An official website of the United States government.

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

The role of SLC11A1 in neutrophil antimicrobial response


PROJECT SUMMARYFor decades, NRAMP1 (for natural resistance-associated macrophage protein 1, renamed SLC11A1 forsolute carrier protein family 11, member 1) has been characterized as a divalent cation/H+ antiporter in thephagosomal membrane of macrophages that pumps iron and manganese out of the vacuole. This mechanismcontributes to nutritional immunity against intracellular pathogens by depleting the phagosomal environment ofessential metal cofactors. Mouse macrophages expressing mutant Slc11a1 are functionally compromised incontrol of several intracellular pathogens, including Salmonella enterica serovar Typhimurium (S. Typhimurium).Further, human polymorphisms in SLC11A1 are associated with susceptibility to both autoimmune and infectiousdisease. However, until now the role of SLC11A1 has been assumed to be macrophage-specific. Remarkably, during studies on vitamin A deficiency, our lab has uncovered an unsuspected role forSLC11A1 in control of systemic S. Typhimurium infection by neutrophils. Our preliminary results show thatincreased susceptibility of vitamin A-deficient mice to disseminated S. Typhimurium infection is dependent onsynthesis of SLC11A1 by neutrophils, which challenges conventional wisdom that SLC11A1-dependent hostdefenses are associated exclusively with macrophages. However, strong evidence for a role of SLC11A1 asessential in neutrophil antimicrobial response is needed to establish this novel concept. Our central hypothesis is that SLC11A1 function promotes the bactericidal activity of neutrophils. Theobjective of this application is to investigate the role of SLC11A1 in neutrophil control of S. Typhimurium infection.To test our hypothesis, we will use a triangulated approach assessing neutrophil function and response toinfection by utilizing human neutrophils in cell culture, mouse neutrophils ex vivo and a systemic S. Typhimuriuminfection in vivo mouse model. We are drawing on collaborative expertise to employ CRISPR for generation of aSLC11A1-/- cell line and utilize the Cre-lox system to create a mouse strain that has a conditional knockout ofSlc11a1 only in neutrophils. Our rigorous studies of SLC11A1 in neutrophil response to infection will providefundamental knowledge in the fields of microbiology and immunology, thereby advancing biomedical research.Further, this project will have broad implications for translation to improve human health, as polymorphisms inSLC11A1 make certain patients more susceptible to disease. The integrated training plan outlined in this application will provide an in-depth research experience,training in cutting-edge technologies like CRISPR, expertise from core facilities, and education from faculty inthe School of Veterinary Medicine, the School of Medicine, the College of Agricultural and EnvironmentalSciences, and the College of Biological Sciences. Importantly, this plan embodies the structured dual-degreementorship at UC Davis with a supportive sponsor and lab that addresses clinically relevant microbiologicalquestions, a clinical mentor, a graduate school adviser, medical school advisers and an MD/PhD adviser.

Stull-lane, Annica
University of California - Davis
Start date
End date
Project number
Accession number