five subject areas: Bacterial Pathogens, Chemical Contaminants, Natural Toxins, Parasites, and Viruses.

Tue, 08/04/2020 - 08:03
Symbiodiniaceae are symbiotic dinoflagellates that provide photosynthetic products to corals. Because corals are distributed across a wide range of depths in the ocean, Symbiodiniaceae species must adapt to various light environments to optimize their photosynthetic performance. However, as few biochemical studies of Symbiodiniaceae photosystems have been reported, the molecular mechanisms of...
Thu, 07/02/2020 - 08:02
Hydrogen gas (H2) has a possible signaling role in many developmental and adaptive plant responses, including mitigating the harmful effects of cadmium (Cd) uptake from soil. We used electrophysiological and molecular approaches to understand how H2 ameliorates Cd toxicity in pak choi (Brassica campestris ssp. chinensis). Exposure of pak choi roots to Cd resulted in a rapid increase in the...
Thu, 07/02/2020 - 08:02
The elements Zinc (Zn) and cadmium (Cd) have similar chemical and physical properties, but contrasting physiological effects in higher organisms. In plants, Zn/Cd transport is mediated by various transporter proteins belonging to different families. In this study, we functionally characterized two Zn transporter genes in rice (Oryza sativa), ZINC TRANSPORTER5 (OsZIP5) and ZINC TRANSPORTER9 (...
Sat, 05/09/2020 - 03:33
Hydrogen sulfide (H2S), a plant gasotransmitter, functions in the plant response to cadmium (Cd) stress, implying a role for cysteine desulfhydrase in producing H2S in this process. Whether d-CYSTEINE DESULFHYDRASE (DCD) acts in the plant Cd response remains to be identified, and if it does, how DCD is regulated in this process is also unknown. Here, we report that DCD-mediated H2S production...
Tue, 04/07/2020 - 03:42
Phytochelatin synthase (PCS) is a key component of heavy metal detoxification in plants. PCS catalyzes both the synthesis of the peptide phytochelatin from glutathione and the degradation of glutathione conjugates via peptidase activity. Here, we describe a role for PCS in disease resistance against plant pathogenic fungi. The pen4 mutant, which is allelic to cadmium insensitive1 (cad1/pcs1)...