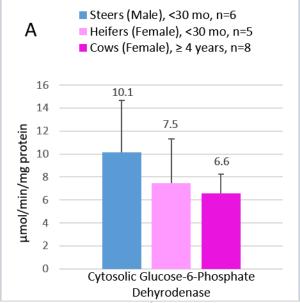
Flunixin Residues in Cattle – why?

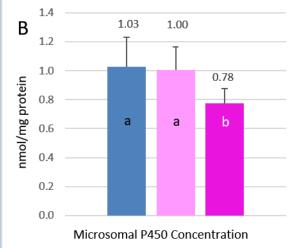
ARS Scientists: *Nancy Shappell and David Smith

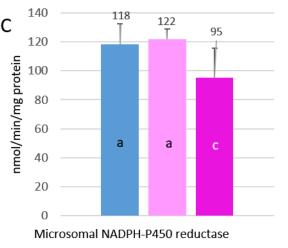
Flunixin Residues in Dairy Cows

Question:

Why do dairy cows account for ~ 76% of flunixin positive residues of all cattle at slaughter?


- Age related?
- Gender related?
- Illness related? lowered rates of flunixin metabolism resulting in higher residues?


Approach:


Liver subcellular fractions prepared at slaughter (microsomes, S9, and cytosol)

From steers & heifers (< 30 mos), and cull dairy cows (> 48 mos)

- Glucose 6-P Dehydrogenase activity
- P450 concentration
- Cytochrome C reductase activity
- Rate of flunixin metabolism
- Identification of major FNX metabolites, by subcellular fraction

Findings

	Steer or Heifer	Cows
 Glucose 6-P Dehydrogenase activity (cytosol) 	=	=
• P450	=	22-24% ↓
Cytochrome C reductase activity	=	20-22% ↓
 Rate of flunixin metabolism 	=	40-49% ↓
 Identification of major metabolites 	5'OH FNX	5'OH FNX
(no measured metabolism in cytosol)		

First to identify microsomes as site of metabolism site in liver.

Findings indicate age may be a factor in higher flunixin residues in dairy cull cows

Study in Progress:

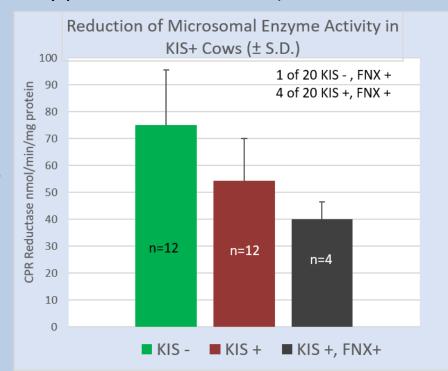
Comparing Cytochrome P450 Reductase Activity (CPR) and Flunixin Metabolism in Liver Microsomes

Prepared from Dairy Cows

KIS - and KIS + (antibiotic positive)
FNX + cows have typically been KIS +

Hypothesis:

KIS + animals may have lower CPR activity and rate of FNX due to illness (indicated by presence of antibiotic)


Preliminary Findings:

1 of 20 KIS - cows 0.6 ng/g liver FNX (Tolerance 125 ng/g or ppb)

4 of 20 KIS + cows 1.9 – 9.5 ng/g liver FNX

Confirmation that KIS + identification is useful as a sentinel for flunixin residues

CPR activity appears to be lower in KIS +

