An official website of the United States government.

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

COORDINATED PRECISION APPLICATION TECHNOLOGIES FOR SUSTAINABLE PEST MANAGEMENT AND CROP PROTECTION

Objective

The long-term objective of this research is to advance spray applications with coordinated intelligent-decision technologies and strategies that enhance pesticide application efficiency and environmental stewardship for efficacious and affordable control of pest insects, diseases and weeds. Objective 1: Develop intelligent precision technologies to efficiently apply pesticides and bio-products for efficacious and sustainable control of pest insects and arthropods, diseases and weeds to protect horticultural, field and greenhouse crops. Sub-objective 1.1: Develop a reliable and user-friendly intelligent spray-decision system as a retrofit for new and existing air-assisted sprayers to deliver pesticides and bio-products accurately, economically, and environmentally for field specialty crops. Sub-objective 1.2: Develop greenhouse intelligent spray systems for real-time control of individual nozzle outputs to improve spray deposition quality and reduce waste of water and chemicals. Objective 2: Develop coordinated application methodologies to reduce pesticide use, reduce crop protection costs, reduce chemical contaminations to the environment, and protect workers, livestock, natural resources and sensitive ecosystems. Sub-objective 2.1: Improve spray droplet fading process to maximize coverage area after deposition on plants through coordinating spray parameters including droplet size, formulation physical properties, plant surface morphology, and ambient air conditions. Sub-objective 2.2: Improve spray droplet retention and reduce runoff on plants through coordinating the influences of droplet size and velocity, travel speed, spray formulation physical properties, crop leaf surface morphology, and leaf surface orientation on dynamic impact, retention, rebound and spread process of spray droplets on plants.

Start date
2020
End date
2025
Project number
5082-21620-001-00D
Accession number
437778
Categories