| item 10 Number       | 00631                                                                                                |
|----------------------|------------------------------------------------------------------------------------------------------|
| Author               | Erickson, Mitchell D.                                                                                |
| Corperate Aather     | Research Triangle Institute, Research Triangle Park, NC                                              |
| Report/Article Title | Acquisition and Chemical Analysis of Mother's Milk for Selected Toxic Substances                     |
| Jeurnal/Book Title   |                                                                                                      |
| Year                 | 1980                                                                                                 |
| Month/Day            | Docember                                                                                             |
| Color                |                                                                                                      |
| Number of Images     | 168                                                                                                  |
| Descripton Notes     | Alvin L. Young filed this item under the catogory<br>"Human Exposure to Phenoxy Herbicides and TCDD" |

ERICKSON, N.D. et.al. 1980.

HUMAN HUMAN Milk Pesticides PB81-231029

Acquisition and Chemical Analysis of Mother's Milk for Selected Toxic Substances

Research Triangle Inst. Research Triangle Park, NC

Prepared for

ħ.

Environmental Protection Agency Washington, DC

Dec 80



U.S. DEPARTMENT OF COMMERCE National Technical Information Service

United States Environmental Protection Agency Office of Pessicides and Toxic Substances Washington, DC 20460 EPA-560/13-80-029 December 1980

PRE1-231029

# **②EPA**

# Acquisition and Chemical Analysis of Mother's Milk for Selected Toxic Substances



| TECHNICAL REP<br>(Please read Instructions on the r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PORT DATA                                                                                                                                                                                                                                                                                                         | ieting)                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. REPORT NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                   | PBS 2                                                                                                                                                                                                                                                                                                                                      | 31029                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| A. TITLE AND SUBTITLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                   | . REPORT DATE                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                        | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ACOUISITION AND CHEMICAL ANALYSIS OF MOTHER'S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MTLK FOR                                                                                                                                                                                                                                                                                                          | December,                                                                                                                                                                                                                                                                                                                                  | 1980                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| SELECTED TOXIC SUBSTANCES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MADE FOR                                                                                                                                                                                                                                                                                                          | . PERFORMING O                                                                                                                                                                                                                                                                                                                             | AGANIZATION C                                                                                                                                                                                                                                          | 2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                   | 310-1521-2                                                                                                                                                                                                                                                                                                                                 | 1 + 22                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| AUTHOR(S)Mitchell D. Erickson, Benjamin S. H.<br>III, Edo D. Pellizzari, Kenneth B. Tomer, Rich<br>Waddell and Donald A. Whitaker                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Harris,<br>ard D.                                                                                                                                                                                                                                                                                                 | L PERFORMING O                                                                                                                                                                                                                                                                                                                             | RGANIZATION                                                                                                                                                                                                                                            | EPORT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| PERFORMING ORGANIZATION NAME AND ADDRESS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                             | 10. PROGRAM ELE                                                                                                                                                                                                                                                                                                                            | MENT NO.                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Research Triangle Institute<br>P. O. Box 12194                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                   | 11. CONTRACT/GR                                                                                                                                                                                                                                                                                                                            | ANT NO.                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Research Triangle Park, NC 27709                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                   | 68-01-3849                                                                                                                                                                                                                                                                                                                                 | _ Taek )                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 12 COMENDING AGENCY NAME AND ADDDECE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                   | 12 TYPE OF BERO                                                                                                                                                                                                                                                                                                                            | - 183A 2                                                                                                                                                                                                                                               | COVER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Field Studies Branch - European - Publication - 54-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | dada_                                                                                                                                                                                                                                                                                                             | Task Final 1                                                                                                                                                                                                                                                                                                                               | /23/78_4/1                                                                                                                                                                                                                                             | 8/20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Office of Pesticides and Toxic Substances, U.<br>Environmental Protection Agency, Washington, 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | S.<br>DC 20460                                                                                                                                                                                                                                                                                                    | 14. SPONSORING A                                                                                                                                                                                                                                                                                                                           | GENCY CODE                                                                                                                                                                                                                                             | 0/ 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| IS. SUPPLEMENTARY NOTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Project Officer: Joseph Breen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| burgh, PA; Baton Rouge, LA; and Charleston, M<br>and semivolatile (extractable) organics using<br>spectrometry/computer. In the volatile fract<br>aldehydes, 20 ketones, 11 alcohols, 2 acids, 3<br>oxygenated compounds, 4 sulfur-containing com-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | V, and analy<br>glass capil<br>ion, 26 halo<br>3 ethers, 1                                                                                                                                                                                                                                                        | , NJ; Jersey<br>zed for vola<br>lary gas chr<br>genated hydr<br>epoxide, 14                                                                                                                                                                                                                                                                | City, NJ;<br>tile (purge<br>comatography<br>cocarbons,<br>furans, 26<br>ining comp                                                                                                                                                                     | Pitt:<br>eables<br>y/mass<br>17<br>other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| burgh, PA; Baton Rouge, LA; and Charleston, M<br>and semivolatile (extractable) organics using<br>spectrometry/computer. In the volatile fract:<br>aldehydes, 20 ketones, 11 alcohols, 2 acids, 3<br>oxygenated compounds, 4 sulfur-containing comp<br>13 alkanes, 12 alkenes, 7 alkynes, 11 cyclic H<br>including major peaks for hexanal, limonene, 6<br>levels of dichlorobenzene appeared to be signi<br>Jersey City and Bayonne than in samples from 6<br>appeared to have significantly higher levels 6<br>Jersey City samples appeared to have significa<br>ever, chloroform was observed in the blanks at<br>to the small sample size and lack of control 6<br>the data cannot be used to extrapolate to the<br>Fewer semivolatile compounds of interest<br>lenes, polybrominated biphenyls, chlorinated p<br>cally sought and not detected (limit of detect                                                                                                                                                                                     | V, and analy<br>glass capil<br>ion, 26 halo<br>3 ethers, 1<br>pounds, 7 ni<br>hydrocarbons<br>dichlorobenz<br>ificantly hi<br>other sites.<br>of tetrachlo<br>antly higher<br>t about 20%<br>over the sol<br>general pop<br>were found.<br>ohenols, and<br>tion about 2                                           | NJ; Jersey<br>zed for vola<br>lary gas chr<br>egenated hydr<br>epoxide, 14<br>trogen-conta<br>, and 15 aro<br>ene, and som<br>gher in the<br>Jersey Cit<br>roethylene.<br>levels of cl<br>of that in the<br>icitation of<br>ulation.<br>Polychlorin<br>other composition<br>0-100 ng/mL and                                                | City, NJ;<br>tile (purge<br>comatography<br>ocarbons, 1<br>furans, 26<br>ining compo-<br>matics were<br>e esters.<br>samples from<br>y samples a<br>Charlestor<br>hloroform;<br>he samples.<br>sample dor<br>nated napht<br>unds were s<br>milk). Pol  | Pitts<br>eables<br>y/mass<br>17<br>other<br>ounds,<br>e foun<br>The<br>om<br>also<br>n and<br>how<br>Due<br>nors,<br>tha-<br>specif                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| burgh, PA; Baton Rouge, LA; and Charleston, M<br>and semivolatile (extractable) organics using<br>spectrometry/computer. In the volatile fract:<br>aldehydes, 20 ketones, 11 alcohols, 2 acids, 3<br>oxygenated compounds, 4 sulfur-containing comp<br>13 alkanes, 12 alkenes, 7 alkynes, 11 cyclic f<br>including major peaks for hexanal, limonene, 6<br>levels of dichlorobenzene appeared to be signi<br>Jersey City and Bayonne than in samples from 6<br>appeared to have significantly higher levels of<br>Jersey City samples appeared to have significa<br>ever, chloroform was observed in the blanks at<br>to the small sample size and lack of control 6<br>the data cannot be used to extrapolate to the<br>Fewer semivolatile compounds of interest<br>lenes, polybrominated biphenyls, chlorinated p<br>cally sought and not detected (limit of detect<br>chlorinated biphenyls (PCBs) and DDE were foun                                                                                                                                  | V, and analy<br>glass capil<br>ion, 26 halo<br>3 ethers, 1<br>pounds, 7 ni<br>hydrocarbons<br>dichlorobenz<br>ificantly hi<br>other sites.<br>of tetrachlo<br>antly higher<br>t about 20%<br>over the sol<br>general pop<br>were found.<br>ohenols, and<br>tion about 2<br>hd.                                    | NJ; Jersey<br>zed for vola<br>lary gas chr<br>genated hydr<br>epoxide, 14<br>trogen-conta<br>, and 15 aro<br>ene, and som<br>gher in the<br>Jersey Cit<br>roethylene.<br>levels of cl<br>of that in the<br>icitation of<br>ulation.<br>Polychlorin<br>other composi-<br>0-100 ng/mL and som                                                | City, NJ;<br>tile (purge<br>comatography<br>ocarbons, f<br>furans, 26<br>ining compo-<br>matics were<br>e esters.<br>samples from<br>y samples a<br>Charlestor<br>hloroform;<br>he samples.<br>sample dor<br>nated napht<br>unds were s<br>milk). Pol  | Pitts<br>eables<br>y/mass<br>17<br>other<br>ounds,<br>e foun<br>The<br>om<br>also<br>n and<br>how-<br>ours,<br>tha-<br>specif                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| burgh, PA; Baton Rouge, LA; and Charleston, M<br>and semivolatile (extractable) organics using<br>spectrometry/computer. In the volatile fract:<br>aldehydes, 20 ketones, 11 alcohols, 2 acids, 3<br>oxygenated compounds, 4 sulfur-containing comp<br>13 alkanes, 12 alkenes, 7 alkynes, 11 cyclic f<br>including major peaks for hexanal, limonene, of<br>levels of dichlorobenzene appeared to be signing<br>Jersey City and Bayonne than in samples from of<br>appeared to have significantly higher levels of<br>Jersey City samples appeared to have significan<br>ever, chloroform was observed in the blanks at<br>to the small sample size and lack of control of<br>the data cannot be used to extrapolate to the<br>Fewer semivolatile compounds of interest<br>lenes, polybrominated biphenyls, chlorinated p<br>cally sought and not detected (limit of detect<br>chlorinated biphenyls (PCBs) and DDE were foun<br><u>KEY WORDS AND DOCU</u>                                                                                               | V, and analy<br>glass capil<br>ion, 26 halo<br>3 ethers, 1<br>pounds, 7 ni<br>hydrocarbons<br>dichlorobenz<br>ificantly hi<br>other sites.<br>of tetrachlo<br>antly higher<br>t about 20%<br>over the sol<br>general pop<br>were found.<br>ohenols, and<br>tion about 2<br>nd.                                    | NJ; Jersey<br>zed for vola<br>lary gas chr<br>genated hydr<br>epoxide, 14<br>trogen-conta<br>, and 15 aro<br>ene, and som<br>gher in the<br>Jersey Cit<br>roethylene.<br>levels of cl<br>of that in t<br>icitation of<br>ulation.<br>Polychlori:<br>other compoi<br>0-100 ng/mL i<br>N ENDED TERMS                                         | city, NJ;<br>tile (purge<br>omatography<br>ocarbons, f<br>furans, 26<br>ining compo<br>matics were<br>e esters.<br>samples fro<br>y samples a<br>Charlestor<br>hloroform;<br>he samples.<br>sample dor<br>nated napht<br>unds were s<br>milk). Pol     | Pitt:<br>eable:<br>y/mas:<br>17<br>othen<br>ounds,<br>e four<br>The<br>om<br>also<br>1 and<br>how-<br>ours,<br>bow-<br>in and<br>how-<br>in and<br>how-<br>in and<br>how-<br>in and<br>how-<br>in and<br>in and<br>in and<br>in and<br>in and<br>in and<br>in and<br>in and<br>in and<br>in a second<br>in a secon |
| burgh, PA; Baton Rouge, LA; and Charleston, M<br>and semivolatile (extractable) organics using<br>spectrometry/computer. In the volatile fract:<br>aldehydes, 20 ketones, 11 alcohols, 2 acids, 3<br>oxygenated compounds, 4 sulfur-containing comp<br>13 alkanes, 12 alkenes, 7 alkynes, 11 cyclic H<br>including major peaks for hexanal, limonene, of<br>levels of dichlorobenzene appeared to be signif<br>Jersey City and Bayonne than in samples from of<br>appeared to have significantly higher levels of<br>Jersey City samples appeared to have significat<br>ever, chloroform was observed in the blanks at<br>to the small sample size and lack of control of<br>the data cannot be used to extrapolate to the<br>Fewer semivolatile compounds of interest<br>lenes, polybrominated biphenyls, chlorinated p<br>cally sought and not detected (limit of detect<br>chlorinated biphenyls (PCBs) and DDE were foun                                                                                                                             | V, and analy<br>glass capil<br>ion, 26 halo<br>3 ethers, 1<br>pounds, 7 ni<br>hydrocarbons<br>dichlorobenz<br>ificantly hi<br>other sites.<br>of tetrachlo<br>antly higher<br>t about 20%<br>over the sol<br>general pop<br>were found.<br>ohenols, and<br>tion about 2<br>hd.                                    | NJ; Jersey<br>zed for vola<br>lary gas chr<br>genated hydr<br>epoxide, 14<br>trogen-conta<br>, and 15 aro<br>ene, and som<br>gher in the<br>Jersey Cit<br>roethylene.<br>levels of cl<br>of that in t<br>icitation of<br>ulation.<br>Polychlori:<br>other composition<br>0-100 ng/mL is<br>NENDED TERMS                                    | c. COSATI Field                                                                                                                                                                                                                                        | Pitt:<br>eable:<br>y/mass<br>17<br>other<br>ounds,<br>e four<br>The<br>om<br>also<br>how-<br>how-<br>how-<br>how-<br>how-<br>how-<br>hors,<br>tha-<br>ipecif                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| burgh, PA; Baton Rouge, LA; and Charleston, M<br>and semivolatile (extractable) organics using<br>spectrometry/computer. In the volatile fract:<br>aldehydes, 20 ketones, 11 alcohols, 2 acids, 3<br>oxygenated compounds, 4 sulfur-containing comp<br>13 alkanes, 12 alkenes, 7 alkynes, 11 cyclic H<br>including major peaks for hexanal, limonene, of<br>levels of dichlorobenzene appeared to be signi<br>Jersey City and Bayonne than in samples from of<br>appeared to have significantly higher levels of<br>Jersey City samples appeared to have significat<br>ever, chloroform was observed in the blanks at<br>to the small sample size and lack of control of<br>the data cannot be used to extrapolate to the<br>Fewer semivolatile compounds of interest<br>lenes, polybrominated biphenyls, chlorinated p<br>cally sought and not detected (limit of detect<br>chlorinated biphenyls (PCBs) and DDE were foun<br><u>NERY WORDS AND DOCU</u><br>DESCRIPTORS                                                                                 | V, and analy<br>glass capil<br>ion, 26 halo<br>3 ethers, 1<br>pounds, 7 ni<br>hydrocarbons<br>dichlorobenz<br>ificantly hi<br>other sites.<br>of tetrachlo<br>antly higher<br>t about 20%<br>over the sol<br>general pop<br>were found.<br>ohenols, and<br>tion about 2<br>nd.                                    | NJ; Jersey<br>zed for vola<br>lary gas chr<br>genated hydr<br>epoxide, 14<br>trogen-conta<br>, and 15 aro<br>ene, and som<br>gher in the<br>Jersey Cit<br>roethylene.<br>levels of ci<br>of that in t<br>icitation of<br>ulation.<br>Polychlori:<br>other compoi<br>0-100 ng/mL i<br>N ENDED TERMS                                         | c. COSATI FR                                                                                                                                                                                                                                           | Pitt:<br>eables<br>y/mass<br>17<br>other<br>ounds,<br>e four<br>The<br>om<br>also<br>also<br>and<br>how<br>Due<br>hors,<br>:ha-<br>specif<br>y-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| burgh, PA; Baton Rouge, LA; and Charleston, M<br>and semivolatile (extractable) organics using<br>spectrometry/computer. In the volatile fract:<br>aldehydes, 20 ketones, 11 alcohols, 2 acids, 3<br>oxygenated compounds, 4 sulfur-containing comp<br>13 alkanes, 12 alkenes, 7 alkynes, 11 cyclic H<br>including major peaks for hexanal, limonene, of<br>levels of dichlorobenzene appeared to be signing<br>Jersey City and Bayonne than in samples from of<br>appeared to have significantly higher levels of<br>Jersey City samples appeared to have significate<br>ever, chloroform was observed in the blanks at<br>to the small sample size and lack of control of<br>the data cannot be used to extrapolate to the<br>Fewer semivolatile compounds of interest<br>lenes, polybrominated biphenyls, chlorinated p<br>cally sought and not detected (limit of detect<br>chlorinated biphenyls (PCBs) and DDE were foun<br><u>DESCRIPTORS</u> b.M<br>Mother's Milk<br>Purge and Trap                                                              | V, and analy<br>glass capil<br>ion, 26 halo<br>3 ethers, 1<br>pounds, 7 ni<br>hydrocarbons<br>dichlorobenz<br>ificantly hi<br>other sites.<br>of tetrachlo<br>antly higher<br>t about 20%<br>over the sol<br>general pop<br>were found.<br>ohenols, and<br>tion about 2<br>nd.                                    | <pre>p, NJ; Jersey<br/>zed for vola<br/>lary gas chr<br/>genated hydr<br/>epoxide, 14<br/>trogen-conta<br/>, and 15 aro<br/>ene, and som<br/>gher in the<br/>Jersey Cit<br/>roethylene.<br/>levels of ci<br/>of that in t<br/>icitation of<br/>ulation.<br/>Polychlori:<br/>other composition<br/>0-100 ng/mL is<br/>NENDED TERMS</pre>    | city, NJ;<br>tile (purge<br>omatography<br>ocarbons, f<br>furans, 26<br>ining compo-<br>matics were<br>e esters.<br>samples from<br>y samples a<br>Charlestor<br>hloroform;<br>he samples a<br>sample dor<br>nated napht<br>unds were s<br>milk). Pol  | Pitt:<br>eable:<br>y/mass<br>17<br>other<br>ounds,<br>e four<br>The<br>om<br>also<br>n and<br>how-<br>. Due<br>nors,<br>:ha-<br>ipecif                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| burgh, PA; Baton Rouge, LA; and Charleston, M<br>and semivolatile (extractable) organics using<br>spectrometry/computer. In the volatile fract:<br>aldehydes, 20 ketones, 11 alcohols, 2 acids, 3<br>oxygenated compounds, 4 sulfur-containing comp<br>13 alkanes, 12 alkenes, 7 alkynes, 11 cyclic H<br>including major peaks for hexanal, limonene, of<br>levels of dichlorobenzene appeared to be signing<br>Jersey City and Bayonne than in samples from of<br>appeared to have significantly higher levels of<br>Jersey City samples appeared to have significate<br>ever, chloroform was observed in the blanks at<br>to the small sample size and lack of control of<br>the data cannot be used to extrapolate to the<br>Fewer semivolatile compounds of interest<br>lenes, polybrominated biphenyls, chlorinated p<br>cally sought and not detected (limit of detect<br>chlorinated biphenyls (PCBs) and DDE were foun<br><u>REY WORDS AND DOCU</u><br>DESCRIPTORS b.M<br>Mother's Milk<br>Purge and Trap<br>3C/MS                               | V, and analy<br>glass capil<br>ion, 26 halo<br>3 ethers, 1<br>pounds, 7 ni<br>hydrocarbons<br>dichlorobenz<br>ificantly hi<br>other sites.<br>of tetrachlo<br>antly higher<br>t about 20%<br>over the sol<br>general pop<br>were found.<br>ohenols, and<br>tion about 2<br>hd.                                    | NJ; Jersey<br>zed for vola<br>lary gas chr<br>genated hydr<br>epoxide, 14<br>trogen-conta<br>, and 15 aro<br>ene, and som<br>gher in the<br>Jersey Cit<br>roethylene.<br>levels of cl<br>of that in the<br>icitation of<br>ulation.<br>Polychlorin<br>other composition<br>0-100 ng/mL in<br>NENDED TERMS                                  | c City, NJ;<br>tile (purge<br>omatography<br>ocarbons, f<br>furans, 26<br>ining compo-<br>matics were<br>e esters.<br>samples from<br>y samples a<br>Charlestor<br>hloroform;<br>he samples.<br>sample dor<br>nated napht<br>unds were s<br>milk). Pol | Pitt:<br>eables<br>y/mass<br>17<br>other<br>ounds,<br>e four<br>The<br>om<br>also<br>n and<br>how-<br>nors,<br>tha-<br>specif<br>y-<br>ud/Group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| burgh, PA; Baton Rouge, LA; and Charleston, M<br>and semivolatile (extractable) organics using<br>spectrometry/computer. In the volatile fract:<br>aldehydes, 20 ketones, 11 alcohols, 2 acids, 3<br>oxygenated compounds, 4 sulfur-containing comp<br>13 alkanes, 12 alkenes, 7 alkynes, 11 cyclic H<br>including major peaks for hexanal, limonene, of<br>levels of dichlorobenzene appeared to be signing<br>Jersey City and Bayonne than in samples from of<br>appeared to have significantly higher levels of<br>Jersey City samples appeared to have significate<br>ever, chloroform was observed in the blanks at<br>to the small sample size and lack of control of<br>the data cannot be used to extrapolate to the<br>Fewer semivolatile compounds of interest<br>lenes, polybrominated biphenyls, chlorinated p<br>cally sought and not detected (limit of detect<br>chlorinated biphenyls (PCBs) and DDE were foun<br><u>DESCRIPTORS</u><br>Mother's Milk<br>Purge and Trap<br>3C/MS<br>Sampling                                             | V, and analy<br>glass capil<br>ion, 26 halo<br>3 ethers, 1<br>pounds, 7 ni<br>hydrocarbons<br>dichlorobenz<br>ificantly hi<br>other sites.<br>of tetrachlo<br>antly higher<br>t about 20%<br>over the sol<br>general pop<br>were found.<br>ohenols, and<br>tion about 2<br>nd.                                    | NJ; Jersey<br>zed for vola<br>lary gas chr<br>egenated hydr<br>epoxide, 14<br>trogen-conta<br>, and 15 aro<br>ene, and som<br>gher in the<br>Jersey Cit<br>roethylene.<br>levels of cl<br>of that in the<br>icitation of<br>ulation.<br>Polychlorin<br>other compose<br>0-100 ng/mL is<br>NENDED TERMS                                     | c. COSATI Field                                                                                                                                                                                                                                        | Pitt:<br>eable:<br>y/mass<br>17<br>other<br>ounds,<br>e four<br>The<br>om<br>also<br>n and<br>how-<br>nors,<br>tha-<br>pecif<br>y-<br>u/Group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| burgh, PA; Baton Rouge, LA; and Charleston, M<br>and semivolatile (extractable) organics using<br>spectrometry/computer. In the volatile fract:<br>aldehydes, 20 ketones, 11 alcohols, 2 acids,<br>oxygenated compounds, 4 sulfur-containing comp<br>13 alkanes, 12 alkenes, 7 alkynes, 11 cyclic H<br>including major peaks for hexanal, limonene, c<br>levels of dichlorobenzene appeared to be signi<br>Jersey City and Bayonne than in samples from c<br>appeared to have significantly higher levels of<br>Jersey City samples appeared to have significa<br>ever, chloroform was observed in the blanks at<br>to the small sample size and lack of control of<br>the data cannot be used to extrapolate to the<br>Fewer semivolatile compounds of interest<br>lenes, polybrominated biphenyls, chlorinated p<br>cally sought and not detected (limit of detect<br>chlorinated biphenyls (PCBs) and DDE were foun<br>7.<br>Nother's Milk<br>Purge and Trap<br>SC/MS<br>Sampling<br>dilk                                                             | V, and analy<br>glass capil<br>ion, 26 halo<br>3 ethers, 1<br>pounds, 7 ni<br>hydrocarbons<br>dichlorobenz<br>ificantly hi<br>other sites.<br>of tetrachlo<br>antly higher<br>t about 20%<br>over the sol<br>general pop<br>were found.<br>ohenols, and<br>tion about 2<br>nd.                                    | NJ; Jersey<br>zed for vola<br>lary gas chr<br>ogenated hydr<br>epoxide, 14<br>trogen-conta<br>, and 15 aro<br>ene, and som<br>gher in the<br>Jersey Cit<br>roethylene.<br>levels of cl<br>of that in t<br>icitation of<br>ulation.<br>Polychlori:<br>other composition<br>0-100 ng/mL in<br>N ENDEO TERMS                                  | c City, NJ;<br>tile (purge<br>omatography<br>ocarbons, f<br>furans, 26<br>ining compo-<br>matics were<br>e esters.<br>samples fro<br>y samples a<br>Charlestor<br>hloroform;<br>he samples.<br>sample dor<br>nated napht<br>unds were s<br>milk). Pol  | Pitt:<br>eable:<br>y/mass<br>17<br>other<br>ounds;<br>e four<br>The<br>om<br>also<br>n and<br>how-<br>iors,<br>tha-<br>pecif<br>y-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| burgh, PA; Baton Rouge, LA; and Charleston, M<br>and semivolatile (extractable) organics using<br>spectrometry/computer. In the volatile fract:<br>aldehydes, 20 ketones, 11 alcohols, 2 acids,<br>oxygenated compounds, 4 sulfur-containing com<br>13 alkanes, 12 alkenes, 7 alkynes, 11 cyclic f<br>including major peaks for hexanal, limonene, o<br>levels of dichlorobenzene appeared to be signi-<br>Jersey City and Bayonne than in samples from o<br>appeared to have significantly higher levels of<br>Jersey City samples appeared to have significa-<br>ever, chloroform was observed in the blanks at<br>to the small sample size and lack of control of<br>the data cannot be used to extrapolate to the<br>Fewer semivolatile compounds of interest<br>lenes, polybrominated biphenyls, chlorinated p<br>cally sought and not detected (limit of detect<br>chlorinated biphenyls (PCBs) and DDE were foun<br>7.<br>Nother's Milk<br>Purge and Trap<br>3C/MS<br>Sampling<br>4ilk<br>Chlorinated Organics                                    | V, and analy<br>glass capil<br>ion, 26 halo<br>3 ethers, 1<br>pounds, 7 ni<br>hydrocarbons<br>dichlorobenz<br>ificantly hi<br>other sites.<br>of tetrachlo<br>antly higher<br>t about 20%<br>over the sol<br>general pop<br>were found.<br>ohenols, and<br>tion about 2<br>nd.                                    | NJ; Jersey<br>zed for vola<br>lary gas chr<br>genated hydr<br>epoxide, 14<br>trogen-conta<br>, and 15 aro<br>ene, and som<br>gher in the<br>Jersey Cit<br>roethylene.<br>levels of cl<br>of that in t<br>icitation of<br>ulation.<br>Polychlori:<br>other composition<br>0-100 ng/mL is<br>N ENDED TERMS                                   | c City, NJ;<br>tile (purge<br>comatography<br>cocarbons, f<br>furans, 26<br>ining compo<br>matics were<br>e esters.<br>samples fro<br>y samples a<br>Charlestor<br>hloroform;<br>he samples.<br>sample dor<br>nated napht<br>unds were s<br>milk). Pol | Pitt:<br>eable:<br>y/mass<br>17<br>other<br>ounds,<br>e four<br>The<br>om<br>also<br>n and<br>how-<br>. Due<br>iors,<br>tha-<br>specif                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| burgh, PA; Baton Rouge, LA; and Charleston, M<br>and semivolatile (extractable) organics using<br>spectrometry/computer. In the volatile fract:<br>aldehydes, 20 ketones, 11 alcohols, 2 acids,<br>oxygenated compounds, 4 sulfur-containing com<br>13 alkanes, 12 alkenes, 7 alkynes, 11 cyclic f<br>including major peaks for hexanal, limonene, o<br>levels of dichlorobenzene appeared to be signi<br>Jersey City and Bayonne than in samples from o<br>appeared to have significantly higher levels of<br>Jersey City samples appeared to have significa<br>ever, chloroform was observed in the blanks at<br>to the small sample size and lack of control o<br>the data cannot be used to extrapolate to the<br>Fewer semivolatile compounds of interest<br>lenes, polybrominated biphenyls, chlorinated p<br>cally sought and not detected (limit of detect<br>chlorinated biphenyls (PCBs) and DDE were foun<br>7. KEY WORDS AND DOCU<br>DESCRIPTORS b.M<br>Wother's Milk<br>Purge and Trap<br>3C/MS<br>Sampling<br>4ilk<br>Thlorinated Organics | V, and analy<br>glass capil<br>ion, 26 halo<br>3 ethers, 1<br>pounds, 7 ni<br>hydrocarbons<br>dichlorobenz<br>ificantly hi<br>other sites.<br>of tetrachlo<br>antly higher<br>t about 20%<br>over the sol<br>general pop<br>were found.<br>ohenols, and<br>tion about 2<br>hd.                                    | NJ; Jersey<br>zed for vola<br>lary gas chr<br>genated hydr<br>epoxide, 14<br>trogen-conta<br>, and 15 aro<br>ene, and som<br>gher in the<br>Jersey Cit<br>roethylene.<br>levels of cl<br>of that in t<br>icitation of<br>ulation.<br>Polychlori:<br>other composition<br>0-100 ng/mL is<br>N ENDED TERMS                                   | city, NJ;<br>tile (purge<br>comatography<br>cocarbons, f<br>furans, 26<br>ining compo<br>matics were<br>e esters.<br>samples fro<br>y samples a<br>Charlestor<br>hloroform;<br>he samples.<br>sample dor<br>nated napht<br>unds were s<br>milk). Pol   | Pitt:<br>eable:<br>y/mas:<br>17<br>other<br>ounds,<br>e four<br>The<br>om<br>also<br>how-<br>bors,<br>tha-<br>ipecif                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| burgh, PA; Baton Rouge, LA; and Charleston, M<br>and semivolatile (extractable) organics using<br>spectrometry/computer. In the volatile fract:<br>aldehydes, 20 ketones, 11 alcohols, 2 acids, 3<br>oxygenated compounds, 4 sulfur-containing com<br>13 alkanes, 12 alkenes, 7 alkynes, 11 cyclic H<br>including major peaks for hexanal, limonee, o<br>levels of dichlorobenzene appeared to be signi<br>Jersey City and Bayonne than in samples from o<br>appeared to have significantly higher levels of<br>Jersey City samples appeared to have significa<br>ever, chloroform was observed in the blanks at<br>to the small sample size and lack of control o<br>the data cannot be used to extrapolate to the<br>Fewer semivolatile compounds of interest<br>lenes, polybrominated biphenyls, chlorinated p<br>cally sought and not detected (limit of detect<br>chlorinated biphenyls (PCBs) and DDE were foun<br>7.<br>Nother's Milk<br>Purge and Trap<br>5C/MS<br>Sampling<br>4ilk<br>Thlorinated Organics                                      | V, and analy<br>glass capil<br>ion, 26 halo<br>3 ethers, 1<br>pounds, 7 ni<br>hydrocarbons<br>dichlorobenz<br>ificantly hi<br>other sites.<br>of tetrachlo<br>antly higher<br>t about 20%<br>over the sol<br>general pop<br>were found.<br>ohenols, and<br>tion about 2<br>nd.<br>MENT ANALYSIS<br>OENTIFIERS/OPE | <pre>p, NJ; Jersey<br/>zed for vola<br/>lary gas chr<br/>genated hydr<br/>epoxide, 14<br/>trogen-conta<br/>, and 15 aro<br/>ene, and som<br/>gher in the<br/>Jersey Cit<br/>roethylene.<br/>levels of ci<br/>of that in the<br/>icitation of<br/>ulation.<br/>Polychlori:<br/>other composition<br/>0-100 ng/mL is<br/>N ENDED TERMS</pre> | City, NJ;<br>tile (purge<br>omatography<br>ocarbons, f<br>furans, 26<br>ining compo-<br>matics were<br>e esters.<br>samples fro<br>y samples a<br>Charlestor<br>hloroform;<br>he samples.<br>sample dor<br>nated napht<br>unds were s<br>milk). Pol    | Pitt:<br>eable:<br>y/mas:<br>17<br>other<br>ounds<br>e four<br>The<br>om<br>also<br>a and<br>how-<br>. Due<br>hors,<br>tha-<br>ipecif                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

EPA Form 2220-1 (Rev. 4-77) PREVIOUS EDITION IS OBSOLETE

٠

-

EPA 560/13-80-029

"Ľ.,

# ACQUISITION AND CHEMICAL ANALYSIS OF MOTHER'S MILK FOR SELECTED TOXIC SUBSTANCES

by

Mitchell D. Erickson, Benjamin S. H. Harris, III, Edo D. Pellizzari, Kenneth B. Tomer, Richard D. Waddell and Donald A. Whitaker

> Contract No. 68-01-3849 Task 2

Project Officer: Joseph Breen

Field Studies Branch Exposure Evaluation Division Office of Pesticides and Toxic Substances U. S. Environmental Protection Agency Washington, DC 20460

December 1980

i-a

#### DICLAIMER

This document has been reviewed and approved for publication by the Office of Pesticides and Toxic Substances, U.S. Environmental Protection Agency. Approval does not signify that the contents necessarily reflect the views and policies of the Environmental Protection Agency, nor does the mention of trade names or commercial products constitute endorsement or recommendation for use.

#### ABSTRACT

Samples of mother's milk were collected from Bayonne, NJ; Jersey City, NJ; Pittsburgh, PA; Baton Rouge, LA; and Charleston, WV, and analyzed for volatile (purgeables) and semivolatile (extractable) organics using glass capillary gas chromatography/mass spectrometry/computer. In the volatile fraction, 26 halogenated hydrocarbons, 17 aldehydes, 20 ketones, 11 alcohols, 2 acids, 3 ethers, 1 epoxide, 14 furans, 26 other oxygenated compounds, 4 sulfur-containing compounds, 7 nitrogen-containing compounds, 13 alkanes, 12 alkenes, 7 alkynes, 11 cyclic hydrocarbons, and 15 aromatics were found, including major peaks for hexanal, limonene, dichlorobenzene, and some esters. The levels of dichlorobenzene appeared to be significantly higher in the samples from Jersey City and Bayonne than in samples from other sites. Jersey City samples also appeared to have significantly higher levels of tetrachloroethylene. Charleston and Jersey City samples appeared to have significantly higher levels of chloroform; however, chloroform was observed in the blanks at about 20% of that in the samples. Due to the small sample size and lack of control over the solicitation of sample donors, the data cannot be used to extrapolate to the general population.

Fewer semivolatile compounds of interest were found. Polychlorinated naphthalenes, polybrominated biphenyls, chlorinated phenols, and other compounds were specifically sought and not detected (limit of detection about 20-100 ng/mL milk). Polychlorinated biphenyls (PCBs) and DDE were found.

iii

## CONTENTS

| Abstract.  | · · · · · · · · · · · · · · · · · · ·                     |
|------------|-----------------------------------------------------------|
| Figures .  | ••••••••••••••••••••••••••••••••••••••                    |
| Tables     | · · · · · · · · · · · · · · · · · · ·                     |
| List of Al | bbreviations and Symbols                                  |
| Acknowledg | gmentsx                                                   |
| 1.         | Introduction                                              |
| 2.         | Summary and Conclusions                                   |
| 3.         | Recommendations                                           |
| 4.         | Selection of Sampling Sites                               |
| 5.         | Sample Collection                                         |
| 6.         | Sample Analysis Methods                                   |
| 7.         | Results                                                   |
| References | \$                                                        |
| Appendices | 3                                                         |
| A.         | Data Collection Instruments                               |
| В.         | Sampling and Analysis of Volatile Organics in Milk 104    |
| c.         | Analysis of Semivolatile Organics Compounds in Milk 112   |
| D.         | Volatile Compounds Identified in Selected Purges of       |
|            | Mother's Milk                                             |
| Ε.         | Semivolatile Compounds Identified in Selected Extracts of |
|            | Mother's Milk                                             |

Preceding page blank

-

1

-

## FIGURES

٠

ч.

٠

•

| Number                                                                  | Page |
|-------------------------------------------------------------------------|------|
| B-1 Diagram of headspace purge and trap system                          | 107  |
| D-l Total ion current chromatogram from GC/MS analysis for volatiles    |      |
| in sample no. 1081 (Bayonne, NJ)                                        | 122  |
| D-2 Total ion current chromatogram from GC/MS analysis for volatiles    |      |
| in sample no. 1040 (Bayonne, NJ)                                        | 125  |
| D-3 Total ion current chromatogram from GC/MS analysis for volatiles    |      |
| in sample no. 1107 (Jersey City, NJ)                                    | 129  |
| D-4 Total ion current chromatogram from GC/MS analysis for volatiles    |      |
| in sample no. 1115 (Jersey City, NJ)                                    | 132  |
| D-5 Total ion current chromatogram from GC/MS analysis for volatiles    |      |
| in sample no. 2048 (Pittsburgh, PA)                                     | 135  |
| D-6 Total ion current chromatogram from GC/MS analysis for volatiles    |      |
| in sample no. 2071 (Pittsburgh, PA)                                     | 138  |
| D-7 Total ion current chromatogram from GC/MS analysis for volatiles    |      |
| in sample no. 3053 (Baton Rouge, LA)                                    | 141  |
| D-8 Total ion current chromatogram from GC/MS analysis for volatiles    |      |
| in sample no. 3111 (Baton Rouge, LA)                                    | 143  |
| E-1 Total ion current chromatogram from GC/MS analysis for semivolatile | \$   |
| in sample 1032 (Bayonne, NJ)                                            | 146  |
| E-2 Total ion current chromatogram from GC/MS analysis for semivolatile | s    |
| in sample 2121 (Pittsburgh, PA)                                         | 148  |
| E-3 Total ion current chromatogram from GC/MS analysis for semivolatile | S    |
| in sample 3095 (Baton Rouge, LA)                                        | 150  |
| E-4 Total ion current chromatogram from GC/MS analysis for semivolatile | S    |
| in sample 4093 (Charleston, WV)                                         | 152  |

.

•

## TABLES

•

٠

a.

•

...

|      | TABLES                                                             |      |
|------|--------------------------------------------------------------------|------|
| Numl | ber                                                                | Page |
| 1    | Comparison Between Human and Cow's Milk                            | 2    |
| 2    | Levels of Organic Compounds Found in Human Milk in the United      |      |
|      | States                                                             | 5    |
| 3    | Ranking of Pesticides and PCBs by Reported Concentrations in       |      |
|      | Human Milk                                                         | 9    |
| 4    | Levels of Organic Compounds Found in Human Milk Outside the        |      |
|      | United States                                                      | 10   |
| 5    | Summary of PCN Concentrations Found Near Manufacturing and Use     |      |
|      | Sites                                                              | 19   |
| 6    | Prevalent Halogenated Compounds in Ambient Air and Water of        |      |
|      | Rahway/Woodbridge, Boundbrook and Passaic, NJ                      | 22   |
| 7    | Estimated Daily Intake of Selected Volatile Compounds and Expected |      |
|      | Concentrations in Blood in Northern New Jersey                     | 23   |
| 8    | Total Daily Intake of Target Compounds, Pesticides, PCBs, BaP and  |      |
|      | Metals and Concentrations in Blood in Northern New Jersey          | 24   |
| 9    | Potential Emissions from Chemical Industry in Baton Rouge, LA      | 27   |
| 10   | Prevalent Halogenated Compounds Occurring in Ambient Air and Water |      |
|      | of Baton Rouge, Geismar and Plaquemine, LA                         | 29   |
| 11   | Potential Emissions from Chemical Industry in Plaquemine, Geismar, |      |
|      | and St. Gabriel, LA                                                | 30   |
| 12   | Method Validation Recovery of Selected Volatile Standards          |      |
|      | from Milk                                                          | 38   |
| 13   | Method Validation Recovery of Semivolatile Compounds Spiked into   |      |
|      | Raw Cow's Milk                                                     | 39   |
| 14   | Operating Conditions for GC/MS Analysis of Purgeables              | 42   |
| 15   | Operating Conditions for the GC/MS Analysis of Semivolatiles       | 43   |
| 16   | Summary of Qualitative Identifications of Volatile Compounds       |      |
|      | in Mother's Milk                                                   | 46   |

.....

## TABLES CONT'D.

٠

•

-

| Numb        | ber                                                                                                         | Page |
|-------------|-------------------------------------------------------------------------------------------------------------|------|
| 17          | Volatiles Quantitated in Mother's Milk Samples (ng/mL)                                                      | 52   |
| 18          | Summary Statistics for Volatile Compounds by Site                                                           | 55   |
| 19          | Significance of the Differences in the Geometric Means by Site                                              | 56   |
| 20          | Spearman Correlation Coefficients for Volatile Organics Found                                               |      |
|             | in Mother's Milk                                                                                            | 57   |
| 21          | Quality Control Results for Volatiles in Milk                                                               | 58   |
| 22          | DDE and Tetrachlorobiphenyl Levels in Selected Mother's Milk                                                |      |
|             | Samples                                                                                                     | 60   |
| B-1         | Instrumental Operating Conditions                                                                           | 108  |
| D-1         | Volatile Compounds Identified in Purge of Sample No. 1081                                                   |      |
|             | (Bayonne, NJ)                                                                                               | 120  |
| D-2         | Volatile Compounds Identified in Purge of Sample No. 1040                                                   |      |
|             | (Bayonne, NJ)                                                                                               | 123  |
| D-3         | Volatile Compounds Identified in Purge of Sample No. 1107                                                   |      |
|             | (Jersey City, NJ)                                                                                           | 126  |
| D-4         | Volatile Compounds Identified in Purge of Sample No. 1115                                                   |      |
|             | (Jersey City, NJ)                                                                                           | 130  |
| D-5         | Volatile Compounds Identified in Purge of Sample No. 2048                                                   |      |
|             | (Pittsburgh, PA)                                                                                            | 133  |
| D-6         | Volatile Compounds Identified in Purge of Sample No. 2071                                                   |      |
|             | (Pittsburgh, PA). $\ldots$ | 136  |
| <b>D-</b> 7 | Volatile Compounds Identified in Purge of Sample No. 3053                                                   |      |
|             | (Baton Rouge, LA)                                                                                           | 139  |
| D-8         | Volatile Compounds Identified in Purge of Sample No. 3))]                                                   |      |
|             | (Baton Rouge, LA)                                                                                           | 142  |
| E-1         | Semivolatile Compounds Identified in Extract of Sample 1032                                                 |      |
|             | (Bayonne, NJ)                                                                                               | 145  |
| E-2         | Semivolatile Compounds Identified in Extract of Sample 3095                                                 |      |
|             | (Baton Rouge, LA)                                                                                           | 147  |
| E-3         | Semivolatile Compounds Identified in Extract of Sample 3095                                                 |      |
|             | (Baton Rouge, LA)                                                                                           | 149  |
| E-4         | Semivolatile Compounds Identified in Extract of Sample 4093                                                 |      |
|             | (Charleston, WV)                                                                                            | 151  |

## LIST OF ABBREVIATIONS AND SYMBOLS

.

## ABBREVIATIONS

•

•

.

| DDT    | 1,1-Bis(p-chlorophenyl)-2,2-trichloroethane        |
|--------|----------------------------------------------------|
| dpm    | Disintegrations per minute                         |
| ECD    | Electon capture detection                          |
| GC     | Gas chromatography                                 |
| MS     | Mass spectrometry (electron impact ionization)     |
| NICIMS | Negative ion chemical ionization mass spectrometry |
| ONB    | Office of Management and Budget                    |
| PBBs   | Polybrominated biphenyls                           |
| PCBs   | Polychlorinated biphenyls                          |
| PCF    | Participant Consent Form                           |
| PCN    | Polychlorinated Naphthalene                        |
| PLF    | Participant Listing Form                           |
| SQ     | Study Questionnaire                                |

~....

#### ACKNOWLEDGMENTS

The authors thank the Project Officer, Dr. Joseph Breen, for his guidance and advice. Sandra P. Parks, David L. Newton, and Larry C. Michael are acknowledged for their assistance in the laboratory. Nora P. Castillo and Kent W. Thomas are thanked for their assistance with mass spectral interpretation. Pamela A. Gentry, Fred A. McKinney, Stephen P. Burke, and Barbara L. Bickford are thanked for sample analysis using mass spectrometry.

Personnel who assisted in the milk collection are greatly appreciated: Elizabeth Bartholomew, Bayonne Hospital, Bayonne, NJ; Jules Rivkind and Trudy Strunk, Medical Center Hospital, Jersey City, NJ; Ian Holtzman, Magee-Women's Hospital, Pittsburgh, PA; Lewis Trachtman, Louisiana Health Department, New Orleans, LA; Maxine Parker, Baton Rouge Area Regional Nursing Consultant, Baton Rouge, LA; Clementine Martine, Public Health Nursing Supervisor of the East Baton Rouge Parish Health Unit, Baton Rouge, LA; and N. N. Sehgal, Charleston Area Medical Center (Memorial Division), Charleston, WV.

Finally we would like to thank the 42 women who so kindly donated the samples.

## SECTION 1 INTRODUCTION

#### BACKGROUND

It is becoming increasingly important to correlate ambient environmental pollutant levels with human body burden. Establishment of this correlation ("exposure assessment") may provide a link between pollution and health effects. This correlation is of interest for both scientific research and regulatory risk assessment.

Measurement of pollutant body burden levels generally requires invasive techniques (exceptions are breath and urine sampling) which are undesirable from the subjects' viewpoint. Some invasive techniques are generally regarded as acceptable (e.g., blood samples), while others are generally considered unacceptable from living donors (e.g. adipose tissue, internal organs, etc.). Mother's milk is an attractive medium for several reasons: (1) sample collection is reasonably straightforward; (2) milk contains a high amount of fat (about 3.5 percent, as shown in see Table 1), so fat-soluble pollutants such as DDT and polychlorinated biphenyls (PCBs) are likely to be found in higher concentrations in milk than in blood or urine; (3) large (50-100 mL) volumes are easily collected for analysis, increasing analytical reliability and detection limit; and (4) the population of nursing mothers is large relative to pathology samples such as adipose tissue. In addition, an assessment of pollutant concentrations in mother's milk may be used to predict the pollutant intake by the nursing infant.

The major disadvantages of mother's milk as a human-sampling medium relate to the sampling demography: only young-to-middle-aged females are nursing. Thus, any use of mother's milk in a probability-based sampling framework extrapolated to the general population would be fraught with difficulties, such as locating donors.

| Parameter                            | Human Milk                                                                    | Cow's Milk                                                                                          |  |  |  |
|--------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--|--|--|
| Water and solid<br>content           | Same in both; 87 to 87.5 percent                                              | is water                                                                                            |  |  |  |
| Calories                             | Same in both; 20 calories per ou                                              | nce                                                                                                 |  |  |  |
| Protein                              | 1 to 1.5 percent; 60 percent of this<br>is lactalbumin and 40 percent casein  | 3.5 percent; 15 percent of<br>this is lactalbumin and<br>85 percent casein                          |  |  |  |
| Carbohydrate (in<br>form of lactose) | 6.5 to 7.5 percent                                                            | 4.5 to 5.0 percent                                                                                  |  |  |  |
| Fat(s)                               | Variable, but both have approximately 3.5 percent.<br>(Differs qualitatively) |                                                                                                     |  |  |  |
|                                      | Contains more olein, which is is readily adsorbed                             | Contains more volatile fatty<br>acids, which are irritat-<br>ing to the gastric mucosa              |  |  |  |
|                                      | Digestion of fat easy                                                         | Digestion of fat sometimes<br>difficult                                                             |  |  |  |
| <b>Minerals</b>                      | 0.15 to 0.25 percent                                                          | 0.7 to 0.75 percent. Con-<br>tains more of all minerals<br>with the exception of iron<br>and copper |  |  |  |
|                                      | Iron content is low in both milks, approximately:                             |                                                                                                     |  |  |  |
|                                      | 1.5 mg/1                                                                      | 0.5 mg/1                                                                                            |  |  |  |
| Vitamins                             | Varies with maternal intake                                                   |                                                                                                     |  |  |  |

•

N

1

•

Table 1. COMPARISON BETWEEN IRMAN AND COW'S MILK<sup>(1)</sup>

(continued)

.

•

Table 1 (cont'd.)

з.

•

.

.

| Parameter  | Human Milk                                                                                                                                                        | Cow's Milk                                                                       |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| Vitamin A  | Relative large amounts in bot                                                                                                                                     | h milks                                                                          |
| Vitamin B  | Probably adequate in both mil                                                                                                                                     | ks                                                                               |
| Vitamin C  | More is found in human milk                                                                                                                                       |                                                                                  |
| Thiamine   | Higher content in cow's milk                                                                                                                                      |                                                                                  |
| Riboflavin | Higher content in cow's milk                                                                                                                                      |                                                                                  |
| Vitamin D  | Relatively small amount in bo                                                                                                                                     | oth wilks                                                                        |
| Vitamin E  | Satisfactory level in breath                                                                                                                                      | milk                                                                             |
| Digestion  | Cow's milk has a higher buffe<br>can therefore adsorb much mor<br>than breast milk before it re<br>acidity necessary for digesti<br>amount of casein on cow's mil | er content and<br>re gastric acid<br>aches the<br>on. The large<br>k make large. |
|            | tough curds in the stomach as<br>the fine, easily broken down<br>milk                                                                                             | compared with<br>curds of breast                                                 |

ω

ъ

.

÷

٠

.

The purpose of this study was to measure levels of environmental pollutants in human milk by gas chromatography/mass spectrometry (GC/MS) and to evaluate the utility of using this body fluid in specific pollutant studies for populations in the vicinity of chemical manufacturing plants and/or industrial user facilities. All routes of exposure, <u>i.e.</u>, air, water, particulate, clothing and food were of interest. Mother's milk samples were acquired and analyzed for selected industrial chemicals. The chemicals of interest included: polychlorinated naphthalenes (PCNs), tetrachloroethylene, trichloroethane, dichloropropanes, benzene, polybrominated biphenyls (PBBs), chlorinated phenols, toluene, chlorinated benzenes, and chloroform.

Where possible, any other chemicals found in the extracts were identified and quantitated. The levels of selected organic compounds in mother's milk were investigated to assess the possibility of using this medium as an indicator of body burden for a wide range of organic compounds. For this feasibility study, no attempts were made to develop a statistically valid sample; sites were selected as having a high probability of pollutant detection and subjects were selected on a volunteer basis.

#### LITERATURE REVIEW

A review of the literature concerning pollutants in mother's milk was conducted. A computer search of MEDLARS II and ORBIT--III yielded 108 citations. These citations, plus personal contacts and manual searches yielded the data discussed below.

By far, most of the literature on environmental pollutants in mother's milk deals with chlorinated insecticides (<u>e.g.</u> DDT). PCBs have also been studied. Only a few references discuss the presence of other compounds in milk.

Table 2 lists the levels of pollutants found in mother's milk in the United States. Table 3 summarizes these findings. Table 4 summarizes pollutants found in mother's milk outside the United States. With the exception of one reference (27) regarding 1,2-dichloroethane exposure, all of the compounds found in mother's milk are semivolatile (extractable) halogenated compounds.

| Compound               | Sample<br>Matrix | Mean<br>(ppb) | Range<br>(ppb) | Number of<br>Determinations | Locations    | References |
|------------------------|------------------|---------------|----------------|-----------------------------|--------------|------------|
| β−BHC                  | Milk             | 0.5           | T-10           | 57                          | AR, MS       | 2          |
|                        | Milk             |               | T-28           | 40                          | CO           | 3          |
| ү-внс                  | Milk Fat         | 83            | 30-270         | 53                          | РА           | 4          |
| Total BHC              | Milk             | 6.5           | <0.1-20,2      | 14†                         | US           | 5          |
|                        | Milk             | 7.7           | n.d37.0        | 28                          | ТХ           | 6          |
|                        | Milk             | 6.2           | 3.6-9.0        | 7                           | Houston, TX  | 6          |
| p,p'-DDD               | Milk             | 4.7           | <0.1-14        | 14†                         | US           | 5          |
| <b>*</b> -* <b>*</b> • | Milk Fat         | 10.8          | n.d30          | 53                          | PA           | 4          |
|                        | Milk             |               | T-5            | 40                          | <b>CO</b>    | 3          |
| o,p'-DDE               | Milk             | 1.0           | <0.1-2.8       | 14†                         | US           | 5          |
| p,p'-DDE               | Milk             | 227           | 10-1720        | 57                          | AS, MS       | 2          |
|                        | Milk             | 29            | 5.2-981        | 14†                         | US           | 5          |
|                        | Milk             | 84.1          | 13.4-236       | 28                          | TX           | 5          |
|                        | Milk             | 92.4          | 16.7-138       | 7                           | Houston, TX  | 6          |
|                        | Milk Fat         | 1766          | 790-4350       | 53                          | PA           | 4          |
|                        | Milk             |               | 79-386         | 40                          | CO           | 3          |
| DDE                    | Milk             | 194           | 74-314         | 30*                         | AZ           | 7          |
|                        | Milk             | 60            | 20-90          | 4                           | Chicago, IL  | 8          |
|                        | Milk             | 30            | <10-140        | 5                           | Wenatche, WA | 8          |
|                        | Milk             | 30            | _**            | . 1**                       | Phoenix, AZ  | 8          |
|                        | Mi 1k            | 100           | 70-120         |                             | US           | 8          |

#### Table 2. LEVELS OF ORGANIC COMPOUNDS FOUND IN HUMAN MILK IN THE UNITED STATES

.

(continued)

•

т

÷.

| Compound         | Sample<br>Matrix | Mean<br>(ppb) | Range<br>(ppb) | Number of<br>Determinations | Locations       | References |
|------------------|------------------|---------------|----------------|-----------------------------|-----------------|------------|
| o,p'-DDT         | Milk             | 92            | 10-840         | 57                          | AR, MS          | 2          |
| <b></b>          | Milk             | 25            | <0.1-10.8      | 14†                         | บร์             | 5          |
|                  | Mi lk            | 10            | 5-36           | 30*                         | AZ              | 7          |
|                  | Milk             |               | T-13           | 40                          | CO              | 3          |
| p,p'-DDT         | Milk             | 29            | 7,8-89         | ]4†                         | US              | 5          |
|                  | Mi1k             | 114           | 9-383          | 30*                         | AZ              | 7          |
|                  | Milk Fat         | 513           | 90-2120        | 53                          | РА              | 4          |
|                  | Milk             |               | 7-109          | 40                          | CO              | 3          |
| DDT (unspeci-    | Milk             | 100           | 80-130         | 4                           | Chicago, IL     | 8          |
| fied)            | Milk             | 60            | <10-220        | 5                           | Wenatche, WA    | 8          |
| -                | Milk             | 60            | _**            | 1                           | Phoenix, AZ     | 8          |
|                  | Milk             | 70            | 50-90          | **                          | US              | 8          |
|                  | Mi1k             |               | 10-110         | 40                          | CO              | 3          |
|                  | Mi1k             | 130           | n.d770         | 32                          | DC              | 9          |
| Total DDT Equiv. | Mi1k             | 334           | 20-2760        | 57                          | AR, MS          | 2          |
| •                | Milk             | 70.5          | 40.4-156       | 14                          | US              |            |
|                  | Milk             | 100           | SD=100         | 14                          | Long Island, NY | 10         |
|                  | Milk             | 170           | SD=130         | 20                          | Rochester, NY   | 10         |
|                  | Milk             | 180           | SD=100         | 19                          | Chicago, IL     | 10         |
|                  | Milk             | 220           | SD=170         | 27                          | Lexington, KY   | 10         |
|                  | Mi 1k            | 170           | SD=150         | 34                          | Nashville, TN   | 10         |
|                  | Mi 1k            | 150           | SD=80          | 6                           | Memphis, TN     | 10         |
|                  | Milk             | 180           | SD=120         | 18                          | Los Angeles, CA | 11         |
|                  | Milk             | 447           | 59-1899        | 38                          | MS, AK          | 11         |
|                  | Milk             | 75            | 15-133         | 14                          | Nashville, TN   | 11         |
|                  | Milk             | 323           | 185~721        | 7                           | MS, AK          | 11         |
|                  | Milk             | 130           | n.d770         | 32                          | Washington, DC  | 9          |

Table 2 (cont'd.)

(continued)

.

۰

۲

I.

| Compound                                                    | Sample<br>Matrix                                                 | Mean<br>(ppb)                                                 | Range<br>(ppb)                                                              | Number of<br>Determinations                                  | Locations      | References |
|-------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------|----------------|------------|
| Dieldrin                                                    | Milk                                                             | 0.4                                                           | T-50                                                                        | 57                                                           | AR, MS         | 2          |
|                                                             | Milk                                                             | 6.2                                                           | 2.9-14.6                                                                    | 14†                                                          | บร้            | 5          |
|                                                             | Milk                                                             | 3.3                                                           | n.d21                                                                       | 28                                                           | ТХ             | 5          |
|                                                             | Milk                                                             | 7.5                                                           | 1.9-21                                                                      | 7                                                            | Houston, TX    | 5          |
|                                                             | Milk                                                             |                                                               | T-11                                                                        | 40                                                           | CO             | 3          |
| Heptachlor                                                  | Mi1k                                                             | 4                                                             | T-30                                                                        | 57                                                           | AR, MS         | 2          |
| Époxide                                                     | Milk                                                             | 1.7                                                           | <0.1-4.4                                                                    | 14†                                                          | US             | 5          |
| -                                                           | Milk Fat                                                         | 160                                                           | 40-460                                                                      | 53                                                           | PA             | 4          |
|                                                             | Mi 1k                                                            |                                                               | T-5                                                                         | 40                                                           | CO             | 3          |
| t-Nonachlor                                                 | Milk                                                             | 1                                                             | T-10                                                                        | 57                                                           | AR, MS         | 2          |
| Oxychlordane                                                | Milk                                                             | 5                                                             | T-20                                                                        | 57                                                           | AR, MS         | 2          |
| PCBs                                                        | Mi 1k                                                            | Ť                                                             | т                                                                           | 57                                                           | AR, MS         | 2          |
|                                                             | Milk                                                             | ∿10                                                           | <40-100                                                                     | 39                                                           | co             | 12         |
|                                                             | Milk                                                             |                                                               | 40-100                                                                      | 40                                                           | co             | 3          |
| Nicotine                                                    | Breast<br>Fluid                                                  |                                                               | n.d195                                                                      | 6                                                            | CA             | 13         |
| NOTES: BHC = be<br>DDD = 2<br>DDE = 1<br>DDT = 1<br>Total D | enzenehexachl<br>,2-bis(chloro<br>,1-dichloro-2<br>,1,1-trichlor | oride (he<br>pheny1)-1<br>,2-bis(ch<br>o-2,2-bis<br>um of all | xachlorocycl<br>,l-dichloroe<br>lorophenyl)e<br>(chloropheny<br>DDT-related | ohexane)<br>thane<br>thylene<br>l)ethane<br>peaks calculated | as if all ware |            |

Table 2 (cont'd.)

PCBs = polychlorinated biphenyls. Quantitation generally based on comparison to an Aroclor mixture

T = trace

¢

n.d. = not detected

SD = standard deviation

t = 5 women. Separate determinations make total of 14 samples.

\* = 6 women. Separate samples makes total of 30 samples.

```
** = unspecified pool of donors in Denver and other US areas, no range given.
Missing values indicate no data in original article
```

۰.

## Table 2 (cont'd.)

NOTES (cont'd.): Mean values were taken from original citation where available; otherwise arithmetic mean was calculated, counting "ND" values as zero and "T" values as 0.5 times the lowest reported value.

•

.

٠

.

2

ł –

.

| Cospound           | Weighted Mean<br>Concentration (ppb) <sup>b</sup> | Number of<br>Samples |
|--------------------|---------------------------------------------------|----------------------|
| DDE <sup>C</sup>   | 99                                                | 103                  |
| ddt <sup>c</sup>   | 94                                                | 100                  |
| PCBs <sup>C</sup>  | <10                                               | 96                   |
| Oxychlordane       | 5                                                 | 57                   |
| Dieldrin           | 4                                                 | 92                   |
| DDD <sup>C</sup>   | 4                                                 | 54                   |
| Heptachlor epoxide | 4                                                 | 71                   |
| BHC <sup>C</sup>   | 3                                                 | 106                  |
| t-Nonachlor        | 1                                                 | 57                   |

## Table 3. RANKING OF PESTICIDES AND PCBs BY REPORTED CONCENTRATIONS IN HUMAN MILK<sup>a</sup>

<sup>a</sup>Whole milk only.

<sup>b</sup>Mean value calculated from a weighted mean of values in Table 2. Where either the mean or number of samples analyzed were unavailable, the data were excluded from calculation.

<sup>C</sup>All isomers summed.

| Compound              | Sample<br>Matrix | Hean<br>(ppb) | Range<br>(ppb) | Number of<br>Determinations | Number of<br>Positives | Location       | Date   | Reference |
|-----------------------|------------------|---------------|----------------|-----------------------------|------------------------|----------------|--------|-----------|
| e-MC                  | Milt             | 0.58          | 0.1-1.9        | 50                          | 17                     | Norway         | 1975   | 14        |
| 6-04C                 | Misk             | 4.69          | 1.2-17.8       | 50                          | 49                     | Norwey         | 1975   | 14        |
|                       | Milk             | 70            | NO-900         | 96                          | 64                     | Germany        | 1971   | 15        |
|                       | MEEK             | 200           | 80-910         | 22                          | 19                     | Vienna         | 1973   | 16        |
|                       | Määk             | 280           | 10-850         | 9                           | ,                      | Rurel Austria  | 1973   | 16        |
|                       | MEDIK            | 4             | 1-16           | 50                          | 42                     | Leiden (Neth.) | 1969   | 17        |
|                       | MAAK             | 2             | ND-21          | 100                         | 91                     | Canada         | 1975   | 13        |
| Y-NC                  | MIIK             | 10.91         | 1.0-35.8       | 50                          | 17                     | Nozway         | 1975   | 34        |
| -                     | MERE             | •             | ND .           | 96                          | 0                      | Germany        | 1971   | 15        |
|                       | Milk Pet         | 48            | 26-114         | 22                          | 19                     | Vienna         | 1973   | 16        |
|                       | Wilk Fat         | 63            | 49-100         | 9                           | 7                      | Rurel Austria  | 1973   | 16        |
|                       | Milk             | 10.1          |                | 29                          |                        | Israel         | 1975   | 18        |
|                       | Milk             | 3             | <1-35          | 147                         |                        | Caneda         | 1967-6 | 19        |
| 4-8HC                 | Milt             | 1.14          | 0.3-3.2        | 50                          | 34                     | Norway         | 1975   | 34        |
| Total NIC             | HIIL             | 9.4           | 1.7-45.5       | 50                          | 50                     | Norway         | 1975   | 14        |
|                       | Milk             | 13            | 7-33           | 19                          | 19                     | England        | 1964   | 20        |
| E.E                   | MIIK             | 9.9           |                | 29                          |                        | Israel         |        | 14        |
| 000                   | Hilk             | 7             | 3-14           | 67                          | 12                     | Australia      | 1970   | 21        |
| 0.0 <sup>1</sup> -00E | Mitk             | 18.02         | 1.6-45.8       | 50                          | 30                     | Norway         | 1975   | 14        |
| <u>.</u>              | Milk             | 9.5           |                | 29                          |                        | ITTEEL         | 1975   | 18        |
| P.9'-008              | Milk             | 65.10         | 0.9-113.2      | 50                          | 50                     | Norway         | 1975   | 14        |
| <b>L·L</b>            | Nilk             |               | 6-699          | 168                         | 167                    | Portugal       | 1972   | 22        |
|                       | HELK             | 90            | ND-600         | 96                          | 95                     | Germany        | 1971   | 15        |
|                       | 141.1k           | 21.7          |                | 29                          |                        | Israel         | 1975   | Lŧ        |
|                       | Millik           | 97            | 6-770          | 147                         |                        | Canada         | 1967-8 | 19        |
|                       | 441.3 k          | 30            |                | 50                          | 50                     | Loidon (Meth.) | 1969   | 17        |
|                       | Wilk             | 35            | 17-68          | 6                           | 6                      | New Brunswick  | 1973   | 23        |
|                       | Milk             | 19            | 9-40           | •                           |                        | Nova Scotia    | 1973   | 23        |
|                       | 3653 k           | 35            | 7-144          | 100                         | 100                    | Canada         | 1975   | 24        |
|                       | Milk             | 73            | 40-100         | 19                          | 19                     | Eng Land       | 1964   | 20        |

Table 4. LEVELS OF ORGANIC COMPOUNDS FOUND IN HUMAN MILK OUTSIDE THE UNITED STATES

(continued)

.

٠

-

| Compound   | Sample<br>Matrix | Hean<br>(ppb) | Renge<br>(ppb) | Number of<br>Determinations | Number of<br>Positives | Location       | Date   | Reference |
|------------|------------------|---------------|----------------|-----------------------------|------------------------|----------------|--------|-----------|
| DOE        | MLTE             | 105           | 12-450         | 67                          | 67                     | Australia      | 1970   | 21        |
|            | NEIK Fat         | 3380          | 1930-7950      | 22                          | 22                     | Vienna         | 1973   | 16        |
|            | Nilk Fat         | 3920          | 3420-5970      | 9                           | 9                      | Rurel Austria  | 1973   | 16        |
|            | MESK             | 61            | 15-112         | 26                          | 26                     | W. Australia   | 1970-1 | 25        |
| 6.p*-D0T   | NEIK             | 18.52         | 1.6-120.9      | 50                          | 49                     | Norway         | 1975   | 14        |
| <b>1</b> . | Milk             | 7.3           |                | 28                          |                        | Israel         | 1975   | 16        |
|            | Mi 1k            | 5             | <1-31          | 147                         |                        | Canada         | 1967-8 | 19        |
|            | HLIK             | 3             | KD-48          | 100                         | 32                     | Canada         | 1975   | 24        |
| p.p*-00T   | MIT              | 17.49         | 2.3-130.3      | 50                          | 50                     | Norway         | 1975   | 14        |
| T.T.       | NEEK             |               | 3-345          | 168                         | 167                    | Portugal       | 1972   | 22        |
|            | Milk             | 90            | 10-250         | 96                          | 95                     | Germany        | 1971   | 15        |
|            | MESK             | 7.3           |                | 29                          |                        | larael         | 1975   | 38        |
|            | MITE             | 32            | 3-344          | 147                         |                        | Cenada         | 1967-# | 19        |
|            | NLIK             | 16            |                | 50                          | 50                     | Loiden (Neth.) | 1969   | 17        |
|            | Milk             | 13            | 6-30           | 6                           | 6                      | New Brunswick  | 1973   | 23        |
|            | Nilk             | 6             | <2-11          | 9                           | 9                      | Nova Scotie    | 1973   | 23        |
|            | - Milk           | 6             | 7-21           | 100                         | 100                    | Canada         | 1975   | 24        |
|            | Milk             | 45            | 20-75          | 19                          | 19                     | England        | 1964   | 20        |
| DOT        | Mi 1k            | 36            | 7-160          | 67                          | 67                     | Australia      | 1970   | 21        |
|            | MLIK PAt         | 1060          | 300-2680       | 22                          | 21                     | Vienna         | 1973   | 16        |
|            | Milk Pat         | 1760          | 1030-2530      | 9                           | 9                      | Rural Austria  | 1973   | 16        |
|            | NEIK             | 10            | 2-25           | 26                          | 26                     | W. Australia   | 1970-1 | 25        |

Table 4 (cont'd.)

.

.

(continued)

•

.

.

| Conpound   | Sample<br>Matrix | Hean<br>(ppb) | Range<br>(ppb) | Number of<br>Determinations | Number of<br>Positives | Location       | Date    | Reference |
|------------|------------------|---------------|----------------|-----------------------------|------------------------|----------------|---------|-----------|
| Total ODT  | Ni lh            | 81.74         | \$,2-349.0     | \$0                         | 50                     | Harvey         | 1975    | 14        |
| Equiv.     | Mitk             | 386           | <10-780        | 160                         | 367                    | Portugal       | 1972    | 22        |
| •          | Milk Fat         | 1390          | 220-2580       | 19                          | 19                     | Ontario        | 1975-4  | 26        |
|            | Milk Fat         | 3480          | 330-18800      | 34                          | 34                     | Ontario        | 1971-2  | 26        |
|            | Hijk Fat         | 3460          | 110-11400      | 46                          | 48                     | Ontario        | 1969-70 | 26        |
|            | Mläk             | 320           | 30-879         | 96                          | 96                     | Germany        | 1971    | 15        |
|            | Milk             | 341           | 15-580         | 67                          | 67                     | Austrelia      | 1970    | 21        |
|            | Millk            | 139           | 10-1020        | 147                         |                        | Canada         | 1967-8  | 19        |
|            | Mijk             | 78            | 19-137         | 26                          | 26                     | W. Australia   | 1970-1  | 25        |
|            | Milk             | 378           | 3-5868         | 290                         | 290                    | Gustemala      | 1973-4  | 27        |
|            | Misk             | 126           | 75-170         | 19                          | 19                     | England        | 1964    | 24        |
| Dieldrin   | Milk             | 2.75          | 0.3-3.6        | 50                          | 6                      | Norway         | 1975    | 34        |
|            | Milk             | 40            | 5-31           | 168                         | 15                     | Portugal       | 1972    | 14        |
|            | Milk Fat         | 48            | <10-60         | 19                          |                        | Ontario        | 1973-4  | 26        |
|            | Hilk Fat         | 90            | <10-170        | 34                          |                        | Ontario        | 1971-2  | 26        |
|            | Milk Pat         | 90            | <10-250        | 48                          |                        | Onterio        | 1969-70 | 25        |
|            | Mijk             | 6             | 1-29           | 67                          | 29                     | Austrelia      | 1970    | 21        |
|            | Nilt             | 7.0           |                | 29                          |                        | Israel         | 1975    | 18        |
|            | MEER             | 5             | 1-60           | 147                         |                        | Çangda         | 1967-8  | 19        |
|            | MESE             | 5             | 3-31           | 26                          | 26                     | W. Australia   | 1970-1  | 25        |
|            | Milk             | 5             | 0.1-10.7       | 50                          | 48                     | Leiden (Noth.) | 1969    | 17        |
|            | Mitk             | Ż             | ND-6           | 100                         | 84                     | Canada         | 1975    | 24        |
|            | M5 11            | 6             | 1-13           | 19                          | 19                     | England        | 1969    | 20        |
| Aldrin     | MLIL             | 21.8          |                | 50                          | 1                      | Norway         | 1975    | 14        |
| Heptschlor | WEIk             | 1.57          | 0.6-2.6        | 50                          | 16                     | Norway         | 1975    | 14        |
| Epozide    | Mitk             | 9.1           |                | 29                          |                        | Israol         | 1975    | 14        |
| • • • •    | Milk             | 3             | <]-23          | 147                         |                        | Canada         | 1967-8  | 19        |
|            | Milk             | 1.2           | 0.3-3.5        | 50                          | 50                     | Leidon (Noth.) | 1969    | 17        |
|            | Milt             | È T           | NO-3           | 100                         | 69                     | Canada         | 1975    | 24        |

Table 4 (cont'd.)

(continued)

٠

.

•

•

•

.

| Compound                | Samp 14<br>Matrix | Hean<br>(ppb) | (ppd)<br>Kengo | Number of<br>Determinations | Humber of<br>Positives | Location      | Dete    | Roference |
|-------------------------|-------------------|---------------|----------------|-----------------------------|------------------------|---------------|---------|-----------|
| ACB                     | Hilk              | 9.1           | 1.7-60.5       | 50                          | 50                     | Norway        | 1975    | 14        |
|                         | Wilk Fat          | 100           | ND-250         | 19                          |                        | Ontario       | 1973-4  | 26        |
|                         | Milk Fat          | 1240          | 260-4360       | 22                          | 22                     | Vienna        | 1973    | 16        |
|                         | Mitk              | 3670          | 2140-5110      | 9                           | 9                      | Rural Austria | 1975    | 16        |
|                         | Milk              | 25            | 12-34          | 26                          | 26                     | W. Austražia  | 1970-1  | 25        |
|                         | Milk              | 2             | ND-21          | 100                         | 81                     | Canada        | 1975    | 24        |
| PC8                     | Wijk Pot          | 1200          | 108-2500       | 19                          | 19                     | Onterio       | 1973-4  | 26        |
| • -+                    | HLIK Fat          | 1200          | 200-3000       | 34                          | 34                     | Ontario       | 1971-2  | 26        |
|                         | Hilk Fat          | 1000          | 700-12000      | 40                          | 48                     | Ontario       | 1969-70 | 26        |
|                         | Milk              | 90            |                | 96                          | 64                     | Germany       | 1971    | 15        |
|                         | Nilk Fat          | 1540          | 580-3780       | 22                          | 22                     | Vienna        | 1973    | 16        |
|                         | Nilk Fat          | 1290          | 950-3570       | •                           |                        |               | 1973    | 16        |
|                         | Millk             | 22            | 15-30          | 6                           | 4                      | New Brunswick | 1973    | 23        |
|                         | MLLK              | 38            | 12-32          | 9                           | 9                      | Nova Scotis   | 1975    | 23        |
|                         | Milk              | 12            | ND-6\$         | 100                         | 160                    | Canada        | 1975    | 24        |
| Oxychlordene            | NELL              | 1             | ND-2           | 300                         | 77                     | Canada        | 1975    | 24        |
| trans-<br>Nonachler     | MESK              | 1             | ND-2           | 100                         | 77                     | Cansda        | 1975    | 24        |
| 1,2-Bichlore-<br>ethane | HLIK              | 6000          |                | 1                           | ì                      |               |         | 20        |

Table 4 (cont'd.)

NOTES:

BHC = benzenehexachloride (hexachlorocyclohexane)

DDD = 2,2-bis(chloropheny1)-1,1-dichloroethane

DDE = 1,1-dichloro-2,2-bis(chlorophenyl)ethylene

DDT = 1,1,1-trichloro-2,2-bis(chlorophenyl)ethane

Total DDT equiv. = sum of all DDT-related peaks calculated as if all were DDT.

PCB = polychlorinated biphenyls. Quantitation generally based on comparison to an Aroclor mixture.

HCB = hexachlorobenzene

ND = not detected.

1

Mean values were taken from original citation where available; otherwise arithmetic mean was calculated, counting "ND" values as zero and "T" values as 0.5 times the lowest reported value.

-

Missing values indicate no data in original article. Lowest value not reported. The literature shows that mother's milk often contains semivolatile chlorinated organic pollutants (pesticides). Presumably due to lack of analytical techniques and/or sensitivity, the presence of other pollutants has apparently not been investigated.

#

## SECTION 2 SUMMARY AND CONCLUSIONS

The results show that sampling and analysis for organic compounds in mother's milk is feasible. The sample collection technique presented no significant problems. Analysis of the samples was generally satisfactory.

The use of purge and trap with gas chromatography/mass spectrometry/computer (GC/MS/COMP) analysis for volatile organics was successful, although the intrusion of contaminants during analysis presented problems with some compounds. The wide range of volatile compounds found includes common air and water pollutants and possible metabolites. Thus, it may be possible to use mother's milk as an indicator of body burden if a correlation between exposure and mother's milk concentration is established.

The extraction and GC/MS analysis for semivolatile organics was only marginally successful due to limited sensitivity (about 20-100 ppb milk). PCBs and DDE were the only halogenated semivolatiles found. The target semivolatile compounds (PCNs, PBBs, chlorinated phenols, and the higher chlorinated benzenes) were not present in quantities detectable by the survey techniques. The use of more sensitive (generally a factor of 100-1000) and selective methods [GC/electron capture detection (ECD), GC/negative ion chemical ionization mass spectrometry (NICIMS) or GC/single ion monitoring MS] may detect these compounds, but was outside the scope of this project.

# SECTION 3 RECOMMENDATIONS

Further studies of the applicability of mother's milk as a matrix for assessing the human body burden of pollutants must directly compare human milk with the other available sample matrices. For example, comparison of the volatiles in breath, blood, urine, and mother's milk would determine which matrices are most suitable for measuring these compounds. It may also be advisable to use animal studies to determine the extent of environmental exposure-body burden correlation.

In addition, the effects of transport of pollutants to a newborn infant should be studied. Infants may be uniquely affected by some pollutants due to their small body weight and different metabolism relative to adults.

The measurement of semivolatile organics in mother's milk requires more sensitive techniques than those used in this study. For example, chlorinated compounds could best be detected using GC/ECD or GC/negative ion chemical ionization mass spectrometry and polynuclear aromatics by GC/photoionization detection.

Improvement in analytical methodology could occur at several points:

(1) As discussed above, more sensitive, analytical procedures could be used for specific compound classes.

(2) For volatile organics, background levels could be reduced with an on-line purge and trap/GC system.

Potential improvements in survey and sampling methodology include:

(1) Addition of questions regarding length of nursing, age of infant, time since last nursing, etc.

(2) Selection of participants according to a more statistically valid method (e.g. statistically random sampling).

(3) Closer control over physical collection methodologies ( $\underline{e}$ . $\underline{g}$ . all respondents gathered at one location).

The 5-month time lag in the study awaiting OMB clearance was seriously detrimental to the project. The personnel and apparatus used for the validation studies had to be reassembled once OMB clearance was obtained. Restarting a project following a long dorman' period requires retraining analytical personnel (or training new personnel if original personnel have been reassigned to other research projects), recalibration of instruments, and assembling the necessary laboratory apparatus and supplies, all of which consume government resources. Reducing this time lag is extremely important for execution of programs involving human testing.

# SECTION 4 SELECTION OF SAMPLING SITES

Five urban areas were chosen as sampling sites. Each of these cities is a high-probability area for the presence of one or more of the chemicals of interest in mother's milk. Since many of the compounds of interest are probably specific to certain industrial sites, the samples from the other sites were intended to serve as controls for the site-specific compounds. Other compounds are considered ubiquitous and their levels in milk was probably not related to local industrial activity. The rationale for selecting the five sampling sites is discussed below.

#### BRIDGEVILLE, PENNSYLVANIA

PCNs are manufactured by Koppers Company, Inc., of Pittsburgh, PA, at the Koppers Chemical and Coatings plant in Bridgeville, about 10 km SW of Pittsburgh. (29) Reported production levels were 7 million 1b in 1956 and 5 million 1b in 1972, (29) indicating a potential long-terw, relatively constant, exposure level in the surrounding area. Results from environmental monitoring in the area immediately (< 1 km) surrounding the plant indicated higher levels of PCNs in air and soil than those found near five PCN user sites, as shown in Table 5. (30-34) Furthermore, fish and apple samples from the same area were found to contain PCNs, indicating a potential link to the human food chain.

In addition to PCNs, plants in the Bridgeville area have been reported to emit large quantities of phthalic anhydride particulate.<sup>(35)</sup> At this plant site, Koppers is reported to manufacture chlorinated naphthalenes, phthalic anhydride, maleic anhydride, and alkyd resins.<sup>(36)</sup>

|                            |                    | Air, ng/m <sup>3</sup> |      |      | Water, µg/L   |                 | Soil, µg/kg |      |      |
|----------------------------|--------------------|------------------------|------|------|---------------|-----------------|-------------|------|------|
| Site                       | Sampling<br>Period | Low                    | High | Mean | Up-<br>stream | Down-<br>stream | Low         | High | Mean |
| PCN manufacturer (Koppers) | 1                  | 25                     | 450  | 150  | 0.2           | 1.4             | 130         | 2300 | 940  |
|                            | 2                  | 120                    | 2900 | 1400 | a             |                 |             |      |      |
| Capacitor manufacturing A  | 1                  | ND <sup>b</sup>        | 7.3  | 3.1  | ND            | ND              | ND          | 7.3  | 2.0  |
|                            | 2                  | ND                     | 3.9  | 1.2  |               |                 |             |      |      |
| Capacitor manufacturing B  | 1                  | 9.8                    | 31   | 19   | ND            | 0.6             | ND          | 470  | 100  |
|                            | 2                  | 9.8                    | 33   | 17   |               |                 |             |      |      |

٠

Table 5. SUMMARY OF PCN CONCENTRATIONS FOUND NEAR MANUFACTURING AND USE SITES (32)

.

<sup>a</sup>No water samples collected for period 2.

<sup>b</sup>Not detected.

#### NORTHERN NEW JERSEY - STATEN ISLAND, NEW YORK, AREA (NNJ)

The Northern New Jersey (NNJ) area was selected as a sampling site on two bases: production of PBBs and general chemical industrial activity.

Three facilities are of interest<sup>(37)</sup> with respect to PBBs: White Chemical Co., E 22nd St., Bayonne, NJ; Marcor, Inc., Standard T. Chemical Co., subsidiary, 2500 Richmond Terrace, Staten Island, NY; and Hexcel Corp., Fine Organics Division, 880 Main St., Sayreville, NJ. White produced 45,000 kg of PBBs (specifically octabromobiphenyl and decabromobiphenyl) between 1970 and 1973. <sup>(38)</sup> Hexcel is reported<sup>(39)</sup> to have produced unspecified amounts of decabromobiphenyl [as well as to have produced or used decabromobiphenyl oxide, ethylene dichloride, and 1,2-bis(2,4,6-tribromophenoxy)ethane]. Standard T is thought to have been a PBB user up to about 1974. <sup>(39)</sup>

Results of environmental sampling in the area surrounding these three (40,41) indicated the presence of PBBs, especially the more highly brominated homologs, in sediment, water, soil, human hair, fish, turtle, and plant matter. The findings in human hair oil (18 total samples), which ranged from undetectable to 310 ppm, are especially relevant to this study, since they indicate that the PBB manufacturing in this area and the resultant environmental contamination has resulted in human exposure.

Northern New Jersey has a high concentration of chemical industries, <sup>(42)</sup> many of which use or produce halogenated hydrocarbons. The list of industries and locations are summarized below. Coastal Industries, Inc. (swimming pool chemicals), Diamond Shamrock (textile processing chemicals), Scientific Chemical Processing (chemical waste disposal) and Tenneco Chemicals (synthetic foam rubbers) are located in Carlstadt. Crompton & Knowles Corp. (dyes, colors and chemicals) are located in Fairlawn. Fisher Scientific (chemicals), Conoco Chemicals are in Saddle Brook. In Bayonne are CIBA-Geigy (dyes and intermediates) and ICI America (organics). In Jersey City are Mallinkrodt (analytical reagents) and Onya Chemical Co. (textile finish compounds, water repellants, germicides, and detergents). In Kearney are Standard Chlorine Chemical Co. (chlorobenzenes), Theobald Industries (bleaches), PPG Industries (paint) and Monsanto (industrial chemicals). In Newark are American Oil and Supply Co. (surfactants and chemicals), Celanese Plastics (plastics), DuPont (pigments), Inmont (paint), Maas & Waldstein (paint), Otto B. May (dyes, surfactants), 3M (chemicals), Benjamin Moore (paint), Sherwin-Williams (paint) and Vulcan Materials (chloromethanes). In Elizabeth are Perk (chlorinated solvents) and Speciality Chemicals Division of Allied Chemical Corp. Linden Chlorine Products (chlorine) is in Linden. In Rahway are M & T Chemicals (speciality chemicals) and Merck and Co. (industrial chemicals). In Edison are Cary Page Chemicals (PVC compounds) and Mobile Chemical (paint). In Parlin, Hercules manufactures chloroform. In Passaic are Pantasote Co. of New York (PVC resin film), Stauffer (vinyl sheet and film) and United Wool Piece Dyeing and Finishing (dyes). In Patterson are several dye manufacturers. In Wayne are American Cyanamid (chemicals) and Owens Illinois (plastics). Many of these and other firms in NNJ undoubtedly manufacture or use compounds which are of interest to this study.

The levels of general organic pollutants in NNJ have been found to be high due to intense chemical manufacturing in the area. Environmental monitoring by RTI under separate contracts, (43-46) has found a wide variety of organic pollutants in this area. In addition, preliminary results from ground and surface water samples indicate measurable levels of a number of volatile halogenated hydrocarbons. (44,45) These data, summarized in Table 6, are indicative of environmental levels of organics in the NNJ area to which humans may be exposed and thus are indicative of the types of compounds anticipated in mother's milk. Under a separate research project, (45) the daily intake of some selected organics was roughly estimated. These estimates are given in Tables 7 and 8. Clearly there is ample exposure to pollutants which could potentially partition into milk.

The statistics for cancer in two counties of NNJ are very high. (58,59)The overall rate for all malignant neoplasms is significantly above the national average. This cancer incidence in New Jersey has been partially linked to the chemical and allied industries located there. (60-64)

Northern New Jersey is a metropolitan area with a relatively static population, a well-established chemical industry, known environmental levels of organics (including PBBs) and abnormally high cancer rates. These factors make this area especially suited to this study of organics in mother's milk.

| Medium | Occurrence             |                                    |                                 |                                    |  |  |  |  |  |
|--------|------------------------|------------------------------------|---------------------------------|------------------------------------|--|--|--|--|--|
|        | Ubiquitous             | Mean<br>Concentration <sup>a</sup> | Area Specific                   | Mean<br>Concentration <sup>a</sup> |  |  |  |  |  |
| Air    | tetrach loroethy lene  | 210,000                            | 1,1,2-trichloroethane           | 9,000                              |  |  |  |  |  |
|        | trichloroethylene      | 125,000                            | vinyl chloride                  | 1,200                              |  |  |  |  |  |
|        | 1,1,1-trichloroethane  | 62,000                             | 1,2-dichloroethylene            | 1,000                              |  |  |  |  |  |
|        | 1,2-dichloroethane     | 96,000                             | 1,1,2,2-tetrachloroethane       | 750                                |  |  |  |  |  |
|        | chloroform             | 47,000                             |                                 |                                    |  |  |  |  |  |
|        | carbon tetrachloride   | 29,000                             |                                 |                                    |  |  |  |  |  |
|        | o,m,p-dichlorobenzenes | 11,000                             |                                 |                                    |  |  |  |  |  |
|        | chlorobenzene          | 2,700                              |                                 |                                    |  |  |  |  |  |
| Water  | dichlorobenzene        | 209                                | ch loroni troben zene           | 10.7                               |  |  |  |  |  |
|        | trichloroethane        | 42                                 | methyl trichlorophenoxy acetate | 5                                  |  |  |  |  |  |
|        | chloroform             | 14                                 | methyl dichlorophenoxy acetate  | 3.5                                |  |  |  |  |  |
|        | trichloroethylene      | 7                                  | bromopropylbenzene              | 3                                  |  |  |  |  |  |
|        | dichloroethane         | 5                                  | bromobenzene                    | 3                                  |  |  |  |  |  |
|        | bromodichloroethane    | 5                                  | tetrachloroethane               | 2.5                                |  |  |  |  |  |
|        | bromodichloromethane   | 3.7                                | dichloroethylene                | 1.8                                |  |  |  |  |  |
|        | tetrach loroethy lene  | 3.6                                | -                               |                                    |  |  |  |  |  |
|        | dibromochloromethane   | 3.3                                |                                 |                                    |  |  |  |  |  |

## Table 6. PREVALENT HALOGENATED COMPOUNDS IN AMBIENT AIR AND WATER OF RAHWAY/WOODBRIDGE, BOUNDBROOK AND PASSAIC, NJ (44)

<sup>a</sup>Concentrations for air expressed in  $ng/m^3$  and for water in  $\mu g/L$ .

| Toxic Chemical        | Air <sup>a</sup><br>(ng/day) | Water <sup>b</sup><br>(ng/day) | Food <sup>C</sup><br>(ng/day) | Total<br>(ng/day) | Potential Blood<br>Concentration <sup>d</sup><br>(ppb) |
|-----------------------|------------------------------|--------------------------------|-------------------------------|-------------------|--------------------------------------------------------|
| tetrachloroethylene   | 2,100,000                    | 3,600                          | 4,150                         | 2,108,000         | 88                                                     |
| trichloroethylene     | 1,250,000                    | 7,000                          | 18,660                        | 1,276,000         | 53                                                     |
| 1,1,1-trichloroethane | 620,000                      | 42,000                         | 5,290                         | 667,000           | 28                                                     |
| 1,2-dichloroethane    | 960,000                      | 5,000                          |                               | 965,000           | 40                                                     |
| chloroform            | 470,000                      | 14,500                         | 14,280                        | 499,000           | 21                                                     |
| carbon tetrachloride  | 290,000                      | 1,000                          | 12,070                        | 303,000           | 13                                                     |
| dichlorobenzene       | 110,000                      | 209,000                        |                               | 319,000           | 13                                                     |
| chlorobenzene         | 27,000                       | 1,000                          |                               | 28,000            | 1.2                                                    |
| vinyl chloride        | 12,000                       |                                |                               | 12,000            | 0.5                                                    |
| bromodichloromethane  |                              | 3,700                          |                               | 3,700             | 0.2                                                    |
| benzene               | 7,500 <sup>€</sup>           | 300 <sup>f</sup>               |                               | 7,800             | 0.2                                                    |
| total                 |                              |                                |                               | 6,188,200         | 258.2                                                  |

| Table 7. | ESTIMATED DAILY INTAKE OF SELECTED VOLATILE COMPOUNDS AND      | EXPECTED |
|----------|----------------------------------------------------------------|----------|
| •        | CONCENTRATIONS IN BLOOD IN NORTHERN NEW JERSEY <sup>(45)</sup> | •        |

<sup>a</sup>From Ref. 44, calculated on basis of 10,000 L/24 h respiration rate.

<sup>b</sup>From Ref. 44, calculated on basis of 1 L/24 h intake.

<sup>C</sup>From Ref. 47, calculated from FDA standard diet (Ref. 48).

<sup>d</sup>Expected blood concentration is total daily intake divided by blood volume (8.000 mL) assuming 4 half-lives/day.

.

<sup>e</sup>From Ref. 49, 50.

f<sub>From Ref. 50.</sub>
| Toxic Chemicals                | Air<br>(ng/day) | Water<br>(ng/day) | Food<br>(ng/day) | Total<br>(ng/day) | Expected Blood<br>Concentration<br>(ppb) |
|--------------------------------|-----------------|-------------------|------------------|-------------------|------------------------------------------|
| a-BHC                          | 10              | 0                 | 1,100            | 1,110             | 0.14                                     |
| lindane                        | 60              |                   | 586              | 646               | 0.08                                     |
| heptachlor                     | 30              | 0                 | 52               | 92                | 0.01                                     |
| heptachlor epoxide             |                 | 7                 | 640              | 647               | 0.08                                     |
| chlordane                      | 20              |                   |                  | 20                | ~0                                       |
| DDE                            |                 |                   | 3,500            | 3,500             | 0.44                                     |
| DDT/DDD                        | 70              | 0                 | 2,500            | 2,570             | 0.32                                     |
| HCB                            | 50              |                   | 73               | 123               | 0.02                                     |
| PCBs                           | ∿200            | <60               | 388              | 648               | 0.08                                     |
| Total<br>Halogenated Compounds | 440             | <67               | 8,849            | 9,356             | 1.16                                     |
| benzo(a)pyrene                 | 21              | 2                 | 7,800            | 7,823             | 1.0                                      |
| arsenic                        | 2,800           | <1,000            | 31,300           | 34,100            | 4.4                                      |
| cadmium                        | 50              | <1,000            | 32,000           | 33,000            | <10 <sup>a</sup>                         |
| lead                           | 7,500           | 3,200             | 105,000          | 115,700           | 100-500 <sup>b</sup>                     |

# Table 8. TOTAL DAILY INTAKE OF TARGET COMPOUNDS, PESTICIDES, PCBs, BaP AND METALS AND CONCENTRATIONS IN BLOOD IN NORTHERN NEW JERSEY<sup>(45)</sup>

<sup>a</sup>Ref. 56.

<sup>b</sup>Ref. 57.

.

Table 8 (cont<sup>1</sup>d.)

Sources:

•

Pesticides and PCBs in air-- Ref. 51 (US)Pesticides in water-- Ref. 44 (NJ)Pesticides and PCBs in food-- Ref. 48 (US)PCBs in water-- Ref. 51 (US)BaP in air-- Ref. 52 (US)

| BaP in water    | <br>Ref. 53 (World)    |
|-----------------|------------------------|
| BaP in food     | <br>Rough estimation   |
|                 | (from Ref. 53 [World]) |
| Metals in air   | <br>Ref. 54 (NJ)       |
| Metals in water | <br>Ref. 55 (NJ)       |
| Metals in food  | <br>Ref. 48 (N.E. NJ)  |

÷

٠

#### BATON ROUGE, LOUISIANA

Baton Rouge was selected on the basis of extensive organic chemical production (especially volatile halogenated hydrocarbons) as summarized in Table 9.  $^{(43)}$  In addition, RTI has collected and analyzed ambient air samples from this area and established the presence of a number of compounds of interest in ambient air.  $^{(43)}$  A summary of the levels of halogenated compounds found in water and air is presented in Table 10.

In addition to the industrial production in Baton Rouge, industries in Plaquemine (15 km SSW), St. Gabriel (20 km SSE) and Geismar (27 km SSE) may emit significant levels of chemicals which may contribute to the levels observed in mother's milk in Baton Rouge. These industries and their production are listed in Table 11. (36)

#### KANAWHA VALLEY, WEST VIRGINIA

Many manufacturers of organic chemicals are located in the Kanawha Valley, WV. DuPont, near Belle, WV, has a large chemical complex for the synthesis of substances such as methylmethacrylate, methylamines, ammonia, hydrogen cyanide, herbicides, and insecticides. In South Charleston are production and consumption plants (Union Carbide, and FMC). Plastics, PVC, antifreeze, chlorine, halogenated organics, carbon disulfide, peroxides, etc., are the predominant chemicals produced here. The major industrial facility in the town of Institute is Union Carbide, which also processes a broad spectrum of compounds, e.g., viscose rayon and phthalate esters. There is also a large-scale olefin processing complex and a rubber accelerator plant. A major terminal loading facility in South Charleston handles large quantities of a variety of organic compounds. Monsanto, FMC, Allied, and Fike have plants near Nitro for the production of antioxidants, rubber accelerators, industrial chemicals, and other materials. Several other chemical manufacturers, consumers, and transporters are located in the Kanawha Valley, some or all of which may contribute to the presence of organic materials in the ambient air or water and thus contribute to human exposure.

Previous RTI sampling (43,46,65,66) in the Kanawha Valley found a broad range of balogenated, ketone, aldehyde, ester, aromatic, and aliphatic compounds. Quantitative results included high values in air of 11,000 ng/m<sup>3</sup>

| T<br>Chemical<br>Norodifluoromethane (101)<br>chlorodifluoromethane (12)<br>chlorotetrafluoroethane (114)<br>hylene dichloride<br>lyethylene resin<br>lichlorofluoromethane (11)<br>1,2-trichloro-1,2,2-trifluoroethane<br>13)<br>hyl chloride<br>thyl chloride<br>thyl chloride<br>traethyl nead<br>1,1-trichloroethane<br>ichloroethylene<br>C<br>nzene<br>tadiene | Total Production<br>(umlb/yr) | Raw Material         | Company <sup>b</sup> |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|----------------------|----------------------|--|
| chlorodifluoromethane (101)                                                                                                                                                                                                                                                                                                                                          | -                             | chloroform           | ACCCC                |  |
| dichlorodifluoromethane (12)                                                                                                                                                                                                                                                                                                                                         | -                             | carbon tetrachloride | ACC                  |  |
| dichlorotetrafluoroethane (114)                                                                                                                                                                                                                                                                                                                                      | NA                            | perchloroethylene    | ACC                  |  |
| ethylene dichloride                                                                                                                                                                                                                                                                                                                                                  | 1100                          | ethylene             | ACC, EC              |  |
| polyethylene resin                                                                                                                                                                                                                                                                                                                                                   | 460                           | ethylene             | ACC                  |  |
| trichlorofluoromethane (11)                                                                                                                                                                                                                                                                                                                                          | -                             | -                    | ACC                  |  |
| 1,1,2-trichloro-1,2,2-trifluoroethane<br>(113)                                                                                                                                                                                                                                                                                                                       | NA                            | perchloroethylene    | ACC                  |  |
| vinyl chloride                                                                                                                                                                                                                                                                                                                                                       | 480                           | ethylene dichloride  | ACC, EC              |  |
| ethyl chloride                                                                                                                                                                                                                                                                                                                                                       | 210                           | ethylene             | EC                   |  |
| methyl chloride                                                                                                                                                                                                                                                                                                                                                      | 75                            | methanol             | EC                   |  |
| perchloroethylene                                                                                                                                                                                                                                                                                                                                                    | 100                           | ethylene dichloride  | EC                   |  |
| tetraethyl lead                                                                                                                                                                                                                                                                                                                                                      | 312                           | ethyl chloride       | EC                   |  |
| 1,1,1-trichloroethane                                                                                                                                                                                                                                                                                                                                                | 40                            | 1,1-dichloroethane   | EC                   |  |
| trichloroethylene                                                                                                                                                                                                                                                                                                                                                    | 32                            | ethylene             | EC                   |  |
| PVC                                                                                                                                                                                                                                                                                                                                                                  | 144                           | -                    | EĊ                   |  |
| benzene                                                                                                                                                                                                                                                                                                                                                              | 440                           | petroleum            | EXCC                 |  |
| butadiene                                                                                                                                                                                                                                                                                                                                                            | 428                           | ethane, etc.         | EXCC, CRCC           |  |
| n-butyl alcohol                                                                                                                                                                                                                                                                                                                                                      | NA                            | -                    | EXCC                 |  |

Table 9. POTENTIAL EMISSIONS FROM CHEMICAL INDUSTRY IN BATON ROUGE,  $LA^{a(43)}$ 

.

(continued)

| Chemical                      | Total Production<br>(mmlb/yr) | Raw Material                      | Company <sup>b</sup> |
|-------------------------------|-------------------------------|-----------------------------------|----------------------|
| decano1 <sup>C</sup>          | NA                            | nonene                            | EXCC                 |
| diisodecylphthalate           | NA                            | phthalic anhydride,<br>isodecanol | EXCC                 |
| dodecene                      | 100                           | propane/propylene                 | EXCC                 |
| ethylene                      | 700                           | ethane, etc.                      | EXCC                 |
| isobutylene                   | NA                            | petroleum                         | EXCC                 |
| isodecano1 <sup>C</sup>       | NA                            | nonene                            | EXCC                 |
| isooctyl alcohol <sup>C</sup> | NA                            | neptene                           | EXCC                 |
| isoprene                      | 10                            | ethylene by-product               | EXCC                 |
| isopropanol                   | 680                           | propylene                         | EXCC                 |
| neopentanoic acid             | 5.5                           | isobutylene                       | EXCC                 |
| nonene                        | 300                           | propane/propylene                 | EXCC                 |
| phthalic anhydride            | 90                            | o-xylene                          | EXCC                 |
| propylene resin               | 320                           | ethylene                          | EXCC                 |
| toluene                       | 378                           | petroleum                         | EXCC, FGC            |
| ethylbenzene                  | 900                           | benzene                           | FGC                  |
| styrene                       | 800                           | ethylbenzene                      | FGC                  |
| vinyl toluene                 | NA ·                          | toluene, ethylene                 | FGC                  |

Table 9 (cont'd.)

<sup>a</sup>Data provided by the Louisiana State Air Board.

<sup>b</sup>ACC = Allied Chemical Corp., EC = Ethyl Corp., EXCC = Exxon Chem. Corp., FGC = Foster-Grant Co. Inc. <sup>c</sup>Involves production of other alcohols also,  $C_6$ ,  $C_8$ ,  $C_9$ ,  $C_{10}$ ,  $C_{13}$ ,  $C_{16}$ .

\*

.

NA = not available.

.

.

|                        | Occurrence                                                                                                                                                     |                                                   |                                                                         |                                    |  |  |  |  |  |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-------------------------------------------------------------------------|------------------------------------|--|--|--|--|--|
| Medium<br>Air<br>Water | Ubiquitous                                                                                                                                                     | Mean<br>Concentration <sup>a</sup>                | Area Specific                                                           | Mean<br>Concentration <sup>a</sup> |  |  |  |  |  |
| Air                    | chloroform<br>1,2-dichloroethane<br>carbon tetrachloride                                                                                                       | 5,500<br>1,656<br>811                             | 1,1,2-trichloroethane<br>1,2-dichloroethylene<br>dichlorobutane         | 632<br>472<br>409                  |  |  |  |  |  |
|                        | l,l,l-trichloroethane<br>trichloroethylene<br>tetrachloroethylene<br>l,l-dichloroethane                                                                        | 605<br>142<br>118<br>86                           | 1,2-dichloropropane<br>vinylidene chloride<br>1,1,2,2-tetrachloroethane | 306<br>78<br>70                    |  |  |  |  |  |
| Water                  | trichloroethylene<br>chloroform<br>trichloroethane<br>dichloroethane<br>carbon tetrachloride<br>dichlorobenzene<br>chlorodibromomethane<br>tetrachloroethylene | 96<br>20<br>11<br>7.7<br>7.1<br>4.2<br>3.5<br>1.9 | bromobenzene<br>1,2-dichloroethylene<br>hexachloroethane                | 13<br>4<br>1.6                     |  |  |  |  |  |

# Table 10. PREVALENT HALOGENATED COMPOUNDS OCCURRING IN AMBIENT AIR AND WATER OF BATON ROUGE, GEISMAR AND PLAQUENINE, $La^{(44)}$

<sup>a</sup>Concentrations for air expressed in  $ng/m^3$  and for water in  $\mu g/L$ .

29

.

| City        | Chemical              | Annual Capacity<br>(million pounds) | Company <sup>a</sup> |
|-------------|-----------------------|-------------------------------------|----------------------|
| Plaquemine  | chloroform            | Ъ                                   | Dow                  |
| ŀ           | 1,2-dichloropropane   | 10                                  | 11                   |
|             | ethylene dichloride   | 1325                                | tt .                 |
|             | methyl chloride       | 150                                 | **                   |
|             | methylene chloride    | 190                                 | **                   |
|             | tetrachloroethylene   | 150                                 | 93                   |
|             | vinyl chloride        | 450                                 | ¥t                   |
| Geismar     | chloroform            | 46                                  | VCM                  |
|             | ethylene dichloride   | 330                                 | 11                   |
|             | methylene chloride    | 80                                  | 11                   |
|             | tetrachloroethylene   | 150                                 | 61                   |
|             | 1,1,1-trichloroethane | 65                                  | **                   |
|             | phosgene              | 55                                  | BASF                 |
|             | phosgene              | 125                                 | RCC                  |
|             | vinyl chloride        | 300                                 | BOR                  |
|             | vinyl chloride        | 300                                 | MCJ                  |
| St. Gabriel | phosgene              | NA                                  | scc                  |

# Table 11. POTENTIAL EMISSIONS FROM CHEMICAL INDUSTRY IN PLAQUEMINE, GEISMAR, AND ST. GABRIEL, LA(36)

<sup>a</sup>Dow = Dow Chem. USA VMC = Vulcan Materials Co. BASF = BASF Wyandotte Corp. RCC = Rubicon Chems., Inc. BOR = Borden, Inc. MCI = Monochem, Inc. SCC = Stauffer Chem Co., Agric. Chem. Div.

<sup>b</sup>200 million pounds combined capacity in Plaquemine and Freeport, TX plants.

for methylene chloride, 1500  $ng/m^3$  for tetrachloroethylene, and 72,000  $ng/m^3$  for benzene. Compounds identified in the air particulate fraction included ,long-chain alkanes, polycyclic aromatic hydrocarbons (PAH) from naphthalene through anthanthrene (or an isomer), alkyl-PAH derivatives, and nitrogen-containing heterocycles.

# SECTION 5 SAMPLE COLLECTION

÷.,

At each of the five sites, arrangements were made to work through clinical facilities to recruit a suitable panel of respondents. These facilities included the Bayonne Hospital in Bayonne, NJ; the Medical Center Hospital in Jersey City, NJ; Magee-Women's Hospital in Pittsburgh, PA; Charleston Area Medical Center in Charleston, WV; and the East Baton Rouge Parish Health Clinic in Baton Rouge, LA.

Advance arrangements were made through a contact person at each facility. This person was responsible for recruiting a professional member of the facility's staff to serve as the data collector. The data collector was usually a registered, licensed practical, or public health nurse associated with the facility.

Respondents were paid \$5 for their assistance in providing a milk sample and completing the survey questionnaire.

The data collection effort is discussed in the following sections.

## OMB CLEARANCE

Under the Federal Reports Act, clearance for the study of human subjects must be obtained from the Office of Management and Budget. This clearance was obtained on October 18, 1978. The OMB number is 158-578010. This study was approved with the understanding that: (1) the surveys were conducted as a pretest of the feasibility of information collection procedures; (2) the information collected will not be used to generalize to either local areas or the nation as a whole. These two caveats were invoked since the sample size was small and a nonprobability sampling method (subject selection) was used.

32

Ċ,

#### TRAINING

Before data collection began at a site, a training session was held to acquaint the facility contact person and data collector(s) with the survey. The session addressed the study objectives; use of the data collection instruments; administrative instructions; quality control procedures; and instructions for collecting, packing, and shipping milk samples to RTI. The training was conducted by an RTI survey specialist from the Survey Operations Center. A detailed manual and necessary field reporting forms were developed for use in these sessions. All training was conducted at the participating facility and lasted approximately 4 hours.

#### SURVEY INSTRUMENTS

Three data collection instruments (see Appendix A) were developed for use by the data collectors. The Participant Consent Form (PCF) was used to introduce the study, explain the study objectives and requirements of participation, present the confidentiality procedures, and obtain consent of participant. This form was signed by the respondent, who retained a copy for her files. The original was attached to the data collection instrument and a second copy was filed in the respondent's hospital record.

The Participant Listing Form (PLF) provided a means of assigning unique numbers to participants at each performance site. The data collector completed this form as each participant was solicited; the form was returned to RTI with the completed questionnaires when work at the site was finished.

The Study Questionnaire (SQ) was the primary data collection instrument. Information concerning participant demographic characteristics, residence information, health data, use of medications, and personal characteristics was obtained through this document. The SQ was administered after patients " had been screened and prior to collection of the milk sample.

#### PARTICIPANT SCREENING

Potential participants (lactating women) were screened by the data collector to determine whether or not they met certain study criteria, which included:

- ability and desire to provide a milk sample of approximately 100 mL.
- permanent residence within the area of interest for at least the preceding 12 months, and
- no travel outside the area of interest for the seven days preceding sample collection.

After potential participants were screened, 10 women who met all the criteria for participation were asked to provide a milk sample and complete the SQ.

### PLF, PCF, AND SQ COMPLETION PROCEDURES

When an eligible person agreed to participate, her name was listed on the PLF and she was assigned a unique participant number. The data collector then read the information contained on the PCF to the participant while she followed along using a second copy. After answering questions or handling problems, the data collector asked the participant to sign the PCF prior to administration of the SQ.

The data collector then completed the SQ by asking the questions directly to the participant. Completion time averaged 15 minutes. An adhesive, computer-generated ID label was affixed to the SQ; a duplicate label was provided to be used for identifying the milk sample bottle.

Each participant was a self-respondent unless she was under 18 years of age, in which case the SQ could have been administered in whole or part to the parent or guardian, but in the participant's presence.

## SAMPLE COLLECTION PROCEDURES

After completion of the SQ, the data collector made the necessary arrangements for the participant to provide the milk sample. A collection bottle was taken from the shipping box and the adhesive ID label was affixed to the bottle. The milk was manually expressed directly into the bottle; no breast pumps or other devices were allowed. Immediately after the milk was collected, the bottle was capped and the sample frozen until all ten samples were collected and ready for shipment to RTI. A minimum of 60 mL (half-full bottle) was required for each sample. If insufficient milk was collected, the sample was discarded and an additional subject was added to the study.

# SHIPPING PROCEDURES

Sample bottles were packed in the shipping container, cooled with dry ice, and sent directly to RTI via Federal Express.

.

.

# SECTION 6 SAMPLE ANALYSIS METHODS

The milk samples were analyzed using gas chromatography/mass spectrometry/computer. Due to the broad range of volatilities, the samples were partitioned into two general classes of compounds: volatiles (e.g. benzene, chloroform) and semivolatiles (e.g. PCNs, PCBs, pesticides). The analytical protocols developed for the volatile and semivolatile components in mother's milk are reproduced in Appendices B and C, respectively. The experiments conducted which led to these protocols are discussed below.

### DEVELOPMENT OF ANALYTICAL PROTOCOL FOR VOLATILES

The headspace purge technique was validated by determining the recovery of four model compounds from raw cow's milk samples. Compounds labeled with carbon-14 were chosen in order to examine both the amounts recovered on Tenax GC and the amounts remaining in purged samples.

Twelve 50 mL cow's milk samples were spiked with methanol solutions of the <sup>14</sup>C-compounds. The analysis for each of the four model compounds was performed in triplicate. In addition, standards were prepared in triplicate by adding the appropriate amount of each compound in solution to a scintillation-counting vial containing 15 mL of Triton X/toluene/Omnifluor scintillation "cocktail." Milk samples were purged as described in Appendix B; Tenax cartridges were stored, and aliquots of the purged samples were retained for oxidation and counting.

Tenax cartridges were desorbed at  $270^{\circ}$ C and 30 mL/min N<sub>2</sub> for 10 minutes into 15 mL of Triton X cocktail in tandem scintillation vials. The vials were capped and refrigerated until scintillation counting. An aliquot (1 mL) of each purged milk sample was oxidized in the Packard Tricarb Sample Oxidizer, which converted all carbon-containing compounds to carbon dioxide and water. The <sup>14</sup>C-carbon dioxide was collected in a trapping solution and

referenced to a quench correction curve. All standards, Tenax samples and oxidized milk samples were counted on a Packard Liquid Scintillation Counter with automatic standardization. Counting data was analyzed by computer to obtain the number of disintegrations per minute (dpm) for each vial. The percent recovery was calculated for each milk sample as shown below:

# % recovery = dpm in first vial + dpm in second vial average dpm added to triplicate standards x 100%

The second of the tandem scintillation vials contained <2 percent of the radioactivity in every case. The amounts of  $^{14}$ C compounds retained in the . purged sample was calculated:

The data are tabulated in Table 12. The recoveries for the volatile chloroform and carbon tetrachloride were about 90 percent, as expected. The less-volatile chlorobenzene and bromobenzene exhibited correspondingly poorer recoveries. These compounds are generally considered only marginally purgeable from water, so these results from milk are not surprising.

The methodology validation experiment indicated that the proposed method of analyzing human milk for volatile organic compounds was adequate. Sensitivity and detection limits were determined by the capabilities of the GC/MS/COMP system.

## DEVELOPMENT OF ANALYTICAL PROTOCOL FOR SEMIVOLATILES

The extraction and cleanup method was validated using six model compounds (2,4-dichlorophenol, pentachlorobenzene, 1,2,3,4-tetrachloronaphthalene, 4,4'-dibromobiphenyl, 2,2',5,5'-tetrabromobiphenyl, and octachloronaphthalene) which were representative of the semivolatile (nonpurgeable) compounds of interest. The compounds were spiked into raw cow's milk at a level of about 1 µg/mL. Raw cow's milk was chosen as the closest readily available analog to mother's milk.

The results are presented in Table 13. The overall mean recovery was about 70 percent and the mean of the relative standard deviations was 22

| Compound <sup>8</sup>                     | b.p. (°C) | Percent<br>Recovered <sup>b</sup> | Percent <sub>b</sub><br>Retained | Percent<br>Accounted for <sup>C</sup> |
|-------------------------------------------|-----------|-----------------------------------|----------------------------------|---------------------------------------|
| <sup>14</sup> C-chloroform                | 62        | 88 <u>+</u> 5                     | 6 <u>+</u> 0.3                   | 94 + 2                                |
| <sup>14</sup> C-carbon tetrachloride      | 76        | 88 <u>+</u> 6                     | 3 <u>+</u> 3                     | 91 <u>+</u> 3                         |
| <sup>14</sup> C-chlorobenzen <del>o</del> | 132       | 63 <u>+</u> 2                     | 26 <u>+</u> 3                    | 89 <u>+</u> 1                         |
| 14<br>C-bromobenzene                      | 156       | 35 <u>+</u> 3                     | 51 <u>+</u> 13                   | 86 <u>+</u> 10                        |

Table 12. METHOD VALIDATION RECOVERY OF SELECTED VOLATILE STANDARDS FROM MILK

<sup>a</sup>80,000-94,000 dpm added to each sample.

<sup>b</sup>Mean <u>+</u> standard deviation of three replicates. <sup>C</sup>Sum of percent recovered and percent retained,

| Compound                            | mp (°C) | bp (°C) | Concentration<br>in Milk<br>(ng/mL) | Mean<br>Recovery<br>(\$) | Standard<br>Deviation<br>(%) | Relative<br>Standard<br>Deviation <sup>b</sup><br>(%) |
|-------------------------------------|---------|---------|-------------------------------------|--------------------------|------------------------------|-------------------------------------------------------|
| 2,4-Dichlorophenol                  | 45      | 207     | 1.12                                | 59                       | 12                           | 20                                                    |
| Pentachlorobenzene                  | 85      | 277     | 1.24                                | 76                       | 19                           | 24                                                    |
| 1,2,3,4-Tetrachloronaphtha-<br>lene | 197     |         | 1.37                                | 59                       | 15                           | 25                                                    |
| 4,4'-Dibromobiphenyl                | 164     | 357     | 1.04                                | 58                       | 19                           | 33                                                    |
| 2,2',5,5'-Tetrabromobiphenyl        |         |         | 0.93                                | 94 <sup>°</sup>          | 10                           | 11                                                    |
| Octachloronaphthalene               | 198     | 441     | 1.08                                | 78 <sup>C</sup>          | 14                           | 17                                                    |

.

۰.

Table 13. METHOD VALIDATION RECOVERY OF SEMIVOLATILE COMPOUNDS SPIKED INTO RAW COW'S MILK

<sup>a</sup>Seven replicates.

<sup>b</sup>Standard deviation divided by mean multiplied by 100.

<sup>C</sup>Six replicates.

percent. These results indicated that refinements in the method should be considered prior to a large-scale study.

Two methods were available for removing fat and other nonvolatile components of the milk extract: Florisil column chromatography and gel permeation chromatography (GPC). Evaluation of the two techniques indicated that the Florisil method was more suitable to this project. The Florisil method was faster and had greater sample capacity than the GPC. In addition, the GPC procedure required the use of a pumping system, UV detector, and expensive, fragile GPC columns. Initial tests with both methods revealed interference problems, although those with GPC were more severe. Using GPC, decabromobiphenyl and hexabromobiphenyl eluted with the fat peak. This was judged totally unsatisfactory. Using Florisil, some fat eluted in the fraction with the compounds of interest, but repetition of the procedure yielded samples sufficiently clean for analysis.

DEPARTURES FROM THE ANALYTICAL PROTOCOLS

#### Emulsions

The formation of an emulsion during the toluene-acetone extraction of semivolatiles (step 6, Appendix C) was an area of concern. Approximately 80 percent of the time an emulsion occurred. To eliminate this, three approaches were taken with reasonable success. The first was to avoid the emulsion formation by swirling rather than shaking the toluene and acetone extracts. The second approach was to break the emulsion by adding  $Na_2SO_4$  and waiting. Both the amounts of  $Na_2SO_4$  and the time required varied. In severe cases emulsions were broken by filtering through glass wool wetted with toluene.

## Lipid Removal Using Florisil

Problems were also encountered during the Florisil cleanup. Some samples had a tendency to solidify while concentrating the ether/pentane eluate, apparently due to abnormally high fat content. This usually occurred when the sample volume reached 1-3 mL. The samples to which this happened were diluted with pentane and eluted through another Florisil column. The Florisil cleanup was repeated until the samples remained liquid at small (<1.0 mL) volumes. Three cleanups was the maximum required for any sample.

#### GC/MS ANALYSIS PROCEDURES

Samples were analyzed by gas chromatography/mass spectrometry using an LKB 2091 EI/CI GC/MS. Operating conditions for the analysis of purgeables is given in Table 14 and the operating conditions for the extractables is given in Table 15. Analysis of the purgeables involved the use of the desorption apparatus described in Appendix B.

Quantitation of the unknowns was accomplished using relative molar responses (RMRs) as discussed in Appendices B and C. The RMRs were calculated from replicate determinations of known amounts of standards and analytes.

#### Qualitative Analysis

Initial identification of compounds by GC/MS involved comparisons of unknown spectra with data compiled in the Eight Peak Index of Mass Spectra<sup>(67)</sup>. If the peaks present in the unknown spectra clearly matched the peaks of the standard compound in the tables and the intensities were about the same, then a positive identification was usually made. If peak intensities of unknowns varied from those of the standards, and there were isomers of the compounds that were not listed in the Eight Peak Index, then the compound was listed as an "isomer."

When the background peaks interfered with the spectrum of an unknown to an extent that made identification uncertain, the compound identification was labeled as "tentative" (tent.). If no standard spectra similar to those of the unknowns appeared in the mass spectral references, but fragments characteristic of a certain class of compounds were identified, tentative identifications were made on the basis of the characteristic fragments and apparent molecular weights. These identifications were also labeled "tent". Usually tentative identifications involved alkyl derivatives or homologs of classes of compounds that were positively identified in the same sample.

Positive identifications, as well as some tentative identifications, often required more detailed investigations of standard spectra in the Registry of Mass Spectral Data<sup>(68)</sup> or standard spectra found in other literature such as scientific journals. The Registry of Mass Spectral Data presents data in the form of histograms rather than as a list of peaks and their intensities. This type of format allowed more subtle differences in mass.spectra to be considered when several similar standard spectra in the

# Table 14. OPERATING CONDITIONS FOR GC/MS ANALYSIS OF PURGEABLES

| Instrument             | LKB 2091                                      |
|------------------------|-----------------------------------------------|
| Column                 | 80m - SE-30 WCOT Capillary Column             |
| Flow                   | 1.7 mL/mfn He                                 |
| Desorption Temperature | 270°C                                         |
| Desorption Time        | 8 min                                         |
| Desorption Flow        | 15 mL/min He                                  |
| Column Temperature     | 30°C for 2 min programmed to 240°C at 4°C/min |
| Scan Range             | 5 + 490 Dalton                                |
| Scan Speed             | 0 + 670 in 2 sec                              |
| Scan Cycle             | 1.7 sec                                       |
| Injector Temperature   | 250°C                                         |
| Accelerating Voltage   | 3500 V                                        |
| Ionizing Energy        | 70 eV                                         |
| Trap Current           | 50 µA                                         |
| Source Temperature     | 210°C                                         |

.

•

# Table 15. OPERATING CONDITIONS FOR THE GC/MS ANALYSIS OF SEMIVOLATILES

-

•

| Instrument           | LKB 2091                             |
|----------------------|--------------------------------------|
| GC Column            | 25m SE-52 WCOT capillary column      |
| Flow                 | 1.5 mL/min with 15:1 split           |
| Column Temperature   | 80°C for 3 min then 8°C/min to 265°C |
| Scan Range           | 5 + 530 Dalton                       |
| Scan Speed           | 2 sec 0 + 670 Dalton                 |
| Scan Cycle           | 2.4 sec                              |
| Injector Temperature | 240°C                                |
| Accelerating Voltage | 3500 V                               |
| Ionizing Energy      | 70 eV                                |
| Trap Current         | 50 µA                                |
| Source Temperature   | 210°C                                |
|                      |                                      |

.

٠,

Eight Peak Index appeared to represent possible candidates for unknown identifications.

A large number of sample components remained unidentified. These unidentified components were labeled "unknown."

In order to quantify the degree of certainty with which a compound has been identified, a "level" heirarchy has been established. The compound identification criteria are listed below:

- Level I <u>Computer Interpretation</u>. The raw data generated from the analysis of samples are subjected to computerized deconvolution/library search. Compounds identified using this approach have the lowest level of confidence. In general Level I is reserved for only those cases where compound verification is the primary intent of the qualitative analysis.
- Level II <u>Manual Interpretation</u>. The plotted mass spectra are manually interpreted and compared to those spectra compiled in a data compendium by a skilled interpreter. In general a minimum of five masses and intensities (±5 percent) should match between the unknown and the library spectrum. This level does not utilize any further information such as retention time since the authentic compound may not be available for establishing retention times.
- Level III <u>Manual Interpretation Plus Retention Time/Boiling Point</u> of <u>Compound</u>. In addition to the effort described under Level II, the retention time of the compound is compared to the retention time that has been derived from previous chromatographic analysis. Also the boiling point of the identified component is compared to the boiling points of other compounds in the near vicinity of the one in question when a capillary coated with a nonpolar phase has been used.
- Level IV <u>Manual Interpretation Plus Retention Time of Authentic Compounds</u>. Under this Level, the authentic compound has been chromatographed on the same capillary column using identical operating conditions and the mass spectrum of the authentic compound is compared to that of the unknown.
- Level V Level IV Plus Independent Confirmation Techniques. This Level utilizes other physical methods of analysis such as GC/Fourier transform infrared spectrometry, GC/high resolution mass spectrometry, or nmr analysis. This Level constitutes the highest degree of confidence in the identification of organic compounds.

Unless otherwise stated, all identifications in this report were Level II.

# SECTION 7 RESULTS

## VOLATILES

All 42 of the purged samples were analyzed by thermal desorption/GC/MS. The mass spectra from selected samples were interpreted manually to determine which compounds should be quantitated. From these data, selected compounds were quantitated in all samples. All data were stored on magnetic tape for subsequent processing and are routinely archived for at least 5 years.

### Qualitative Identifications

Eight samples were interpreted. The results are presented in Appendix D. Samples were selected according to the following criteria. At least two samples were required from each collection site (Jersey City and Bayonne, NJ, were counted as two separate sites). The total ion current chromatograms were inspected and the samples with the greatest number of peaks or those containing very intense unique peaks (not observed in other samples) were selected. For those samples selected, all of the mass spectra were printed and interpreted manually by experienced spectroscopists.

Table 16 summarizes the compounds found and their frequency of occurrence. It is interesting to note that some compounds (<u>e.g.</u> 1,1,1-trichloroethane and hydrocarbons) are common air pollutants, others (<u>e.g.</u>, dibromochloromethane) are common water pollutants, others (dimethyldisulfide, furans, aldehydes) appear to be metabolites, others (chlorofluorocarbons, siloxanes) are known background interferents, and others (iodopentane) are of unknown source.

#### Quantitation

Based upon the qualitative identifications summarized above, nine compounds were selected for quantitation in all of the samples. The results for four compounds are summarized in Table 17. As discussed below, the

| ann an tha an tha an tha an tha an tha an tha | . Sample Number <sup>b</sup> |      |        |          |      |      |      |          |
|-----------------------------------------------------------------------------------------------------------------|------------------------------|------|--------|----------|------|------|------|----------|
| Compound                                                                                                        | 1081                         | 1040 | 1107   | 1115     | 2048 | 2071 | 3053 | 3111     |
| Halogenated Compounds                                                                                           |                              |      |        |          |      |      |      |          |
| chlorodifluoromethane                                                                                           | -                            | •    | +      | -        | -    | -    | -    | -        |
| chlorotrifluoromethane                                                                                          | +                            | +    | +      | -        | +    | -    | +    | -        |
| dichlorodifluoromethane                                                                                         | -                            | -    | +      | -        | -    | +    | -    | -        |
| chloromethane                                                                                                   | -                            | -    | -      | +        | -    | -    | +    | -        |
| chloroethane                                                                                                    | -                            | -    | +      | -        | -    | +    | -    | -        |
| trichlorofluoromethane                                                                                          | +                            | +    | +      | +        | +    | +    | -    | +        |
| dichloroethylene                                                                                                |                              | +    | -      | -        |      | -    | -    | -        |
| Freen 113                                                                                                       | *                            | •    | +      | +        | +    | +    | +    | +        |
| methylene chloride                                                                                              | +                            | +    | •      | •        | +    | •    | +    | •        |
| chloroform                                                                                                      | +                            | +    |        |          |      | •    | -    |          |
| 1 1 1-trichloroethane                                                                                           |                              |      | ÷      | <u>.</u> |      |      |      | <u>.</u> |
| carbon tetrachloride                                                                                            |                              |      | ,<br>, |          | -    | ÷    | -    |          |
| trichlorosthylana                                                                                               | -                            | ÷    | ▲      |          | -    |      | -    |          |
| chloropentane                                                                                                   | Ţ                            | *    | T      | •        | •    |      |      | •        |
| dibromochlomomethese                                                                                            | •                            | *    | -      | •        | -    | -    |      | -        |
| totroablemethuless                                                                                              | •                            | *    | -      | -        | -    |      | -    | -        |
| dichlana and a second second                                                                                    | -                            | •    | +      | •        | +    | -    | -    | •        |
| alchioropropene                                                                                                 | -                            | -    | -      | +        | -    | -    | -    | -        |
| chlorobenzene                                                                                                   | +                            | •    | +      | +        | +    | +    | -    | -        |
| chloronexane                                                                                                    | +                            | +    | +      | -        | +    | -    | -    | -        |
| lodopentarie                                                                                                    | -                            | -    | -      | +        | -    | -    | -    | -        |
| 3-methyl-l-iodobutane                                                                                           | +                            | +    | -      | -        | -    | +    | +    | -        |
| chloroethylbenzene                                                                                              | -                            | -    | -      | +        | -    | -    | -    | -        |
| dibromodichloromethane                                                                                          | -                            | *    | -      | +        | -    | -    | -    | -        |
| dichlorobenzene                                                                                                 | +                            | +    | +      | ÷        | +    | +    | +    | +        |
| chlorodecane                                                                                                    | +                            | -    | -      | +        | -    | -    | -    | -        |
| trichlorobenzene                                                                                                | -                            | -    | -      | -        | -    | +    | -    | -        |
| Aldehydes                                                                                                       |                              |      |        |          |      |      |      |          |
| acetaldehyde                                                                                                    | +                            | -    | +      | -        | +    | +    | -    | -        |
| methylpropanal                                                                                                  | -                            | +    | +      | -        | -    | -    | -    | -        |
| n-butanal                                                                                                       | +                            | -    | +      | +        | -    | +    | +    | +        |
| methylbutanal                                                                                                   | -                            | +    | -      | +        | -    | -    | -    | -        |
| crotonaldehyde                                                                                                  | -                            | -    | -      | +        | -    | -    | •    | -        |
| n-pentanal                                                                                                      | +                            | -    | +      | +        | +    | +    | +    | +        |
| n-hexanal                                                                                                       | +                            | +    | +      | +        | +    | +    | +    | +        |
| furaldehyde                                                                                                     | -                            | +    | -      | +        | -    | -    | +    | -        |
| n-heptanal                                                                                                      | +                            | +    | +      | +        | +    | +    | +    | -        |
| benzaldehyde                                                                                                    | +                            | +    | +      | +        | +    | +    | +    | +        |
| n-octanal                                                                                                       | +                            | -    | +      | +        | -    | -    | +    | -        |
| phenyl acetaldehvde                                                                                             | -                            |      | -      | +        | -    | -    | -    | -        |

# Table 16. SUMMARY OF QUALITATIVE IDENTIFICATIONS OF VOLATILE COMPOUNDS IN MOTHER'S MILK<sup>a</sup>

(continued)

.

|                                               |      |          | Sa   | mple Nur | nber <sup>b</sup> |      |      | - <b>-</b> |
|-----------------------------------------------|------|----------|------|----------|-------------------|------|------|------------|
| Compound                                      | 1081 | 1040     | 1107 | 1115     | 2048              | 2071 | 3053 | 3111       |
| n-nonanal                                     | +    | +        | +    | +        | +                 | -    | +    | -          |
| methyl furaldehyde                            | -    | -        | •    | -        | •                 | -    | +    | -          |
| <u>n</u> -decanal                             | -    | -        | -    | +        | -                 | -    | +    | -          |
| <u>n</u> -undecanal                           | -    | -        | -    | +        | -                 | -    | +    | -          |
| <u>n</u> -dodecanal                           | -    | -        | -    | -        | -                 | -    | +    | -          |
| Ketones                                       |      |          |      |          |                   |      |      |            |
| acetone                                       | +    | +        | +    | +        | +                 | +    | +    | +          |
| methyl ethyl ketone                           | +    | +        | -    | -        | +                 | +    | +    | -          |
| methyl isopropyl ketone                       | -    | -        | -    | +        | -                 | +    | -    | -          |
| methyl vinyl ketone                           | -    | -        | +    | -        | -                 | -    | -    | -          |
| ethyl vinyl ketone                            | +    | +        | +    | +        | -                 | -    | +    | -          |
| 2-pentanone                                   | +    | +        | +    | +        | -                 | -    | -    | -          |
| methyl pentanone                              | -    | -        | +    | +        | -                 | -    | -    | -          |
| methyl hydrofuranone                          | -    | -        | -    | +        | -                 | -    | -    | +          |
| 2-methy1-3-hexanone                           | -    | -        | -    | +        | *                 | -    | -    | -          |
| 4-heptanone                                   | -    | +        | +    | -        | -                 | -    | -    | -          |
| 3-hept anone                                  | +    | -        | +    | -        | +                 | +    | -    | -          |
| 2-heptanone                                   | +    | +        | +    | +        | +                 | +    | -    | -          |
| methyl heptanone                              | -    | <b>.</b> | -    | +        | -                 | +    | -    | •          |
| furyl methyl ketone                           | -    | -        | -    | +        | +                 | -    | -    | -          |
| octanone                                      | +    | -        | -    | +        | -                 | -    | -    | -          |
| acetophenone                                  | +    | +        | +    | +        | +                 | +    | +    | +          |
| 2-nonanone                                    | +    | -        | +    | *        | -                 | +    | •    | +          |
| 2-decanone                                    | -    | -        | -    | +        | -                 | -    | -    | -          |
| alkylated lactone                             | -    | -        | -    | +        | -                 | -    | -    | -          |
| phthalide                                     | -    | -        | +    | -        | -                 | -    | -    | -          |
| Other Oxygenated Isomers                      |      |          |      |          |                   |      |      |            |
| C <sub>4</sub> H <sub>6</sub> O               | -    | ~        | -    | -        | -                 | -    | +    | -          |
| C <sub>4</sub> H <sub>8</sub> O               | -    | -        | -    | •        | -                 | +    | +    | -          |
| C5H100                                        | -    | -        | +    | -        | +                 | +    | +    | +          |
| C <sub>6</sub> H <sub>8</sub> O               | -    | -        | -    | •        | -                 | -    | +    | -          |
| C <sub>6</sub> H <sub>10</sub> O              | -    | -        | +    | -        | •                 | -    | +    | -          |
| $C_4H_6O_2$                                   | +    | -        | -    | -        | -                 | +    | -    | -          |
| C <sub>6</sub> H <sub>12</sub> O              | +    | -        | -    | -        | +                 | ~    | -    | -          |
| C <sub>7</sub> H <sub>12</sub> O              | -    | •        | +    | +        | -                 | •    | +    | +          |
| C <sub>7</sub> H <sub>10</sub> 0              | -    | +        | +    | +        | -                 | -    | -    | -          |
| C <sub>7</sub> H <sub>14</sub> O              | -    | -        | -    | -        | +                 | -    | +    | -          |
| C <sub>6</sub> H <sub>6</sub> O <sub>2</sub>  | -    | -        | -    | -        | -                 | -    | +    | •          |
| C H1402                                       | +    | -        | +    | -        | -                 |      | -    | -          |
| C <sub>0</sub> H <sub>16</sub> O              | +    | -        | -    | -        | +                 | -    | -    | -          |
| C <sub>7</sub> H <sub>8</sub> O <sub>2</sub>  | -    | -        | +    | +        | -                 | -    | +    | -          |
| C <sub>7</sub> H <sub>10</sub> O <sub>2</sub> | -    | •        | -    | •        | -                 | -    | +    | -          |

Table 16 (cont'd.)

•

|                                                | Sample Number <sup>b</sup> |      |          |              |        |      |         |      |
|------------------------------------------------|----------------------------|------|----------|--------------|--------|------|---------|------|
| Compound                                       | 1081                       | 1040 | 1107     | 1115         | 2048   | 2071 | 3053    | 3111 |
| Other Oxygenated Isomers (continued)           |                            |      |          |              |        |      |         |      |
| C9 <sup>H</sup> 180<br>C8 <sup>H</sup> 602     | +<br>-                     | -    | -<br>-   | -            | +<br>- | -    | +<br>+  | -    |
| C <sub>10</sub> H <sub>12</sub> O              | ÷                          | -    | +        | -            | -      | -    | -       | -    |
| C <sub>10</sub> H <sub>14</sub> O              | -                          | -    | -        | -            | +      | -    | -       | +    |
| C <sub>10</sub> H <sub>16</sub> O              | -                          | -    | -        | +            | -      | +    | +       | -    |
| C <sub>10</sub> H <sub>18</sub> O              | -                          | -    | +        | +            | -      | +    | -       | -    |
| C10H20                                         | +                          | -    | -        | -            | -      | -    | +       | -    |
| C, H <sub>20</sub>                             | -                          | -    | -        | -            | +      | -    | -       | -    |
| CoHoO                                          | -                          | -    | -        | -            | _      | -    | +       | -    |
| 982<br>C, H <sub>20</sub> 0                    | -                          | -    | -        | -            | _      | -    | +       | -    |
| C <sub>10</sub> <sup>H</sup> 10 <sup>O</sup> 2 | -                          | -    | -        | -            | -      | -    | +       | -    |
| Alcohols                                       |                            |      |          |              |        |      |         |      |
| methanol                                       | -                          | -    | -        | -            | -      | +    | -       | -    |
| isopropanol                                    | ÷                          | +    | +        | +            | +      | +    | +       | +    |
| 2-methy1-2-propanol                            | -                          | -    | -        | -            | -      | +    | -       | -    |
| <u>n</u> -propanol                             | -                          | -    | -        | <del>_</del> | -      | +    | -       | -    |
| 1-butanol                                      |                            | -    | +        | +            | +      | -    | -       | -    |
| i-pentanoi                                     | -                          | +    | -        | +            | +      | +    | -       | -    |
| Q-IUTIUTY1 alcohol                             | -                          | -    | -        | +            | -      | -    | +       | -    |
| 2-ethyl-1-hexanol                              | -                          | -    | -        | -            | +      | -    | -       | -    |
| pnenol                                         | -                          | -    | +        | -            | -      | +    | -       | -    |
| 2,2,4-trimetnyipentyi-                         | -                          | -    | -        | +            | -      | -    | -       | -    |
| a-terpineol                                    | -                          | -    | <b>*</b> | -            | +      | -    | -       | -    |
| Acids                                          |                            |      |          |              |        |      |         |      |
| acetic ecid                                    | _                          |      | _        | +            | _      | _    | <b></b> | _    |
| decanoic acid                                  | -                          | -    | -        | -            | +      | -    | ,<br>-  | -    |
| Sulfur Compounds                               |                            |      |          |              |        |      |         |      |
| sulfur dioxide                                 | -                          | -    | +        | -            | -      | -    | -       | +    |
| carbon disulfide                               | +                          | +    | +        | +            | +      | +    | +       | +    |
| dimethyl disulfide                             | -                          | +    | +        | +            | -      | +    | +       | · +  |
| carbonyl sulfide                               | -                          | -    | -        | +            | -      | -    | -       | -    |
| -                                              |                            |      |          |              |        |      |         |      |

Table 16 (cont'd.)

|                                              | Sample Number <sup>b</sup> |      |      |      |      |      |      |      |
|----------------------------------------------|----------------------------|------|------|------|------|------|------|------|
| Compound                                     | 1081                       | 1040 | 1107 | 1115 | 2048 | 2071 | 3053 | 3111 |
| Nitrogen Compounds                           |                            |      |      |      |      |      |      |      |
| nitromethane                                 | -                          | -    | +    | -    | -    | -    | -    | -    |
| <sup>C</sup> 5 <sup>H</sup> 6 <sup>N</sup> 2 | -                          | -    | -    | +    | -    | -    | -    | -    |
| C <sub>5<sup>H</sup>8<sup>N</sup>2</sub>     | -                          | -    | -    | +    | -    | -    | -    | -    |
| C4H4N20                                      | -                          | -    | -    | +    | -    | -    | -    | -    |
| methyl acetamide                             | -                          | -    | +    | ~    | -    | -    | -    | +    |
| benzonitrile                                 | -                          | -    | +    | +    | -    | +    | -    | -    |
| methyl cinnoline                             | -                          | -    | -    | +    | -    | -    | -    | -    |
| Esters                                       |                            |      |      |      |      |      |      |      |
| vinyl propionate                             | -                          | +    | +    | +    |      | -    | -    | -    |
| ethyl acetate                                | -                          | -    | -    | -    | -    | +    | -    | -    |
| ethyl- <u>n</u> -caproate                    | -                          | -    | -    | -    | -    | +    | -    | -    |
| methyl caprylate                             | -                          | -    | -    | -    | -    | +    | -    | -    |
| ethyl caprylate                              | -                          | -    | -    | -    | -    | +    | -    | -    |
| isoamyl formate                              | -                          | +    | -    | -    | -    | -    | -    | -    |
| methyl decanoate                             | -                          | -    | -    | -    | -    | +    | -    | -    |
| ethyl decanoate                              | -                          | -    | -    | -    | -    | +    | -    | -    |
| Ethers                                       |                            |      |      |      |      |      |      |      |
| dimethyl ether                               | -                          | +    |      |      | -    | -    | -    | -    |
| <u>p-dioxane</u>                             | -                          | -    | +    | -    | -    | -    | -    | -    |
| dihydropyran                                 | -                          | -    | +    | +    | -    | -    | -    | -    |
| poxide                                       |                            |      |      |      |      |      |      |      |
| 1,8-cineole                                  | -                          | -    | -    | +    | ~    | -    | -    | -    |
| urans                                        |                            |      |      |      |      |      |      |      |
| furan                                        | ÷                          | -    | -    | -    | -    | -    | ÷    | -    |
| terrahydrofuran                              | -                          | -    | +    | -    | -    | -    | -    | -    |
| methyl furan                                 | -                          | -    | +    | +    | -    | -    | +    | -    |
| methyl tetrahydrofuran                       | -                          | +    | -    | -    | -    | -    | -    | -    |
| ethylfuran                                   | -                          | +    | +    | +    | -    | -    | -    | -    |
| dimethylfuran                                | -                          | -    | -    | +    | -    | -    | -    | +    |
| 2-vinylfuran                                 | -                          | -    | -    | -    | -    | -    | +    | -    |
| furaldehyde                                  | -                          | -    | -    | +    | -    | -    | +    | -    |
| 2- <u>n</u> -butylfuran                      | -                          | +    | -    |      | -    | -    | -    | -    |
| 2-pentylfuran                                | +                          | +    | +    | +    | +    | +    | +    | -    |
| methylfuraldehyde                            | -                          | -    | -    | -    | -    | -    | +    | -    |
| furyl methyl ketone                          | -                          | -    | -    | +    |      | -    | -    | -    |
| a-furfuryl elcohol                           | -                          | -    | -    | +    | -    | -    | +    | -    |
| benzofuran                                   | -                          | -    | +    | +    | -    | +    |      | -    |

Table 16 (cont'd.)

-

|                                 |      | Sample Number <sup>b</sup> |      |      |      |      |      |      |  |
|---------------------------------|------|----------------------------|------|------|------|------|------|------|--|
| Compound                        | 1081 | 1040                       | 1107 | 1115 | 2048 | 2071 | 3053 | 3111 |  |
| Alkanes                         |      |                            |      |      |      |      |      |      |  |
| с <sub>з</sub> н <sub>в</sub>   | -    | -                          | +    | -    | -    | -    | -    | -    |  |
| с <sub>4</sub> н <sub>10</sub>  | +    | +                          | +    | -    | +    | +    | +    | -    |  |
| C5H12                           | +    | +                          | +    | +    | +    | +    | +    | +    |  |
| C6 <sup>H</sup> 14              | +    | +                          | +    | +    | +    | +    | +    | +    |  |
| C7H16                           | +    | +                          | +    | +    | -    | +    | +    | +    |  |
| C <sub>8</sub> H <sub>18</sub>  | +    | +                          | +    | +    | +    | -    | +    | +    |  |
| C9H20                           | +    | +                          | +    | +    | +    | +    | +    | +    |  |
| C <sub>10</sub> H <sub>22</sub> | +    | -                          | +    | +    | +    | +    | +    | +    |  |
| C <sub>11</sub> H <sub>24</sub> | +    | -                          | +    | +    | +    | +    | +    | +    |  |
| C <sub>12</sub> H <sub>26</sub> | +    | -                          | +    | +    | +    | +    | +    | +    |  |
| C <sub>13</sub> H <sub>28</sub> | -    | +                          | ~    | •    | +    | -    | +    | -    |  |
| C <sub>14</sub> H <sub>30</sub> | -    | -                          | -    | +    | +    | -    | +    | -    |  |
| C <sub>15</sub> H <sub>32</sub> | -    | -                          | -    | +    | -    | -    | +    | -    |  |
| Alkenes                         |      |                            |      |      |      |      |      |      |  |
| с <sub>а</sub> н <sub>б</sub>   | +    | -                          | -    | -    | -    | +    | -    | -    |  |
| C <sub>4</sub> H <sub>8</sub>   | +    | -                          | +    | -    | +    | +    | -    | +    |  |
| C <sub>5</sub> H <sub>10</sub>  | -    | -                          | +    | -    | ÷    | -    | -    | +    |  |
| C <sub>6</sub> H <sub>12</sub>  | +    | +                          | +    | +    | +    | +    | +    | ÷    |  |
| С <sub>7</sub> Н <sub>14</sub>  | +    | +                          | +    | 4    | +    | +    | +    | +    |  |
| C <sub>8</sub> H <sub>16</sub>  | +    | +                          | +    | +    | +    | +    | +    | +    |  |
| C9H18                           | +    | +                          | +    | ÷    | -    | +    | +    | +    |  |
| C10H20                          | -    | +                          | +    | +    | ÷    | +    | +    | -    |  |
| C <sub>11</sub> H <sub>22</sub> | +    | +                          | +    | +    | -    |      | +    | -    |  |
| C <sub>12</sub> H <sub>24</sub> | -    | -                          | +    | -    | -    | -    | -    | -    |  |
| C <sub>13</sub> R <sub>26</sub> | -    |                            | -    | -    | -    | -    | +    | -    |  |
| isoprene                        | -    | +                          | -    | -    | -    | -    | -    | -    |  |
| Alkynes                         |      |                            |      |      |      |      |      |      |  |
| с <sub>5</sub> н <sub>8</sub>   | -    | -                          | -    | ~    | -    | +    | -    | +    |  |
| C6H10                           | ~    | -                          | -    | -    | +    | -    | -    | -    |  |
| C <sub>7</sub> H <sub>12</sub>  | +    | -                          | -    | -    | +    | •    | +    | -    |  |

Table 16 (cont'd.)

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sample Number <sup>b</sup> |          |          |          |        |            |        |      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------|----------|----------|--------|------------|--------|------|
| Compound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1081                       | 1040     | 1107     | 1115     | 2048   | 2071       | 3053   | 3111 |
| Alkynes (continued)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            |          |          |          |        |            |        |      |
| C <sub>8</sub> H <sub>14</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                          | +        | -        | +        | -      | -          | +      |      |
| C9H16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | +                          | -        | -        | +        | +      | -          | +      | -    |
| C10 <sup>H</sup> 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                          | -        | +        | +        | -      | ~          | -      | -    |
| C <sub>12</sub> H <sub>22</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                          | -        | -        | +        | -      | ~          | -      | -    |
| Cyclic Hydrocarbons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            |          |          |          |        |            |        |      |
| cyclopentane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +                          | +        | +        | ÷        | -      | +          | -      | +    |
| methylcyclopentane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | +                          | -        | +        | -        | +      | +          | +      | +    |
| cyclohexane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | +                          | +        | +        | -        | +      | +          | -      | -    |
| ethylmethylcyclohexane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                          | -        | +        | -        | -      | -          | -      | -    |
| C <sub>10</sub> H <sub>14</sub> isomers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | +                          | -        | -        | -        | -      | -          | -      | -    |
| C <sub>10</sub> H <sub>16</sub> isomers (other)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +                          | +        | -        | -        | +      | +          | -      | -    |
| limonene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | +                          | +        | +        | +        | +      | +          | +      | +    |
| methyldecalin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                          | -        | +        | -        | -      | -          | -      | -    |
| <b>a-pinene</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                          | -        | +        | -        | -      |            | •      | -    |
| camphene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                          |          | -        | -        | -      | +          | -      | -    |
| camphor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                          | -        | -        | -        | -      | +          | -      | -    |
| Aromatics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            |          |          |          |        |            |        |      |
| benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | +                          | +        | +        | +        | +      | +          | +      | +    |
| toluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | +                          | +        | +        | +        | +      | +          | +      | +    |
| ethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +                          | +        | +        | +        | +      | +          | +      | +    |
| xylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | +                          | +        | +        | +        | +      | +          | +      | +    |
| phenylacetylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                          | -        | -        | +        | -      | -          | -      | -    |
| styrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | +                          | +        | +        | ÷        | +      | +          | +      | +    |
| benzaldehyde                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +                          | +        | +        | ÷        | +      | +          | +      | +    |
| C <sub>3</sub> -alkylbenzene isomers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | +                          | +        | +        | +        | +      | +          | +      | +    |
| C <sub>2</sub> -alkylbenzene isomers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                          | ÷        | +        | +        | +      | +          | +      | -    |
| me Lny 18 Ly rene<br>14 me thuil atumana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            | -        | +        | -        | -      | +          | -      | -    |
| dimethyistyrene<br>Caaplanlboncoor isoscor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | +                          | ÷        |          | <b>∓</b> | +      | Ŧ          | -      | -    |
| -2-4TKATD4USGUE 1800612                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                          | -        | <b>T</b> | <b>T</b> | -      | -          | -      | -    |
| C _sltulbaseas framess                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | T<br>_                     | <b>T</b> | -        |          | -<br>- | <b>T</b> ' | т<br>- | -    |
| 6 Contraction of the second se | -                          | -        | -        | Ŧ        | -      | -          | -      | -    |

Table 16 (cont'd.)

<sup>a</sup> Arranged by class in approximate elution order. See Appendix D for sampleby-sample identifications. + = present; - = not identified in sample.

b Participant code number.

| Site            | Sample<br>Number <sup>a</sup> | Chloroform <sup>b</sup> | Tetrachloro-<br>ethylene | Chlorobenzene | Dichloro-<br>benzene <sup>c</sup> |
|-----------------|-------------------------------|-------------------------|--------------------------|---------------|-----------------------------------|
| Bayonne, NJ     | 1016                          | _d                      | 1.5                      | 0.2           | 6.7                               |
|                 | 1032                          | 0.3                     | 1.5                      | 0.1           | 9.1                               |
|                 | 1040                          | 0.1                     | 1.1                      | 0.1           | 66                                |
|                 | 1057                          | 0.7                     | 0.9                      | 0.1           | 0.2                               |
|                 | 1073                          | 0.7                     | 3.8                      | 0.1           | 2.2                               |
|                 | 1081                          | 1.3                     | 6.3                      | 0.1           | 32                                |
| Jersey City, NJ | 1024                          | 13                      | 43                       | 0.1           | 2.8                               |
| • •             | 1107                          | 17                      | 7.4                      | 0.2           | 68                                |
|                 | 1115                          | 1.7                     | 8.1                      | 0.3           | 49                                |
|                 | 1123                          | 20                      | 17                       | 0.1           | 2.2                               |
|                 | 1164                          | 65                      | 4.0                      | 0.1           | 0.9                               |
| Pittsburgh, PA  | 2014                          | 0.9                     | 0.8                      | 0.2           | 0.2                               |
| -               | 2022                          | 1.5                     | 1.8                      | 0.1           | 1.1                               |
|                 | 2048                          | 0.6                     | 1.8                      | 0.1           | 8.9                               |
|                 | 2055                          | 0.8                     | 1.0                      | 0.05          | 0.7                               |
|                 | 2063                          | 0.6                     | 1.6                      | 0.1           | 3.1                               |
|                 | 2071                          | 1.2                     | 1.0                      | 0.1           | 1.4                               |
|                 | 2089                          | 0.7                     | 26                       | 0.2           | 0.5                               |
|                 | 2097                          | 6.7                     | 1.8                      | -             | 0.3                               |
|                 | 2105                          | 2.8                     | 1.3                      | 0.4           | 1.1                               |
|                 | 2113                          | 1.2                     | 0.7                      | 0.1           | 0.4                               |
|                 | 2121                          | 0.8                     | 2.4                      | TR®           | 2.0                               |
|                 | 2139                          | 0.6                     | 0.7                      | 0.1           | 0.9                               |
| Baton Rouge, LA | 3012                          | 2.9                     | 0.1                      | 0.3           | 4.2                               |
| •               | 3020                          | 0.7                     | 0.5                      | 0.1           | 0.6                               |
|                 | 3038                          | 0.8                     | 1.7                      | 0.2           | 1.3                               |
|                 | 3046                          | 21                      | 2.5                      | 0.1           | 2.2                               |

Table 17. VOLATILES QUANTITATED IN MOTHER'S MILK SAMPLES (ng/mL)

\_\_\_\_\_

(continued)

٠

.

.

52

.

• •

| Site                        | Sample<br>Number <sup>a</sup> | Chloroform <sup>b</sup> | Tetrachloro-<br>ethylene | Chlorobenzene | Dichloro-<br>benzene <sup>c</sup> |
|-----------------------------|-------------------------------|-------------------------|--------------------------|---------------|-----------------------------------|
|                             | 3053                          | 0.3                     | 0.4                      | 0.2           | 1.8                               |
|                             | 3079                          | 0.8                     | 0.6                      | 0.1           | 0.2                               |
|                             | 3087                          | 0.7                     | 0.4                      | 0.2           | 5.2                               |
|                             | 3095                          | 1.3                     | 1.0                      | 0.3           | 4.2                               |
|                             | 3103                          | 0.6                     | 0.2                      | 0.1           | >22                               |
|                             | 3111                          | 1.8                     | 0.5                      | -             | 44                                |
| Charleston, WV <sup>g</sup> | 4010                          | 5.0                     | 1,2                      | 0.1           | 0.7                               |
| r                           | 4028                          | 7.2                     | 1.4                      | 0.2           | 1.9                               |
|                             | 4036                          | 7.5                     | 3.9                      | 10            | 0.2                               |
|                             | 4051                          | 8.2                     | 0.6                      | 0.2           | 1.1                               |
|                             | 4069                          | -                       | 0.4                      | 0.1           | 3.6                               |
|                             | 4085                          | 5.3                     | 0.4                      | -             | 3.8                               |
|                             | 4093                          | 12                      | 1.0                      | 0.1           | 0.04                              |
|                             | 4101                          | 8.7                     | 1.0                      | 0.1           | 26                                |
|                             | 4119                          | 11                      | >19f                     | 0.04          | 1.4                               |

.

Table 17 (cont'd)

<sup>a</sup>Participant code number.

6

<sup>b</sup>See text for caveats with respect to chloroform.

<sup>c</sup>All isomers summed.

<sup>d</sup>Not detected.

<sup>e</sup>Trace.

f. Instrument saturated.

<sup>g</sup>Sample 4044 lost due to instrumental malfunction.

quantitation of the other five compounds is not reported, since the levels in milk were not judged sufficiently greater than background to be reliable.

Upon inspection, it is obvious that most values are low relative to only a few high "outliers." These high values suggest that there is a range of levels of these compounds which may correlate with exposure. These results were analyzed statistically to determine if any of the values correlated significantly. As can be seen in Table 18, the arithmetic mean and median values generally are quite different. The arithmetic mean is skewed toward the high end, generally due to one or two relatively high values. A more realistic representation of the central data is the geometric mean. These geometric mean values were tested for their significance (<u>i.e.</u>, are the geometric means significantly different from site to site?). Table 19 summarizes this data. From this table, it appears that samples from Jersey City have significantly higher levels of chloroform, tetrachloroethylene, and dichlorobenzene than the other study samples. Charleston samples appear to have significantly higher levels of chloroform, and Bayonne samples appear to have significantly higher levels of dichlorobenzene.

To test if any of the compound levels were related, the Spearman correlation coefficients (nonparametric correlation based on the sample, designed to lessen the weight of a single high outlier) were determined as shown in Table 20. There does not appear to be any compound-to-compound correlation among the subjects.

In interpreting these data, it must be remembered that this is a very small data set. Therefore these data should not be used to extrapolate to the city or area from which the samples were collected.

## Quality Control

Table 21 presents the quality control results for chloroform, tetrachloroethylene, chlorobenzene, and dichlorobenzene. The very high recovery of chloroform from the controls indicates either a miscalculation of the amount actually spiked or contamination of the samples used as controls. Since the procedural blanks contained about 15 times less chloroform, the former explanation is most reasonable. However, the chloroform values reported in Table 17 must be interpreted subject to the following

| Site                                                  | Chloroform                        | Tetrachloro-<br>ethylene         | Chloro-<br>benzene                 | Dichloro-<br>benzene             |
|-------------------------------------------------------|-----------------------------------|----------------------------------|------------------------------------|----------------------------------|
| Bayonne, NJ                                           |                                   |                                  |                                    |                                  |
| Maximum<br>Mean <sup>b</sup><br>Median<br>S.D.<br>n   | 1.3<br>0.52<br>0.5<br>0.48<br>6   | 6.3<br>2.52<br>1.5<br>2.13<br>6  | 0.2<br>0.12<br>0.004<br>0.1<br>6   | 66<br>19.37<br>7.9<br>25.54<br>6 |
| Jersey City, NJ                                       |                                   | -                                | -                                  |                                  |
| Maximum<br>Mean <sup>b</sup><br>Median<br>S.D.<br>n   | 65<br>23.34<br>17<br>24.3<br>5    | 43<br>15.9<br>8.1<br>15.9<br>5   | 0.3<br>0.16<br>0.1<br>0.089<br>5   | 68<br>24.48<br>2.8<br>31.69<br>5 |
| Pittsburgh, PA                                        |                                   |                                  |                                    |                                  |
| Maximum<br>Mean <sup>b</sup><br>Median<br>S.D.<br>n   | 6.7<br>1.53<br>0.85<br>1.74<br>12 | 26<br>3.41<br>1.45<br>7.13<br>12 | 0.4<br>0.12<br>0.1<br>0.11<br>12   | 8.9<br>1.71<br>1<br>2.41<br>12   |
| Baton Rouge, LA                                       |                                   |                                  |                                    |                                  |
| Maximum<br>Mean <sup>b</sup><br>Median<br>S.D.<br>n   | 21<br>3.09<br>0.8<br>6.34<br>10   | 2.5<br>0.79<br>0.5<br>0.75<br>10 | 0.3<br>0.16<br>0.15<br>0.096<br>10 | 44<br>8<br>3.2<br>13.98<br>10    |
| Charleston, WV                                        |                                   |                                  |                                    |                                  |
| Maximum<br>Mean <sup>b</sup><br>Median<br>S.D.<br>D   | 12<br>7.21<br>7.5<br>3.55<br>9    | >19<br>3.21<br>1<br>6.02<br>9    | 10<br>1.20<br>0.1<br>3.30<br>9     | 26<br>4.30<br>1.4<br>8.25<br>9   |
| Overall                                               |                                   |                                  |                                    |                                  |
| Maximum<br>Mean <sup>D</sup><br>Median ·<br>S.D.<br>N | 65<br>5.57<br>1.25<br>10.9<br>42  | 43<br>4.10<br>1.25<br>8.15<br>42 | 10<br>0.37<br>0.1<br>1.53<br>42    | 68<br>9.15<br>1.95<br>17.3<br>42 |

Table 18. SUMMARY STATISTICS FOR VOLATILE COMPOUNDS BY SITE<sup>8</sup>

<sup>a</sup>Maximum, mean and median values are ng/mL.

<sup>b</sup>Arithmetic mean.

.

۶

-

|                           | Geometric Mean (ng/mL) |                       |                   |                 |  |  |  |  |
|---------------------------|------------------------|-----------------------|-------------------|-----------------|--|--|--|--|
| Site                      | Chloroform             | Tetrach loroethy lene | Chlorobenzene     | Dichlorobenzene |  |  |  |  |
| Bayonne                   | 0.45                   | 2.09                  | 0.12              | 8.33            |  |  |  |  |
| Jorsey City               | 14.7                   | 11.5                  | 0.16              | 8.55            |  |  |  |  |
| Pittsburgh                | 1.23                   | 1.82                  | 0.12              | 1.21            |  |  |  |  |
| Baton Rouge               | 1.53                   | 0.67                  | 0.15              | 3.83            |  |  |  |  |
| Charleston                | 5,92                   | 1.65                  | 0.42              | 1.98            |  |  |  |  |
| Significance <sup>a</sup> | 0.01                   | 0.03                  | N.S. <sup>b</sup> | 0.05            |  |  |  |  |

## Table 19. SIGNIFICANCE OF THE DIFFERENCES IN THE GEOMETRIC MEANS BY SITE

----

<sup>a</sup>0.01 implies 99 percent confidence that the numbers are statistically different, while 0.05 implies 95 percent confidence.

.

٠

<sup>b</sup>Not significant.

.

56

| •                        | Chloroform | Tetrachloro-<br>ethylene | Chlorobenzene      | Dichloro-<br>benzene |
|--------------------------|------------|--------------------------|--------------------|----------------------|
| Chloroform               | 1.0        | 0.37 <sup>ª</sup>        | -0.02 <sup>b</sup> | -0.13 <sup>b</sup>   |
| Tetrachloro-<br>ethylene |            | 1.0                      | 0.007 <sup>b</sup> | 0.05 <sup>b</sup>    |
| Chlorobenzene            |            |                          | 1.0                | 0.03 <sup>b</sup>    |
| Dichloro-<br>benzene     |            |                          |                    | 1.0                  |

# Table 20. SPEARMAN CORRELATION COEFFICIENTS FOR VOLATILE ORGANICS FOUND IN MOTHER'S MILK

<sup>a</sup>Significant at 0.05 level (95 percent confidence).

<sup>b</sup> Not significant Sample size = 42

| Type of Sample             | Chloroform         | Tetrachloroethylene | Chlorobenzene | Dichlorobenzene |
|----------------------------|--------------------|---------------------|---------------|-----------------|
| Blanks <sup>a</sup>        |                    |                     |               |                 |
| n                          | 7                  | 7                   | 7             | 17              |
| Mean (ng/mL) <sup>b</sup>  | 1.2                | 0.22                | 0.03          | 0.12            |
| S.D.                       | 1.3                | 0.11                | 0.025         | 0.19            |
| RSD (Z)                    | 108                | 49                  | 84            | 159             |
| Controls <sup>C</sup>      |                    |                     |               |                 |
| n                          | 8 .                | 8                   | 8             | ođ              |
| Mean Recovery <sup>e</sup> | 14.02 <sup>f</sup> | 1.12                | 0.62          | <u> </u>        |
| S.D.                       | 8.20               | 0.41                | 0.34          | -               |
| RSD (%)                    | 58                 | 37                  | 55            | -               |

#### Table 21. QUALITY CONTROL RESULTS FOR VOLATILES IN MILK

Blanks consisted of two field water blanks and five water blanks purged with the milk samples to monitor procedural background. No difference between the two types of blanks was observed.

<sup>b</sup> Arithmetic mean.

<sup>c</sup> Controls consisted of two spiked raw cow's milk samples carried to the field and returned, two spiked raw cow's milk samples stored in the laboratory, two spiked water samples carried to the field and returned, and two spiked water samples stored in the laboratory. No major differences were observed between the four types of samples. Samples were spiked at 30-90 ng/volume purged (or about 1 ng/mL).

<sup>d</sup> Not included in control spiking solution.

<sup>e</sup> 1.0 = 100 percent recovery.

f Extremely high recovery probably a result of improper loading of controls.

considerations: the mean reported levels in the samples were only 4.9 times the blank levels; the recovery from controls was about 1400 percent, invalidating the recovery study; and chloroform is known to be a laboratory atmospheric contaminant.

The compounds presented in Table 17 represented significant levels above the background in blanks. Several other compounds were quantitated that did not exhibit substantial concentrations. These compounds, with the ratio of the mean in the samples to the mean in the background given in parenthesis, were: 1,1,1-trichloroethane (1:1), benzene (2:1), toluene (2:4), trichloroethylene (1:2) and carbon tetrachloride (1:4). These levels in the samples cannot be reliably assigned to either the milk sample or to laboratory contamination. If these compounds are present in milk, they are very low and cannot be regarded as significant, given the limitations of the technique employed. Apparently, mother's milk does not represent a bioconcentration matrix for these compounds.

### SEMIVOLATILES

Three samples were fully interpreted, as presented in Appendix E. As can be seen from the data, few compounds of interest were observed in the mass spectra. The data were searched on the GC/MS data system for target compounds (PCNs, PBBs and PCBs) using single ion plots called up from the full data set. No evidence for any of these compounds was observed at a detection limit of about 20 ppb. DDE was quantitated in five samples as shown in Table 22. These values were in the range generally reported by previous investigators (see Tables 2 - 4). Since none of the target compounds were present in detectable quantities, no further identification or quantitation was attempted.
|                |                  | ······································ | ng/mL Milk          |
|----------------|------------------|----------------------------------------|---------------------|
| Site           | Sample<br>Number | DDE                                    | Tetrachlorobiphenyl |
| Pittsburgh     | 2105             | 45                                     | иD <sub>p</sub>     |
| Pittsburgh     | 2121             | 73                                     | Tc                  |
| Charleston, WV | 4069             | 107                                    | ND                  |
| Charleston, WV | 4085             | 38                                     | ND                  |
| Charleston, WV | 4093             | 91                                     | ND                  |
|                | d<br>Mean        | 71                                     | -                   |
|                | S.D.             | 29                                     |                     |
|                | RSD (%)          | 42                                     |                     |
|                | Median           | 73                                     |                     |

| Table 22. | . DDE AND TETRACHLOROBIPHENYL LEVELS 1 | IN SELECTED |
|-----------|----------------------------------------|-------------|
|           | MOTHER'S MILK SAMPLES                  |             |

а.

.

<sup>a</sup> Samples selected as having the most intense total ion current chromatograms.

<sup>b</sup> Not detected.

c Trace.

.

<sup>d</sup> Arithmetic mean.

#### REFERENCES

- Ziegel, E. and C. C. Van Blarcom, <u>Obstetric Nursing</u>, 6th ed., Macmillan, New York, 651 (1972).
- Strassman, S. C. and F. W. Kutz, "Insecticide Residues in Human Milk from Arkansas and Mississippi, 1973-74," Pest. Hon. J., <u>10</u>, 130-133 (1977).
- Savage, E. P., <u>et al.</u>, "Organochlorine Pesticide Residues and Polychlorinated Biphenyls in Human Milk 1971-72," Pest. Mon. J., <u>7</u>, 1-3 (1973).
- Kroger, M., "Insecticide Residues in Human Milk," J. Pediat., <u>80</u>, 401-405 (1972).
- Curley, A. and R. Kimbrough, "Chlorinated Hydrocarbon Insecticides in Plasma and Milk of Pregnant and Lactating Women," Arch. Environ. Health, 18, 156-164 (1969).
- Dyment, P. G., <u>et al.</u>, "Relationship Between Levels of Chlorinated Hydrocarbon Insecticides in Human Milk and Serum," Bull. Environ. Contamin. Toxicol., <u>6</u>, 449-452 (1971).
- Hagyard, S. B., W. H. Brown, J. W. Stull, F. M. Whiting, and S. R. Kemberling, "DDT and DDE Content of Human Milk in Arizona," Bull. Environ. Contamin. Toxicol., <u>9</u>, 169-172 (1973).
- Quinby, G. E., J. F. Armstrong and W. F. Durham, "DDT in Human Milk," Nature, <u>207</u>, 726-728 (1965).
- Laug, E. P., F. M. Kunze and E. S. Prickett, "Occurrence of DDT in Human Fat and Milk," Arch. Indust. Hyg., <u>3</u>, 245-246 (1951).
- Wilson, D. J., <u>et al.</u>, "DDT Concentrations in Human Milk," Am. J. Dis. Child, <u>125</u>, 814-817 (1973).
- 11. Woodard, B. T., B. B. Ferguson and D. J. Wilson, "DDT Levels in Milk of Rural Indigent Blacks," EPA-600/1-76-032 (1976).

- Savage, E. P., <u>et al</u>., "A Search for Polychlorinated Bipbenyls in Human Milk in Rural Colorado," Bull. Environ. Contamin. Toxicol., 9, 222-226 (1973).
- Petrakis, N. L., L. D. Gruenka, T. C. Beelen, N. Castagnoli, Jr., and J. C. Craig, "Nicotine in Breast Fluid of Nonlactating Women," Science, <u>199</u>, 303-305 (1978).
- Bakken, A. F. and M. Seip, "Insecticides in Human Breast Milk," Acta Paediatr. Scan., 65, 525-529 (1976).
- Knoll, W. and S. Jayaraman, "Zur Kontamination Von Humanmilch mit chlorierten Kohlenwasserstoffer," Die Nahrung, <u>17</u>, 599-615 (1973).
- 16. Psendorfer, Von H., "Rüchstände von Organochlorpestiziden (DDT u.a.) und polychlorierten Biphenylen (PCBs) in der Muttermilch," Wiener Klinische Wochenschrift, <u>87</u>, 731-736 (1976).
- Th. Tuinstra, L. G. M., "Organochlorine Insecticide Residues in Human Milk in the Leiden Region," Neth. Milk Diary J., <u>25</u>, 24-32 (1971).
- Polishuk, Z. W., M. Ron, M. Wasserman, S. Cucas, O. Wasserman, and C. Lemesch, "Organochlorine Compounds in Human Blood Plasma and Milk," Pest. Mon. J., <u>10</u>, 121-129 (1977).
- Ritchy, W. R., G. Savary and K. A. McCulley, "Organochlorine Insecticide Residues in Human Milk, Evaporated Milk, and Some Milk Substitutes in Canada," Can. Publ. Health J., 63, 125-132 (1972).
- Egan, H., R. Goulding, J. Roburn and J. O'G. Tatton, "Organo-chlorine Pesticide Residues in Human Fat and Human Milk," Brit. Med. J., 2, 66-69 (1965).
- Newton, K. G. and N. C. Greene, "Organochlorine Pesticide Residue Levels in Human Milk -- Victoria, Australia 1970," Pest. Mon. J., <u>6</u>, 4-8 (1972).
- Graca, I., A. M. S. Silva Fernandes and H. C. Mourso, "Organochlorine Insecticide Residues in Human Milk in Portugal," Pest. Mon. J., <u>8</u>, 148-156 (1974).
- Musial, C. J., O. Hutzinger, V. Zitko and J. Crocker, "Presence of PCB, DDE, and DDT in Human Milk in the Providences of New Brunswick and Nova Scotia, Canada," Bull. Environ. Contamin. Toxicol., <u>12</u>, 258-267 (1974).

- 24. Mes. J. and D. J. Davies, "Presence of Polychlorinated Biphenyl and Organochlorine Pesticide Residues and the Absence of Polychlorinated Terphenyls in Canadian Human Milk Samples," Bull. Environ. Contam. Toxicol., <u>21</u>, 381-387 (1979).
- Stacey, C. I. and B. W. Thomas, "Organochlorine Pesticide Residues in Human Milk, Western Australia -- 1970-71," Pest. Mon. J., <u>9</u>, 64-66 (1975).
- 26. Van House Holdrinet, M., H. E. Braun, R. Frank, G. J. Stopps, M. S. Smout, and J. W. McWade, "Organochlorine Residues in Human Adipose Tissue and Milk from Ontario Residents," Can. J. Pub. Health, <u>68</u>, 74-80 (1977).
- Winter, M., M. Thomas, S. Wernick, S. Levin and M. T. Farver, "Analysis of Pesticide Residues in 290 Samples of Guatemalan Mother's Milk," Bull. Environ. Contamin. Toxicol., <u>16</u>, 652-657 (1976).
- "Criteria for a Recommended Standard...Occupational Exposure to Ethylene Dichloride (1,2-dichloroethane)," HEW Publ. No. (NIOSH) 76-139 (March 1976).
- 29. Kover, F. D., Environmental Hazard Assessment Report. Chlorinated Naphthalenes. EPA 560/8-75-001 (December 1975).
- 30. Erickson, M. D., R. A. Zweidinger, L. C. Michael and E. D. Pellizzari, "Environmental Monitoring Near Industrial Sites: Polychloronaphthalenes," EPA-560/6-77-019 (1977).
- 31. Erickson, M. D., L. C. Michael, R. A. Zweidinger, and E. D. Pellizzari, "Development of Methods for Sampling and Analysis of Polychlorinated Naphthalenes in Ambient Air," Environ. Sci. Technol., <u>12</u>, 927-931 (1978).
- 32. Erickson, M. D., L. C. Michael, R. A. Zweidinger and E. D. Pellizzari, "Sampling and Analysis for Polychlorinated Naphthalenes in the Environment," JAOAC, <u>61</u>, 1335-1346 (1978).
- 33. Erickson, M. D., L. C. Michael, R. A. Zweidinger, and E. D. Pellizzari, "Development of Methods for Sampling and Analysis of Polychlorinated Naphthalenes in Ambient Air," 1977 Annual Meeting, American Chemical Society, Chicago, IL (August 31, 1977).

- 34. Erickson, M. D., L. C. Michael, R. A. Zweidinger, and E. D. Pellizzari, "Sampling and Analysis for Polychlorinated Naphthalenes in the Environment," 1977 Annual Meeting AOAC, Washington, DC (October 20, 1977).
- 35. Unpublished data, E. Roessler, Borough of Bridgeville, PA (1976).
- 36. 1977 Directory of Chemical Producers-USA, Chemical Information Services, Stanford Research Inst., Menlo Park, CA (1977).
- 37. Environmental Sciences and Engineering, "Trip Report for Sampling of Polybrominated Biphenyls (PBBs)," submitted to OTS, EPA, Washington, DC, Contract No. 68-01-3248 (April 1977)).
- 38. Mumma, C. E. and D. D. Wallace, "Survey of Industrial Processing Data. Task I - Pollution Potential of Polybrominated Biphenyls," EPA-560/3-75-004 (June 1975).
- Unpublished data, E. J. Londres, New Jersey Dept. of Environmental Protection via G. E. Parris, OTS, EPA, Washington, DC (1977).
- Erickson, M. D., R. A. Zweidinger, and E. D. Pellizzari, "Analysis of a Series of Samples for Polybrominated Biphenyls (PBBs)," EPA-560/6-77-020 (August 1977).
- Environmental Science and Engineering, "Data Report for Polybrominated Biphenyl Near Manufacture (sic) in the Northeast," submitted to OTS, EPA, Washington, DC Contract No. 68-01-3248 (June 16, 1977).
- 42. 1974 New Jersey State Industrial Directory, New Jersey State Industrial Directory, 2 Penn Plaza, NY, 10001 (1974).
- 43. Pellizzari, E. D., "The Measurement of Carcinogenic Vapors in Ambient Atmospheres," EPA-600/7-77-055 (June 1977).
- Pellizzari, E. D., M. D. Erickson, and R. A. Zweidinger, "Formulation of a Preliminary Assessment of Halogenated Organic Compounds in Man and Environmental Media," EPA-560/13-79-006 (July 1979).
- 45. Pellizzari, E. D., M. D. Erickson, T. D. Hartwell, S. R. Williams, C. M. Sparacino and R. D. Waddell, "Preliminary Study on Toxic Chemicals in Environmental and Human Samples. Part I: Formulation of an Exposure and Body Burden Monitoring Program," submitted to U. S. Environmental Protection Agency, Washington, DC, Contract No. 68-01-3849 (June 1980).

- Pellizzari, E. D., "Analysis of Organic Air Pollutants by Gas Chromatography and Mass Spectroscopy," Publication No. EPA-600/2-77-100, Contract No. 68-02-2262, (June 1977).
- McDonnell, G., D. M. Ferguson and C. R. Pearson, "Chlorinated Hydrocarbons and the Environment," Endeavour, <u>34</u>, 13-18 (1975).
- FDA Compliance Program, Evaluation, "FY 74 Total Diet Studies (7320.08)," Date accepted: January 21, 1977.
- 49. State of New Jersey Department of Environmental Protection, "Initial Report on the Findings of the State Air Monitoring Program for Selected Volatile Organic Substances in Air," (October 1979).
- 50. Zweidinger, R. A., A. Sherdon, B. S. Harris, III, H. Zelon, T. Hartwell, and E. D. Pellizzari, "Measurement of Benzene Body Burden of Potentially Environmentally Exposed Individuals," Final Report, EPA Contract No. 68-01-3849, Task 1 (May 1980).
- 51. Hartwell, T., P. Piserchia, S. White, N. Gustafson, A. Sherdon, R. Lucas, D. Lucas, D. Myers, J. Batts, R. Handy, and S. Williams, "Analysis of EPA Pesticide Monitoring Networks," Office of Toxic Substances, Washington, DC. Draft Report (1979).
- 52. U.S. Environmental Protection Agency, Office of Research and Development, "Health Assessment Document for Polycyclic Organic Matter," (May 1978).
- 53. Stanford Research Institute, "The Environmental Fate of Selected Polynuclear Aromatic Hydrocarbons," Prepared for U. S. Environmental Protection Agency (February 1976).
- 54. State of New Jersey Department of Environmental Protection, "Initial Report on the Findings of the State Air Monitoring Program for Selected Heavy Metals in Air," (October 1979).
- - 56. Fribers, L., M. Piscator, G. F. Nandberg and T. Kjellstrom, "Cadmium in the Environment," CRC Press, Cleveland, OH (1974).

- 57. National Academy of Sciences, "Lead," Washington, DC (1972).
- 58. Mason, T. J., F. W. McKay, "U.S. Cancer Mortality by County: 1950-69," DHEW Fubl. No. (NIH), 74-615, Washington, DC, U.S. Govt. Printing Office (1974).
- 59. Mason, T. J., F. W. McKay, J. R. Hoover, W. Blot and J. F. Fraumeni, Jr., "Atlas of Cancer Mortality for U.S. Counties: 1950-69," DHEW Publ. No. (NIH) 75-780, Washington, DC, U.S. Govt. Printing Office (1975).
- 60. Greenberg, Michael R., "The Spacial Distribution of Cancer Mortality and of High and Low Risk Factors in the New Jersey-New York-Philadelphia Metropolitan Regions, 1950-1969, Part I," New Jersey Dept. of Environmental Protection, Program on Environmental Cancer and Toxic Substances (January 1979).
- Greenberg, M., F. McKay, and P. White, "A Time-Series Comparison of Cancer Mortality Rates in the New Jersey-New York-Philadelphia Metropolitan Region and the Remainder of the United States, 1950-1969," Am. Jour. of Epidemiology, <u>111</u>, 166 (1980).
- Greenberg, M. R., P. W. Preuss, and R. Anderson, "Clues for Case Control Studies of Cancer in the Northeast Urban Corridor," Soc, Sci. & Med., <u>14D</u>, 37-43 (1980).
- 63. Greenberg, M. R., J. Caruana, B. Holcomb, G. Greenberg, R. Parker, J. Louis, and P. White, "High Cancer Mortality Rates from Childhood Leukemia and Young Adult Hodgkin's Disease and Lymphoma in the New Jersey-New York-Philadelphia Metropolitan Corridor, 1950-1969," Cancer Research, 40, 439-443 (1980).
- 64. Cross, J. and G. B. Wiersma, "Preliminary Analysis of Cancer Rates in Organic Chemical-Producing Counties," EPA-600/1-79-022 (June 1979).
- 65. Pellizzari, E. D., and M. D. Erickson, "Analysis of Organic Air Pollutants in the Kanawha Valley, WV and the Shenandoah Valley, VA," Publication No. EPA-903/9-78-007, Contract No. BOA 68-02-2543 (June 1978).
- 66. Erickson, M. D., S. P. Parks, D. Smith and E. D. Pellizzari, "Sampling and Analysis of Organic Air Pollutants in Two Industrialized Valleys," FACSS V, Boston (October 30 - November 3, 1978.
- 67. McLafferty, F. W., E. Stenhagen, and S. Abrahammson, Ed., <u>Registry of</u> <u>Mass Spectral Data</u>, John Wiley and Sons, New York (1974).

68. <u>Eight Peak Index of Mass Spectra</u>. Vol. I (Tables 1 and 2) and II (Table 3), Mass Spectrometry Data Centre, AWRE, Aldermaston, Reading, RG74PR, UK (1970).

.

-

## APPENDIX A

.

.

## DATA COLLECTION INSTRUMENTS

.

## STUDY OF ORGANIC COMPOUNDS IN HUMAN MILK

EPA Contract No. 68-01-3849 RTI Project No. 31U-1521-22

## DATA COLLECTION INSTRUCTIONS

Performed for

Office of Toxic Substances Environmental Protection Agency Washington, DC 20460

## 1.0 Introduction

Under contract to the Office of Toxic Substances, Environmental Protection Agency (EPA), the Research Triangle Institute (RTI) is conducting a limited study designed to measure environmental pollutant levels in human milk and to evaluate the utility of using this body fluid in specific pollutant studies for populations in the vicinity of manufacturing plants and/or industrial user facilities. RTI is responsible for all phases of the study, including study design, subject recruitment, chemical analysis of milk samples, and report writing. RTI is a not-for-profit contract research organization located in North Carolina's Research Triangle Park between Raleigh, Durham, and Chapel Hill. The Institute was incorporated as a separate operating entity in 1958 by the University of North Carolina (UNC) at Chapel Hill, Duke University at Durham, and North Carolina State University at Raleigh, and is still closely affiliated with the three universities.

### 2.0 Overview

Four urban areas have been chosen as performance sites; they are Bridgeville, Pennsylvanis; the area which includes Linden and Bayonne, New Jersey and western Staten Island, New York; Baton Rouge, Louisiana; and South Charleston and Nitro, West Virginia. These sites represent high-probability areas for the presence of one or more of the chemicals of interest in human milk. The selected industrial chemicals of interest include polychlorinated naphthalenes, tetrachlorethylene, trichloroethane, dichloropropane, benzene, polybrominated biphenyls, chlorinated phenols, toluene, chlorinated benzenes, and chloroform.

At each of the four sites, arrangements will be made to work through clinical facilities such as hospitals, clinics, or physician's offices, in order to recruit a panel of respondents. At each site ten participants will be recruited, for a total of 40. Potential participants (lactating females) will be screened to determine that they live in one of the areas of interest and are willing and able to provide the milk sample.

A questionnaire will be administered for each participant to obtain information on demographic variables, residence histories, and potential exposure situations; for each participant, a sample of milk will be collected and analyzed for the compounds of interest by gas chromatography/mass spectrometry or high pressure liquid chromatography. A professional member of the facility's staff, such as a registered nurse, will be trained in the proper procedures to administer the questionnaire and obtain the milk sample. To try to reduce the non-participation rate due to refusals, and to reimburse the subject for the time spent on the study, volunteers will be offered a \$5.00 incentive for participating.

#### 3.0 Data Collection

#### 3.1 General Remarks

Data collection for this research effort consists of the following steps:

1. Screening of potential participants (lactating women) to determine that they live in one of the areas of interest (see below), that they have resided in that area for at least the preceding 12 months, that they have remained in that area continuously for the preceding week, and that they are willing and able to provide a milk sample.

- When an eligible person is encountered, the nature and purpose of the study will be explained and their participation solicited.
- 3. When an eligible person agrees to participate, the person will be required to sign a Participant Consent Form (PCF) in order to participate in the study.
- 4. Once the participant has signed the PCF, the person should be listed on the Participant Listing Form (PLF), a Patient Number assigned, and the data collector will proceed to administer the Study Questionnaire (SQ) and collect the milk sample.
- 5. Once the SQ has been administered and the milk sample collected, the participant will be offered a \$5.00 incentive for participating.
- Milk samples and completed data collection instruments will be returned to RTI.

### 3.2 Survey Instruments

As indicated in the preceding section, there are 3 data collection instruments for this research effort, the PCF, the PLF, and the SQ; subsequent sections contain instructions for the use of each instrument as well as item-by-tiem explanations for their completion, and general descriptions are provided below. The survey instruments have been designed hopefully to provide an efficient means of collecting and recording the requisite data for the study. It is imperative that all survey instruments be completed accurately. The success and reliability of the study and its results are dependent upon the quality of data collected, which will be fully dependent on the accuracy of your execution of your assignment. As you complete a form, conduct a thorough edit to verify that required data have been entered and entered correctly. Copies of the data collection instruments appear in Attachment 1.

#### 3.2.1 Participant Consent Form (PCF)

- <u>Purpose</u>: The purposes of the PCF are to introduce the study; explain its objectives, sponsorship (the relationship and roles of RTI and EPA), and requirements of and risks, burdens, and benefits to participants; and stress that participation is completely voluntary and that all data collected will be kept confidential.
- . <u>General Description</u>: The PCF is a single page form printed on special paper which makes three copies from a single impression. The survey title appears at the top, along with the name of RTI; spaces for necessary identifying information appear at the bottom.
- Administration: The PCF will be signed by the participant and contains an agreement to provide the necessary information and milk sample. Participants may freely withdraw from the study at any time; however, in order to encourage participation RTI offers an incentive of five dollars to each participant to be paid after each data set (PCF, SQ, and milk sample) is obtained. Again, confidentiality of data is stressed, including steps

taken to disassociate the name of the participant from the data once collected; for example, the PCF is the only data collection instrument which bears the name of the participant and allows its association to study identification numbers, but will be maintained in hard copy only and stored in a restricted area. To further emphasize this disassociation, the incentive will be paid in cash rather than by check or money order, although the participant will sign the PCF indicating that the incentive was received. A signed PCF must be obtained for each participant before proceeding with Study Questionnaire (SQ) administration and collection of the milk sample.

<u>Disposition</u>: The top (white) copy will be attached to the appropriate SQ until it is received at RTI and verified; the yellow copy will be provided to the participant; the pink copy will be retained by the data collector.

# 3.2.2 Participant Listing Form (PLF)

- <u>Purpose</u>: The purpose of the PLF is to provide a means of assigning unique numbers to participants at each performance site.
- . <u>General Description</u>: The PLF is a single page form printed on pink paper; space for Comments is provided on the reverse side. The survey title appears at the top, along with the names and addresses of RTI and EPA/OTS and a confidentiality statement.

- <u>Administration</u>: As each participant is enlisted up to the required number (10), that participant should be listed on the PLF.
- . <u>Disposition</u>: When data collection at a site or facility is completed, the PLF (or a copy) should be sent to RTI.

#### 3.2.3 Study Questionnaire (SQ)

- Purpose: The purpose of the SQ is to obtain information on participants, including demographic characteristics such as age, sex, race, and occupation; residence information; health information such as current health status and prescription medications; and personal characteristics such as hobbies.
- . <u>General Description</u>: The SQ is divided into six sections, dealing respectively with demographic characteristics, occupation, health and personal habits, residence and household information, information on the interviewer and respondent, and information regarding the milk sample, including an indication as to whether or not the milk sample was obtained, the date and time of acquisition of the sample, and the date the sample was shipped to RTI. Participants will be identified by a unique study number used to correlate and cross-identify the questionnaires and samples by way of pre-printed self-adhesive labels. The SQ is 5 pages long, with space provided for comments.

- <u>Administration</u>: An SQ is to be completed for each participant for whom a signed PCF is obtained.
- . Disposition: The SQ's are to be sent to RTI as instructed.

## 3.3 Screening

As indicated in section 3.1, potential participants (lactating women) should be screened to determine that they meet certain study criteria for participation:

- That they are willing and able to provide a milk sample of sufficient quantity (approximately 100 ml.),
- 2. That they live in one of the areas of interest (see below),
- That they have resided in that area for at least the preceding 12 months, and
- That they have remained in that area continuously for the praceding 7 days.

As indicated in section 2.0, four areas have been chosen as performance sites, with a specific *Site Number* assigned to each which will remain constant for each site and is to be entered where appropriate on data collection instruments as follows:

| <u>Site</u>                                 | Site Number |
|---------------------------------------------|-------------|
| Northern New Jersey/Staten Island, New York | l           |
| Bridgeville, Pennsylvania                   | 2           |
| Baton Rouge, Louisiana                      | 3           |
| Nitro/South Charleston, West Virginia       | 4           |

With the exception of Bridgeville, Pennsylvania, participants residing in some areas at each site are of considerably more interest to the study than those living in others, as discussed in the following sections.

## 3.3.1 Northern New Jersey/Staten Island, New York

Within the Northern New Jersey/Staten Island area, potential participants residing in some communities are of more interest than those residing in others, more or less in the order listed below:

| 1. | Bayonne, NJ            | 9.  | Elizabeth, NJ  |
|----|------------------------|-----|----------------|
| 2. | Northern Staten Island | 10. | Sayreville, NJ |
|    | (Port Richmond), NY    | 11. | Rahway, NJ     |
| 3. | Linden, NJ             | 12. | Edison. NJ     |
| 4. | Carlstadt, NJ          | 12  | Parlin NT      |
| 5. | Saddle Brook, NJ       |     | Tatatily DU    |
| 6  | Tersey City NT         | 14. | Passaic, NJ    |
| -  |                        | 15. | Patterson, NJ  |
| 1. | Kearney, NJ            | 16. | Wayne, NJ      |
| 8. | Newark, NJ             |     |                |

### 3.3.2 Baton Rouge, Louisiana

Potential participants residing in Baton Rouge are of primary interest to this study; other communities in the Baton Rouge area of interest are Placquemine, St. Gabriel, and Geismar.

## 3.3.3 Nitro/South Charleston, West Virginia

Potential participants residing in Nitro and South Charleston are of primary interest to this study; other communities of interest in the area are Belle and Institute.

#### 3.4 Participant Listing Form

When an eligible person is encountered who agrees to participate, that person should be listed on a PLF in order to be assigned a unique Participant Humber. The PLF is completed by entering the appropriate Site Humber (see section 3.3 above); then, each time that an eligible participant is encountered who agrees to participate, up to the number required, enter the Participant's Name (Last, First, Middle) on the PLF and assign a Participant Number in the left-hand column, beginning with 0001 at each site unless otherwise instructed. Assign Farticipant Numbers consecutively for all study participants. Where appropriate, enter the participant's Medical Record Number in the right-hand column. When making numerical entries, right-adjust and enter leading zeros.

## 3.5 Participant Consent Form

Potential participants must understand exactly what is involved in participation in the study and what benefits may be realized by participation; this understanding and agreement must be documented by a signed PCF. In the event that the potential participant is under the age of 18 years, the person's parent or other legal guardian must sign the PCF in order for the designated eligible to participate.

More specifically, the potential participant and/or that person's parent, guardian or other spokesman, must understand that full participation in the study consists of providing answers to a questionnaire related to environmental exposure, part of which relates to the individual's household in general and part of which is related to the individual participant (be prepared to show the person the SQ), and providing a milk sample of approximately 100 ml. (be prepared to show the person one of the collection bottles.) The individual must further understand that she will only enjoy certain limited benefits in return for her time and inconvenience, primarily a \$5.00 incentive to be disbursed after administration of the questionnaire and collection of the milk sample. The individual must understand that participation in the study is completely voluntary and that she may withdraw at any time, but that payment of the incentive is dependent on full participation. The individual must also understand that all data collected in the study will be held strictly confidential, and that names will not be disclosed.

If the participant or that perons's parent, guardian or other spokesman agrees to participate, read through the PCF with them and make entries where appropriate. At the bottom, record the Date (month, day, and year) that the PCF is signed and print the Farticipant's full Name (First, Middle or Maiden, Last - do not abbreviate); record the appropriate Site Number (see section 3.3 above) and Farticipant Number (from the PLF); have the participant (or other appropriate person) sign the PCF; enter your signature as witness; and record the participant's home Address (Street Number and Name, City, State, and Zip Code) in the spaces provided.

After data collection (administration of SQ and collection of milk sample) is completed, the participant (or that person's parent or guardian) should be given \$5.00. The recipient must sign in the space provided at the bottom of the PCF to indicate receipt of the incentive. Should the signatures on the PCF for *Participant* and *Recipient* be other than the participant's, please explain in the Comments section of the SQ.

Finally, as indicated in section 3.2.1, the top (white) copy of the PCF is to be attached to the appropriate SQ; the yellow copy is to be provided to the participant or her guardian; and the pink copy is to be retained by the data collector.

3.6 Study Questionnaire

Before proceeding with administration of the SQ, read the justification and confidentiality statement in the box on the cover. Enter the appropriate Site (see section 3.3 above) and Participant (from the PLF) Numbers. Stapled inside the SQ you will find a set of pre-printed, selfachesive labels which are necessary to identify corresponding SQs and samples. Each label contains a unique Study Number, which should be the same on all

labels in a set, and an indication of what the label is for. You should also have some labels that have cily a Study Number and a few that are completely blank; these are for your use in the event that a label is damaged or missing. If you use a label that has a Study Number only, you will have to write on the label what it is intended for, such as *MILK*; if you use a blank label, you must write on the label the Study Number <u>and</u> what it is intended for. Check to be sure that all the labels in a given SQ contain the same Study Number; if not, do not use the SQ and return it to RTI. If the Study Number is the same on all labels, remove the one for the *QUESTIONWAIRE* and place it on the cover of the SQ over the spaces provided for the *Study Number*. Space for *Comments* is provided on page 5.

If the participant is under 18 years of age, the SQ may <u>have</u> to be administered in whole or part to the parent or guardian, and *must be* administered in that person's presence. If the participant suffers from a speech or hearing deficit, or is otherwise incapacitated, the SQ may have to be administered to the spouse or some other spokesman.

> Item 1 - Race: Indicate the participant's race by placing an X in the appropriate box. This question may be answered by observation; however, if there is any doubt whatsoever, ask. Item 2 - Age: Determine and enter the participant's age in years

as of the last birthday.

<u>Item 3 - Birthdate</u>: Determine and enter the participant's exact *birthdate* (month, day and year). Again, remember to rightadjust and enter leading zeros. A note on dates: accept and record partial dates, if that is all that the respondent can provide; in that case, indicate missing elements of the date

with a dash (-) -- for example, April 1977 would be

recorded as 04 - - - 77.

- <u>Item 4 Weight</u>: Determine and enter the participant's approximate weight in pounds (to the nearest pound-no fractions!) or kilograms, in which case observe the decimal.
- Item 5 Height: Determine and enter the participant's approximate height in inches or centimeters.
- Item 6 Current Employment: Determine if the participant is currently employed in any capacity and place an X in the appropriate box. If the answer is Yes, continue to Item 7; if the answer is No, skip to Item 10.
- Item 7 Length of Fresent Employment: Determine and record the length of time that the participant has been employed by her present employer; enter the units in the spaces provided and then place an X in the appropriate box to indicate whether the units represent days, months, or years.
- <u>Item 8 Occupation Away From Home</u>: Determine if the participant's occupation usually takes her away from home and place an X in the appropriate box. If Yes, continue to Item 9; if No, skip to Item 11. This question, and Item 9 below, are aimed at eliciting information regarding the location of the participant's various exposure to the environment.
- Item 9 Location of Present Employment: If the participant is currently employed, determine the nature (not the name) and location (street address, city, state, and Zip Code, if known)

of the employer. By nature, we mean the type of business, such as service station, school, hospital, grocery store, doctor's office, hotal, restaurant, etc.

- <u>Item 10 Employment Status</u>: If the participant is not presently employed, determine which of the provided categories best describes the participant's status and place an X in the appropriate box. If the response is choice 1 or 2, skip to Item 15; if the response is choice 3-5, continue to Item 11.
- <u>Item 11 Usual Occupation</u>: Determine and record the participant's usual (or most common) occupation (when employed); be succinct e.g., high school coach, waitress, hotel desk clerk, taxi driver.
- <u>Item 12 Present Occupation</u>: Determine if the participant is presently employed in her usual occupation (indicated in Item 11) and place an X in the appropriate box. Items 12 and 13 may be skipped for unemployed, retired and disabled persons.
- Item 13: If the response to Item 12 was positive, determine how long the participant has been employed in her usual occupation (recorded in Item 11) and record; enter the units in the spaces provided and then place an X in the appropriate box to indicate whether the units represent days, months or years.
- Item 14: Determine if the participant presently works at or in any of the listed occupations or establishments and place an X in each appropriate box.
- <u>Item 15 Present Smoking Status</u>: Ascertain if the participant currently smokes *cigarettes*, and place an X in the appropriate box. If YES, continue to Item 16; if NO, skip to Item 18.

- Item 16 Age at First Smoke: If the participant is a smoker (a positive response to Item 15), ascertain the age (in years) at which the participant started smoking and record in the spaces provided.
  - Item 17 Smoking Frequency: Ascertain how many cigarettes the participant smokes per day, on the average, and place an X in the appropriate box. If the participant uses tobacco in some form other than cigarettes, such as snuff, record in the space provided.
  - Item 18 Time Outdoors: Ascertain the average number of hours that the participant spends out of doors each day and record in the spaces provided -- another indication of environmental exposure.
  - Item 19 Time Away From Home: Determine how many hours of the day on the average the participant normally spends more than 2 miles away from home, and record in the spaces provided. This determination should be done separately for weekdays and weekends.
  - Item 20 General Health Status: Using the four qualifiers provided, ascertain the participant's general current health status and place an X in the appropriate box.
  - Item 21 Prescription Medications: Inquire as to whether the participant is currently taking any prescription medication(s) on a regular daily basis and place an X in the appropriate box; if YES, determine and record the drug name - e.g., penicillin, oral contraceptives, Valium, phenobarbital, etc.

ŝ

- <u>Item 22 Non-prescription Medications</u>: Inquire as to whether the participant has taken any *non-prescription medications* in the past 24 hours, and place an X in the appropriate box; If YES, determine and record the *drug name* -e.g., aspirin, vitamins, Dristan, Bufferin, Alka-Seltzer, etc.
- <u>Item 23 Gasoline</u>: Inquire as to whether the participant pumps her own gasoline, for example at *self-service* pumps, and place and X in the appropriate box.
- <u>Item 24 Egg Consumption</u>: Determine and record the approximate number of eggs that the participant has eaten in the past 48 hours. Again, in recording numerical entries, remember to right-adjust and enter leading zeros.
- Item 25 Hobbies: Determine if the participant pursues any of the listed avocations and place an X in each appropriate box.
- Item 26: Determine if the participant pursues any activity that includes regular use of solvent glue or model airplane cement, and place an X in the appropriate box.
- <u>Item 27 Length of Residence in Area</u>: Determine how many years the participant has lived in the area of interest, and record in the spaces provided. Round to the nearest year, except that if the response is less than one year record as <1 and terminate the interview; the individual is ineligible to participate further in the study. This situation should be detected during the screening process.

- Item 28 Length of Residence at Current Address: Determine how long the participant has lived at her current address; record the units in the spaces provided and place an X in the appropriate box to indicated whether the units represent days, months, or years. Use the most appropriate units and round to the nearest appropriate unit. For example, more than 28 days should be expressed in months and more than 11 months should be expressed in years. If the participant has resided at her current address for less than 12 months, but has lived in the area of interest for at least 12 months, record any previous addresses during the preceding 12 months (city and state is sufficient) in the Comments section.
- <u>Item 29 Cooling Appliances</u>: Determine whether any of the indicated appliances or others, in which case *specify*, are used to cool the participant's home and place an X in the appropriate box(es) for all that apply.
- <u>Item 30 Home Garden</u>: Determine if the participant's household consumes food grown in a home garden and indicate the response by placing an X in the appropriate box. If a positive response is obtained, determine the *location* of the garden and record. Location could be *participant's backyard*, or another community, in which case specify city and state; be as specific as possible.
- <u>Item 31 Commercial Food Source</u>: Determine where the participant's household usually obtains fruit and/or vegetables and record.

Again, be as specific as possible. For example, if the city or town has more than one store by the same name, the store name alone would not be an adeuqate answer; as a matter of course, record the name and location of the store, market, or vendor.

- <u>Items 32-34 Water Sources</u>: In Item 32, try to determine the primary source of drinking water for the participant's household and place an X in the appropriate box. In Item 33, determine if the same primary drinking water source indicated in Item 32 is used for drink mixes such as coffee and tea; if it differs, indicate how. In Item 24, try to determine the primary source of water for cooking in the participant's household and place an X in the appropriate box. For example, some households in some areas of the country use bottled water for drink mixes but tap water (from whatever source) in cooking.
- <u>Item 35 Other Household Tobacco Use</u>: Inquire as to whether *other members* of the participant's household smoke, and place an X in the appropriate box; if YES, determine if the other members smoke cigarettes, cigars, a pipe, etc. and place an X in each appropriate box.
- <u>Item 36 Occupation of Other Household Members</u>: Determine if any other members of the participant's household work at any of the listed occupations or businesses, and place an X in each appropriate box.

<u>Item 37 - Hobbies of Other Household Members</u>: Determine if any other members of the participant's household pursue any of the listed avocations, and place an X in each appropriate box. Respondent/Interviewer Information

- Item 38 Respondent: Indicate, by placing an X in the appropriate box, whether the person who served as the primary respondent was the participant or some other person, in which case specify in the space provided.
- <u>Item 39 Interviewer Number</u>: Enter your assigned 3-digit Interviewer identification Number.
- <u>Item 40 Date of Interview</u>: Enter the date (month, day and year) that the interview was conducted and the questionnaire completed.
- <u>Item 41 Interviewer Name</u>: The name of the person administering the questionnaire should be printed in the space provided.

#### Sample Information

- Item 42: Indicate, by placing an X in the appropriate box, whether or not a milk sample was collected; if not, explain in the Comments section below.
- Item 43 Date and Time of Milk Sample Collection: If a milk sample is collected, record the date (month, day and year) and approximate time (using a 24-hour clock) of such collection. The time should correspond to the time that collection was completed; on a 24-hour clock, add 12 to the p.m. hours - e.g., 1:00 p.m. would be 13:00, 5:30 would be 17:30, etc.

<u>Item 44 - Date Shipped to RTI</u>: Record the date (month, day and year) that the respective milk sample was shipped to RTI, or turned over to an RTI representative.

#### 3.7 Collection of the Milk Sample

#### 3.7.1 General Remarks

As indicated in section 1.0 above, the milk samples are being collected for chemical analysis by RTI as part of an EPA study to measure pollutant levels in human milk and evaluate the utility of using this body fluid in specific pollutant studies. The chemical compounds for which the samples will be analyzed are present in extremely low levels, so the utmost care and cleanliness must be used to prevent either contamination or loss. The instructions below are designed to preserve the integrity of the sample and should be followed precisely.

### 3.7.2 Sample Collection Instructions

- The bottles provided have been thoroughly cleaned and should be kept tightly closed, except during sampling; do not wash or otherwise clean them.
- Remove the MILK SAMPLE label from the sheet of labels in the appropriate SQ and place on one of the collection bottles.
- 3. The milk should be manually expressed directly into the the bottle; do not use breast pumps or other devices as the plastics in such devices would contaminate the sample. Hands should be cleaned and thoroughly rinsed to remove any residual soap; do not use rubber gloves.

- 4. Collect as much milk as possible. Unless the mother has recently nursed her infant, at least half a bottle should be easily obtainable. Less than half a bottle is unuseable and does not constitute a sample. The ability of the participant to provide an adequate sample should be determined during the screening process.
- 5. Immediately cap the bottle and double check to see that the study numbers on the bottle and questionnaire match.
- The milk sample should be immediately frozen following collection and remain so until shipping.
- Note any deviations from this procedure in the Comments
  section of the appropriate SQ.

## 3.7.3 Shipping Instructions

- 1. Pack the container as it was received.
- 2. Fill the can with dry ice.
- Make sure that there is adequate padding to prevent breakage, that all excess space is filled with packing material.
- Fill out enclosed Federal Express forms, attach to the outside of the box, and seal the box.
- 5. Call Federal Express and have them pick up the package.
- 6. When Federal Express picks up the package, call Dr. Mitch Erickson at RTI (see below) to notify him that Federal Express has picked up the package; if Dr. Erickson is out, leave an appropriate message with his secretary.

- Mail the corresponding questionnaires to RTI in one of the envelopes provided.
- 8. When the questionnaires are in the mail, call Ben Harris at RTI (see below) to notify him that the questionnaires are in the mail; if Mr. Harris is out, leave an appropriate message with his secretary.

### 4.0 Confidentiality

All survey research conducted by RTI is based on highest ethical standards, including those related to confidentiality. These standards are applied from the earliest steps of deciding whether or not RTI should participate in a proposed survey to the final steps of analyzing and reporting the information obtained. Strict precautions must be observed at all times to protect the rights of those whom we interview or about whom we collect data. Such precautions are built into the study design, so that promises of confidentiality and anonymity will be upheld during all phases of data handling and analysis.

No amount of effort to insure confidentiality will be successful, however, unless those responsible for data collection in the field maintain equally rigid standards, treating with utmost confidence all information offered or observed during data collection. Successful and meaningful survey research is dependent on the establishment of trust between individuals engaged in data collection and sources of information, and maintaining this sense of responsibility to the public throughout all survey activities.

Each data collector will be required to sign in duplicate a contractual agreement which includes provisions on confidential treatment of data. This agreement is designed to protect you as well as RTI and participating institutions and individuals. A copy of this agreement appears in Attachment 2.

The importance of total confidentiality cannot be over-emphasized. Any breach of confidence could result in litigation.

### 5.0 Contacts with Project Staff

During the data collection period it will be necessary for data collectors to maintain regular contact with RTI project staff by telephone. While you are collecting data, problems or confusing issues may arise that are not addressed in these instructions. You are encouraged to telephone RTI whenever you experience a problem or encounter a situation which you feel you cannot adequately handle.

All supplies required for data collection will be furnished by RTI. Should you require additional supplies during the conduct of data collection, inform your RTI contact so that proper arrangements can be made. Need for additional supplies should be anticipated so that your work will not be delayed while you await receipt of needed items. All study-related items that are in your possession at the conclusion of data collection are to be returned to RTI or disposed of according to instructions from your RTI contact.

Calls to ETI should be made between the hours of 8:30 a.m. and 5:00 p.m. (Eastern Time), Monday through Friday, to RTI's toll-free number, 800-334-8571. Request to speak to the appropriate project staff member listed below:

- Dr. Mitch Erickson Extension 6505 (regarding milk sample collection)
- Mr. Ben Harris Extension 6055 (regarding participant selection and questionnaire administration)

If the problem is particularly acute, and you have trouble getting through on the toll-free line, call collect 919-541-6505 (Dr. Erickson) or 919-541-6055 (Mr. Harris). After 6:00 p.m. Eastern Time you may call Mr. Harris collect at work (919-541-6055) or person-to-person at home (919-942-6988).

•

•

Attachment 1

.

-

٠

.

•

•

Data Collection Instruments

.

.

.

OM& No. 188-57801 Approval Expires September 188

#### RESEARCH TRIANGLE INSTITUTE STUDY OF ORGANIC COMPOUNDS IN HUMAN MILK

#### PARTICIPANT CONSENT FORM

I understand that Research Triangle Institute is engaged in a study of versous organic compounds as they appear in human milk. I understand that the survey is being conducted in order to measure the levels of various organic compounds in human milk, and is limited to the purpose stated. I further understand that the survey is being conducted under the auspices of the United States Environmental Protection Agency in choreration with

#### [Name of Local Agency] :

I do hereby freely consent to participate in this much of organic compounds in human milk and understand that my perticipation will consist of providing answers to a questionnaire related to environmental exposure and providing a milk sample of approximately 100 mil, if understand that an agent of Research Triangle institute will sominister the questionnaire and collect the milk sample, after which I will receive an incentive of five doltars for my perticipation.

I understand that my name will not be voluntarily disclosed, or referred to in any way when compiling and evaluating the results of the nudy. I understand that participation in this study may result in no direct benefits to me, other than those described herein, and that I am free to withdraw from this study at any time. It has been exclaimed to me that there are no significant risk: to me from participation in this study. I further understand that while perticipation in this study. I further understand that while perticipation in this study. I further understand that while perticipation in the study: I will be free to set any questions soncarring the study; if I have any further questions about the project, I know that I am free to contact

or Mr. Benjamin S. H. Harris, III, Survey Obstations Center, Research Triangle Institute, Research Triangle Park, North Carolina 27709, telephone number 919-641-8055.

. uischone number ...

|            |            | Synta      | ine of Assuptions       | • |            |
|------------|------------|------------|-------------------------|---|------------|
| imencian ( | Amaricana  |            |                         |   |            |
|            |            | (Car/      | (10)                    |   | (Zio Coto) |
|            |            |            |                         |   |            |
|            |            |            | Stree Number and Norme) |   |            |
| Adams -    |            |            |                         |   |            |
| Participan | ŧ          |            | Without                 |   |            |
| SIGNAT     | URES       |            |                         |   |            |
|            |            |            |                         |   |            |
| Sive M. Mt | -          |            | Participent Number:     |   |            |
|            | (1900-191) | (20) (700) |                         |   |            |
| Dene:      |            |            | Participant's Name.     |   | ·······    |

### STUDY OF ORGANIC COMPOUNDS IN HUMAN MILK

Spendend by:

Office of Toxic Subminists Environmental Protection Agency Washington, D.G. 20460

Conducted by:

Romarch Triangle Institute P.O. Box 12194 Romarch Triangle Park, North Caroline 27709

.

.

.

.

### PARTICIPANT LISTING FORM

NOTICE: All information recorded on this document which would carific identification of an individual or an empowerint will be held in strict confidence, will be used only by persone engaged in and for the purpless stated for this study, and will not be dissional or released to other persons or used for any other surpose.

.

| 8                   | te Ny |  | - [                                 |                                        | • |  |   | • | <br>• |   |   |
|---------------------|-------|--|-------------------------------------|----------------------------------------|---|--|---|---|-------|---|---|
| Personant<br>Number |       |  | Perusiaaan Nama (Lan, Pirg. Meidle) | Maginal Respire Norman                 |   |  |   |   |       |   |   |
| -                   |       |  |                                     |                                        |   |  |   |   |       |   |   |
|                     |       |  |                                     |                                        |   |  |   |   |       |   |   |
|                     |       |  |                                     | •                                      |   |  |   |   |       |   |   |
| [                   |       |  |                                     |                                        |   |  | - |   |       |   |   |
|                     |       |  |                                     |                                        |   |  |   |   |       |   |   |
|                     |       |  |                                     | •                                      |   |  |   |   |       |   | Ĺ |
|                     |       |  |                                     |                                        |   |  |   |   |       |   |   |
|                     |       |  |                                     |                                        |   |  |   |   |       |   |   |
|                     |       |  |                                     |                                        |   |  |   |   |       |   | 1 |
|                     |       |  |                                     |                                        |   |  |   |   |       |   |   |
|                     |       |  |                                     |                                        |   |  |   |   |       |   |   |
|                     |       |  |                                     |                                        |   |  |   |   |       |   | 1 |
|                     |       |  |                                     |                                        |   |  |   |   |       |   |   |
|                     |       |  |                                     |                                        |   |  |   | ļ |       |   |   |
|                     |       |  |                                     |                                        |   |  |   |   |       |   |   |
|                     |       |  |                                     |                                        |   |  | 1 |   |       |   |   |
|                     |       |  |                                     |                                        |   |  |   |   |       |   |   |
| ŧ                   |       |  |                                     |                                        |   |  |   |   | i     |   |   |
|                     |       |  |                                     |                                        |   |  |   |   |       |   |   |
|                     |       |  |                                     |                                        | i |  |   |   |       |   | 1 |
|                     |       |  |                                     | ······································ |   |  |   |   |       | i |   |
|                     |       |  |                                     |                                        |   |  |   |   |       |   |   |
|                     |       |  |                                     |                                        |   |  |   |   |       |   |   |
|                     | Ī     |  |                                     |                                        |   |  |   |   | -1    |   |   |
|                     |       |  |                                     |                                        |   |  |   |   |       |   |   |
#### COMMENTS

.

.

٠

.

•

|                                        | <u> </u>                                                                                                                                          |
|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
|                                        | ·····                                                                                                                                             |
|                                        |                                                                                                                                                   |
|                                        |                                                                                                                                                   |
| ······································ |                                                                                                                                                   |
|                                        |                                                                                                                                                   |
|                                        |                                                                                                                                                   |
|                                        |                                                                                                                                                   |
|                                        |                                                                                                                                                   |
|                                        |                                                                                                                                                   |
|                                        |                                                                                                                                                   |
|                                        |                                                                                                                                                   |
|                                        |                                                                                                                                                   |
|                                        | ······································                                                                                                            |
|                                        |                                                                                                                                                   |
|                                        |                                                                                                                                                   |
|                                        |                                                                                                                                                   |
|                                        |                                                                                                                                                   |
|                                        |                                                                                                                                                   |
|                                        |                                                                                                                                                   |
|                                        |                                                                                                                                                   |
|                                        |                                                                                                                                                   |
|                                        | والمستعدي والمراجعة ويراجع والمتحدين والمنابعة والمنابعة والمراجعة والمنابع فالمنابع والمستان المراجع والمراجع والمراجع                           |
|                                        |                                                                                                                                                   |
|                                        | ······································                                                                                                            |
|                                        |                                                                                                                                                   |
|                                        | میں میں ایک ایک میں مالک میں ایک کا ایک میں اور منابعہ دی پر ایک ایک میٹر مالی ہوا ہے جی منبغ پر ایر نور ہوا کی میں کی میں اور ایک میں مالی میں ا |
|                                        | · · · · · · · · · · · · · · · · · · ·                                                                                                             |
|                                        | المحمد المربوب المحمد المتكافية المستقدين فيردعه واروب متجور والوارف مربوب فالمتعيين فتباق وروان فبالمرد ووقا وم                                  |
|                                        |                                                                                                                                                   |
|                                        |                                                                                                                                                   |
|                                        |                                                                                                                                                   |
|                                        |                                                                                                                                                   |
|                                        |                                                                                                                                                   |
|                                        | •                                                                                                                                                 |
|                                        |                                                                                                                                                   |
|                                        |                                                                                                                                                   |
|                                        |                                                                                                                                                   |
|                                        | •                                                                                                                                                 |
|                                        |                                                                                                                                                   |
|                                        |                                                                                                                                                   |
|                                        | ······································                                                                                                            |
| *                                      |                                                                                                                                                   |

OMB No. 158-5785 Approvel Expanse Statember 19

STUDY OF ORGANIC COMPOUNDS IN HUMAN MILK

Rennance by:

Office of Taxle Substances Environmental Protection Agency Washington, D.C. 20460 Conducted by: Reversh Triangle Instance P.C. Sex 12194 Research Triangle Park, North Caroline 27709

# **QUESTIONNAIRE**

THE RESEARCH TRIANGLE INSTITUTE OF RESEARCH TRIANGLE PARK, NORTH CAROLINA, IS UNDERTAKING A RESEARCH STUDY FOR THE U.S. ENVIRONMENTAL PROTECTION AGENCY OF LEVELS OF VARIOUS ORGANIC COMPOUNDS IN HUMAN MILK. THE INFORMATION RECORDED IN THIS QUESTIONNAIRE WILL SE HELD IN STRICT CONFIDENCE AND WILL BE USED SOLELY FOR RESEARCH INTO THE EFFECTS OF ENVIRONMENTAL FACTORS ON PUBLIC HEALTH. ALL RESULTS WILL SE SUMMARIZED FOR GROUPS OF PEOPLE; NO INFORMATION ABOUT INDIVIDUAL PERSONS WILL BE RELEASED WITHOUT THE CONSENT OF THE INDI-VIDUAL. THIS QUESTIONNAIRE IS AUTHORIZED BY LAW (P.L. 94-469). WHILE YOU ARE NOT REQUIRED TO RESPOND, YOUR COOPERATION IS NEEDED TO MAKE THE RESULTS OF THIS SURVEY COMPREHENSIVE, ACCURATE, AND TIMELY,

Study number:

Site number:

Participant number:



97

| First, I would like to ask some general questions about you.                                                           |
|------------------------------------------------------------------------------------------------------------------------|
| 1. Rate: 1 Histories 2 Anorican Indian/ 3. What is your birthdood                                                      |
| 3 Black, rept of a Anish/Pasifie (Month) (Day) (Year)<br>Historials Origin (Hondar)                                    |
| White, not of Other Line - Line - Line                                                                                 |
| 2. What was your app in years at last birthday?                                                                        |
| 6. What is your leaght?                                                                                                |
| Nazt, i would like to ask some questions about your occupation.                                                        |
| 8. Are you presently strabloyed in any sepacicy? 🚺 Yas (Centinue) 🔹 No Kile to Q. 100                                  |
| 7. How long have you been employed by your present employer?                                                           |
| Dost your occupation usually take you away frash heme?     I Yes (Castonue)     I He (Ge to Q. 77)                     |
| B. When is the names and localism intrest addressi of the company for which you work?                                  |
| (\$00)///                                                                                                              |
| 10. If not presently employed, which of the following best describes your status?                                      |
| These (Ge as Q. 16)                                                                                                    |
|                                                                                                                        |
| Constant                                                                                                               |
| 11. What m/we your used occupation? (Specify)                                                                          |
| 12. Are you presently employed in this occupation?                                                                     |
| 13. If yes to above exectory, how long have you been employed in thet examples on?                                     |
| (Questions 12 and 13 may be skapped for<br>unemploy at, returnet, and disabled persons.) Units 1 Days 2 Months 3 Years |
| 14. Do you work at or in any of the following pacupations or establishments? (Check all shereparty.)                   |
| Painting     Chartical plant     Service station/garage/angine report                                                  |
| 2 Dry elegning 4 Petrolauth plant 4 Purniture refinishing ar repair                                                    |

•

-2-

4

Next, I would like to ask some questions regarding your health and personal habits.

· · · · ·

.

---

٠

| 15. Do you amotof 1 Yes (Continue) 2 No (Co to C. 18)                                                                                                                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| till. How old were you when you first started ellepting?                                                                                                                          |
| 17. On the overage, how many signments do you emake per day?                                                                                                                      |
| Less then 36 park (1-4 eiger@tas)                                                                                                                                                 |
| 2 About % pask IB-14 algorithmal  B About 2 packs (35-49 cigorothma)                                                                                                              |
| About 1 pack (18-24 eigenethes)                                                                                                                                                   |
| NCITE: If the participant uses sobelice in some other fann lether then ciperative—a.p. soult).<br>-deard here:                                                                    |
| 12. What is the average number of heurs that you spend out of dears each day?                                                                                                     |
| 18. Now many hours of the day, on the sources, do you normally spend away from home? (Average asparticly for weakdays and weakdays).       Hours:       Weakdays:       Weakdays: |
| 20. What do you consider the surrunt states of your hasish? (Cheek and)                                                                                                           |
| Enselver 2 Good 2 fair 4 Pear                                                                                                                                                     |
| 21. Are yes currently taking any pracription medicationial on a require daily basis? 1 Yes. 2 No.                                                                                 |
| N yes, assily:                                                                                                                                                                    |
| 22. Have you taken any non-pressription mattentions in the part 48 hours? 1 Yes 2 No                                                                                              |
| H #44, 4949 Myz                                                                                                                                                                   |
| 23. Do you pump your own gust 1 Yes 2 No                                                                                                                                          |
| 26. How many eggs have you exam in the part 48 hours?                                                                                                                             |
| 21. Do you sursue any of the following headins? ACheck of over apply.)                                                                                                            |
| 1 Furniture refinishing 2 Paincing 3 Ecula models 4 Gardanarg                                                                                                                     |
| 24. Do you pureue any activity that includes regular use of solvent glue or Madel sirpiane coment?                                                                                |
| 1 Ym 2 N+                                                                                                                                                                         |

•

.

٠

artions about your residence and household.

| 27. How many years have you lived in this star? Years                                                                 |
|-----------------------------------------------------------------------------------------------------------------------|
| 28. Hine long have you lived at your correct address? 🛄 Units 1 Days 2 Mandel 3 Yates                                 |
| 28. Do you apat your home with any of the following appliances. (Check of the apply.)                                 |
| 1 Control of conditioning A Window famili                                                                             |
| T Window all conditions (a) E Colling antiquity failed Do not know                                                    |
| Engerstre sseleris:     E Circulating Innis:     Other (Spendy)                                                       |
| 30. Doss your household grow say at its own food in a kons garden? 1 Yes 2 No 3 De set know                           |
| If you, alwaity solution of gerline                                                                                   |
| 31. Where does vour household comin freih freih and/or voortables? (Souphy)                                           |
| 32. Whit is the privatery source of your vestor for drinking?                                                         |
| Bootled water     Tep - sommunity well     Tep - simere                                                               |
| Tes - municipal suppi-                                                                                                |
|                                                                                                                       |
| 2 Other (Beactly)                                                                                                     |
| 33. Is that the same primary sparse of water for drink mixer such as coffies, san. Kodi-Aid, etc?                     |
| 1 Yes 2 No II no, how does h differ? (Specify)                                                                        |
| 34. What is the primery pourse of your water for staking?                                                             |
| 3 Bottled water 3 Tap - community well 3 Tap - simern                                                                 |
| Tap - municipal supply 🔺 Tap - private well 🛑 Do not know                                                             |
|                                                                                                                       |
|                                                                                                                       |
| 35. Dom anyone size in your hautshold anote?                                                                          |
| If you sheet all after apply: 1 Cigarettas 2 Cigars 2 Place Other (Breadly)                                           |
| 36. Doet anyone use in your household work as any of the following concentrationalbusinesses? (Check all sher apply.) |
| 1 Painting 3 Charman plant 6 Service station/garage/angine raptor                                                     |
| T Dry staming A Persiana plant A Persigne sylinishing at repair                                                       |
| 27. Dens source eine in wear boutcheid nursus anv of the followine babbies? (Check of the statist.)                   |
|                                                                                                                       |
|                                                                                                                       |
| RESPONDENT/INTERVIEWER INFORMATION                                                                                    |
| 38. Respondent: 1 Participant 2 Other (Specify)                                                                       |
|                                                                                                                       |
| 41. Interviewer neme:                                                                                                 |

.

Lastly, I would like to ask

SAMPLE INFORMATION

| 42. | Was a chilk sample asilacud? | 1 Y=                    | 3 No |                 |
|-----|------------------------------|-------------------------|------|-----------------|
| 4   | 11 ym, dam (Manch) - [       | <b>¨</b> - <sup>¯</sup> | ]    | Hours : Minutes |
| 44. | Outo shapped to RTI:         | /                       | · 📺  |                 |

•

•

.

.

#### COMMENTS

|   | la fan hen an hen an hen an hen hen hen hen hen hen hen hen hen an hen an start an hen hen hen hen hen hen hen |
|---|----------------------------------------------------------------------------------------------------------------|
|   |                                                                                                                |
|   |                                                                                                                |
|   |                                                                                                                |
|   |                                                                                                                |
|   |                                                                                                                |
|   |                                                                                                                |
|   |                                                                                                                |
| · |                                                                                                                |
| • |                                                                                                                |
|   |                                                                                                                |
|   |                                                                                                                |
|   |                                                                                                                |
|   | · · · · · · · · · · · · · · · · · · ·                                                                          |
|   |                                                                                                                |
|   | •                                                                                                              |
|   |                                                                                                                |
|   |                                                                                                                |
|   |                                                                                                                |
|   |                                                                                                                |
|   |                                                                                                                |
|   |                                                                                                                |
|   |                                                                                                                |
|   |                                                                                                                |
|   |                                                                                                                |
|   |                                                                                                                |
|   |                                                                                                                |
|   | ·····                                                                                                          |
|   |                                                                                                                |
|   | ······································                                                                         |
|   |                                                                                                                |
|   |                                                                                                                |
|   |                                                                                                                |
|   |                                                                                                                |
|   |                                                                                                                |

÷

.

.

•

.

Attachment 2

٠

.

Research Triangle Institute Data Collection Agreement

•

•

| Research '                 | Triangle Institute                                                                                                                                                           | for Project _                                                                                                                     | •                                                                             |  |
|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--|
| DAT                        | A COLLECTION                                                                                                                                                                 |                                                                                                                                   |                                                                               |  |
|                            | AGRÉEMENT                                                                                                                                                                    | Project No                                                                                                                        |                                                                               |  |
| I,<br>employee<br>Research | of Powerforce Company, Lo<br>Triangle Institute in con                                                                                                                       | , agree to pr<br>c., field data collect:<br>mection with the project                                                              | rovide, as an<br>ion services for<br>it named above.                          |  |
| <b>a.</b>                  | I agree to provide servi<br>tions for project data o<br>Triangle Institute;                                                                                                  | ces within the guidelin<br>ollection activities pr                                                                                | nes and specifics-<br>rovided by Research                                     |  |
| <b>b.</b>                  | I am aware that the rese<br>being performed under co                                                                                                                         | arch being conducted by<br>attractual arrangement w                                                                               | the Institute is                                                              |  |
| c.                         | I agree to treat as <u>conf</u><br>interviews or obtained i<br>period I am providing se                                                                                      | <u>idential</u> all information<br>A any project-related w<br>rvices to the Institute                                             | on secured during<br>way during the<br>bi                                     |  |
| ¢.                         | I shall at all times recognize and protect the confidentiality<br>of all information secured while providing my services throughout<br>the conduct of this research project; |                                                                                                                                   |                                                                               |  |
| ••                         | I am aware that the surv<br>from which all the analy<br>that all work for which<br>and in accordance with p                                                                  | ey instruments complete<br>sis will be drawn, and<br>I submit invoices will<br>roject specifications;                             | d form the basis<br>therefore agree<br>be of high quality<br>and              |  |
| £.                         | I fully sgree to conduct<br>will obtain the respect<br>whom dats will be collec<br>by divulging information<br>representatives of Resen                                      | myself at all times in<br>and confidence of all 5<br>ted and I will not betr<br>obtained to anyone oth<br>rch Triangle Institute. | a Senner that<br>individuals from<br>ay this confidence<br>ar than authorized |  |
| Dated at                   |                                                                                                                                                                              |                                                                                                                                   |                                                                               |  |
|                            | (C117/10/2)                                                                                                                                                                  |                                                                                                                                   | (32828)                                                                       |  |
| this                       |                                                                                                                                                                              | day of                                                                                                                            | 19                                                                            |  |
|                            |                                                                                                                                                                              | Imploye                                                                                                                           | e                                                                             |  |
|                            |                                                                                                                                                                              | For Research Tria                                                                                                                 | ngle Institute                                                                |  |

.

Disposition: Original to KTI; yellow copy ratained by Employee.

٠

### APPENDIX B

.

# SAMPLING AND ANALYSIS OF VOLATILE ORGANICS IN MILK

•

1

•

#### SAMPLING AND ANALYSIS OF VOLATILE ORGANICS IN MILK

#### 1.0 Principle of the Method

Volatile compounds are recovered from an aqueous or solid sample by warming the sample and purging helium over it. The vapors are then trapped on a Tenax cartridge which can be introduced by thermal desorption directly into the GC/MS for analysis. This protocol is the result of extensive development efforts. (1-9)

#### 2.0 Range and Sensitivity

For a typical organic compound approximately 30 ng is required to obtain mass spectral identification using high resolution gas capillary GC/MS analysis. Based on a 50 g milk sample, a detection limit of about 0.6  $\mu$ g/kg would be possible. The dynamic range (limit of detection to saturation on the mass spectrometer) for a purged sample is  $\sim 10^4$ ; however, smaller samples may be purged and the upper end of the range increased commensurately. 3.0 Interferences

Two possible types of interferences must be considered: (1) material present in the sample which physically prevents the effective purge of the sample, and (2) material which interferes with the analysis of the purged sample. In the former case, several techniques have been developed to . handle such problems (e.g., foaming) by diluting and stirring the sample. The second case is minimized by the use of GC/MS for the analysis, since unique combinations of  $\underline{m}/\underline{z}$  and retention time can be selected for most compounds. This permits the evaluation of compounds even though chromatographic resolution is not obtained.

#### 4.0 Precision and Accuracy

The purge and trap technique has been evaluated for a variety of matrices using model compounds which are expected to be typical of volatile halogenated compounds.<sup>(1)</sup>

105

The recovery of the purge step was validated using cow's milk samples spiked with <sup>14</sup>C-chloroform, <sup>14</sup>C-carbon tetrachloride, <sup>14</sup>C-chlorobenzene and <sup>14</sup>C-bromobenzene. The average recoveries were 88, 88, 63, and 35 percent, respectively. The recoveries correlate roughly with volatility (inversely with boiling point), so anticipated recovery for other compounds may be interpolated from these data.

- 5.0 Apparatus
- 5.1 Purge Apparatus

The purge apparatus is shown in Figure 1.

5.2 Sampling Cartridges

The sampling tubes are prepared by packing a 10-cm long x 1.5-cm i.d. glass tube containing 6 cm of 35/60 mesh Tenax GC with glass wool in the ends to provide support. (2,3) Virgin Tenax is extracted in a Soxhlet extractor for a minimum of 24 h with redistilled methanol and pentane prior to preparation of cartridge samples. (2,3) After purification of the Tenax GC sorbent and drying in a vacuum oven at 100°C for 2-3 h all of the sorbent material is meshed to provide a 35/60 mesh-size range. Sample cartridges are then prepared and conditioned at 270°C with helium flow at 30 mL/min for 30 minutes. The conditioned cartridges are transferred to Kimax<sup>®</sup> (2.5 cm x 150 cm) culture tubes, immediately sealed using Teflon-lined caps, and cooled. This procedure is performed in order to avoid recontamination of the sorbent bed. (2,3)

The volatile halogenated hydrocarbons purged from water are analyzed on either an LKB 2091 GC/MS with an LKB 2031 data system or a Varian MAT CH-7 GC/MS with a Varian 620/i data system. The sample, concentrated on a Tenax GC cartridge, is thermally desorbed using an inlet manifold system. (2,4) The operating conditions for the thermal desorption unit and the analysis Tenax GC cartridges are given in Table 1.

- 6.0 Materials
- 6.1 Sampling

Clean, 120 mL, wide-mouth glass bottles with Teflon-lined caps are used for the collection of milk samples.



Figure B-1. Diagram of headspace purge and trap system.

.

•

|                                                            | LX8 2091                               | Varian MAT CH-7     |  |  |
|------------------------------------------------------------|----------------------------------------|---------------------|--|--|
| Description chamber temperature                            | 270                                    | 265                 |  |  |
| Descrption chamber He flow                                 | 15 mL/min                              | 10 al/sia           |  |  |
| Descrption time                                            | <b>8.0</b> min                         | 8.0 min             |  |  |
| Capillary trap temperature during desorption               | -196°C                                 | +196*C              |  |  |
| Temperature of capillary trop during injection onto column | -196°C to 250°C - them held at 190°C   |                     |  |  |
| Time of He flow through capillary trap                     | 12 3/4 mim                             | 12 3/4 min          |  |  |
| He flow through column [sweep time]                        | 9.5 min                                | 4 <del>s</del> in   |  |  |
| Carrier flow                                               | 2.0 mL/min                             | 1.0 ol/mia          |  |  |
| Capillary column                                           | 100 n SE-30 SCOT                       | 20 - 51-30 WCOT     |  |  |
| Column temperature                                         | 30°C for 2 mim,<br>then 4°/mim to 240° | 20 + 240° at 4°/ale |  |  |
| Scan range                                                 | 5-490 dalton                           | 20 + 500 delton     |  |  |
| Scan zote                                                  | 2 sec full scale                       | 1 sec/decade        |  |  |
| Scan cycle time                                            | 2,4 sec                                | 4.5 sec             |  |  |
| Scan mode                                                  | perabolic                              | exponential         |  |  |
| Trap cwrxest                                               | 44                                     |                     |  |  |
| Filment current                                            | Sony                                   | 300µA               |  |  |
| Accelerating volstage                                      | 3.5 kV                                 | 2k¥                 |  |  |

# Table B-1. INSTRUMENTAL OPERATING CONDITIONS

•

#### 6.2 Purge

Tenax cartridges - 16-mm o.d. x 10.5 cm glass tubes filled with 6 cm of Tenax with 1-cm glass-wool plugs in each end.

Charcoal cartridges - 16-mm o.d. x 6 cm filled with 4 cm of charcoal and glass-wool plugs in each end.

Glass culture tubes with Teflon-lined screw caps.

#### 7.0 Procedure

#### 7.1 Collection of Field Samples

Milk (60-120 mL) is expressed directly into the wide-mouth bottle, capped tightly, and frozen for shipment and storage. To preserve the integrity with respect to volatiles, handling and transfer must be minimized. 7.2 <u>Purging of Volatiles</u>

The apparatus is assembled as depicted in Figure 1, including the Tenax GC cartridges (1.5-cm diameter x 6.0-cm length). A carbon cartridge 1.5-cm diameter x 4.0-cm length is connected to the effluent end of the Tenax cartridge to prevent contamination of the cartridge by laboratory vapors. The milk sample is cooled to  $\sim4^{\circ}$ C, shaken vigorously and 100 mL diluted with 350 mL distilled water. The pH of the solution is adjusted to 4.0 with sulfuric acid. A glass-wool plug is inserted into the center neck of the flask just above the level of the solution and, with the flask in a heating mantle, the solution is heated to 70°C while it is stirred with a magnetic stirrer. The sample is purged at 15 mL helium/min and 70°C for 90 minutes. The loaded cartridge is removed and stored in a culture tube containing 1-2 g CaSO<sub>4</sub> desiccant for 2-12 h. The desiccant is removed from the culture tube and the dry, loaded cartridge stored at  $-20^{\circ}$ C.

#### 7.3 Analysis of Sample Purged on Cartridge

The instrumental conditions for the analysis of volatile compounds of the sorbent Tenax GC sampling cartridge are shown in Table 1. (2-9) The thermal desorption chamber and six-port valve are maintained at 270°C and 200°C, respectively. The helium purge gas through the desorption chamber is adjusted to 15-20 mL/min. The nickel capillary trap at the inlet manifold is cooled with liquid nitrogen. In a typical thermal desorption cycle a sampling cartridge is placed in the preheated desorption chamber and helium gas is channeled through the cartridge to purge the vapors into the liquid nitrogen cooled nickel capillary trap. After desorption the six-port valve is rotated and the temperature on the capillary loop is rapidly raised; the carrier gas then introduces the vapors onto the high resolution GC column. The glass capillary column is temperature programmed from 20°C to 240°C at  $4^{\circ}$ /min and held at the upper limit for a minimum of 10 minutes. After all of the components have eluted from the capillary column, the analytical column is cooled to ambient temperature and the next sample is processed. 7.4 Quantitation

All data are acquired in the full scan mode. Quantitation of the halogenated compounds of interest is accomplished by utilizing selected ion plots (SIPs), which are plots of the intensity of specific ions (obtained from full scan data) versus time. Using SIPs of ions characteristic of a given compound in conjunction with retention times permits quantitation of components of overlapping peaks. Two external standards, perfluorobenzene and perfluorotoluene, were added to each Tenax GC cartridge in known quantities just prior to analysis. In order to eliminate the need to construct complete calibration curves for each compound quantitated, the method of relative molar response (RMR) is used. In this method the relationship of the RMR of the unknown to the RMR of the standard is determined as follows:

$$RMR_{std} = \frac{A_{unk}/moles_{unk}}{A_{std}/moles_{std}}$$

$$RMR_{unk/std} = \frac{\frac{A_{unk}/g_{unk}/GMW_{unk}}{A_{std}/g_{std}/GMW_{std}}$$

where A = peak response of a selected ion, std = standard unk = unknown g = number of grams present, and GMW = gram molecular weight.

Thus, in the sample analyzed:

$$g_{unk} = \frac{(A_{unk})(GMW_{unk})(g_{std})}{(A_{std})(GMW_{std})(RMR_{unk/std})}$$

The value of an RMR is determined from at least three independent analyses of standards of accurately known concentration prepared using a gas permeation system.<sup>(3)</sup> The precision of this method has been determined to be generally ±10 percent when replicate sampling cartridges are examined.

#### 8.0 <u>References</u>

- Michael, L. C., M. D. Erickson, S. P. Parks, and E. D. Pellizzari, Anal. Chem., <u>52</u>, 1836-1841 (1980).
- Pellizzari, E. D., "Development of Analytical Techniques for Measuring Ambient Atmospheric Carcinogenic Vapors," Publication No. EPA-600/2-76-076, Contract No. 68-02-1228, 185 (November 1975).
- Pellizzari, E. D., "Development of Analytical Techniques for Measuring Ambient Atmospheric Carcinogenic Vapors," EPA 600/2-75-075, 187, (November 1975).
- Pellizzari, E. D., J. E. Bunch, R. E. Berkley and J. McRae, Anal. Chem., <u>48</u>, 803 (1976).
- Pellizzari, E. D., J. E. Bunch, B. H. Carpenter and E. Sawicki, Environ. Sci. Tech., <u>9</u>, 552 (1975).
- Pellizzari, E. D., B. H. Carpenter, J. E. Bunch, and E. Sawicki, Environ. Sci. Tech., 9, 556 (1975).
- Pellizzari, E. D., Quarterly Report No. 1, EPA Contract No. 68-02-2262, February, 1976.
- Pellizzari, E. D., J. E. Bunch, R. E. Berkley and J. McRae, Anal. Lett., <u>9</u>, 45 (1976).
- Pellizzari, E. D., Analysis of Organic Air Pollutants by Gas Chromatography and Mass Spectroscopy. EPA-600/2-79-057, 243 pp., March, 1979.

Protocol Prepared, June, 1980

# APPENDIX C

•

•

.

ANALYSIS OF SEMIVOLATILE ORGANIC COMPOUNDS IN MILK

#### ANALYSIS OF SEMIVOLATILE ORGANIC COMPOUNDS IN MILK

#### 1.0 Principle of the Method

Milk samples are collected from nursing mothers and frozen until ready for analysis. An aliquot of the thawed sample is then extracted, cleaned up by Florisil column chromatography and analyzed by GC/MS/COMP.

The extraction procedure used here is preferable to that used by the  $AOAC^{(1)}$ , since both polar and nonpolar compounds are extracted from the milk. The AOAC method is designed for pesticide residues and would not efficiently extract polar and/or acidic compounds.

Open column chromatography is a necessary prerequisite to GC/MS/COMP analysis. Although some loss of sample may occur during the extraction and cleanup, these procedures remove proteins and fats from the sample which would otherwise create overwhelming interferences for GC/MS/COMP analysis.

Since the compounds of interest in these fractions cover such a broad range of volatilities, the GC/MS/COMP analysis can be rather complex. The higher PBBs of interest in the extracted fraction must be chromatographed on a very short column (45 cm x 0.2-cm i.d., 2 percent OV-101 on Gas-Chrom Q) at high temperatures to elute them as sharp peaks which may be identified and quantitated. These chromatographic conditions are not applicable to more volatile compounds since they are not resolved from the solvent. Thus, the extracted fraction is analyzed a second time using a nonpolar SCOT capillary column (either OV-101 or SE-30 liquid phase) to separate and identify semivolatile constituents (e.g. chlorobenzenes, PCNs, pesticides, etc.). The chromatographic conditions are typically 60°C initially, programmed to 240°C (or the column limit) at 6°/min.

The mass spectral data are stored on magnetic tape. The mass spectra of interest will be printed out by the instrument operator for qualitative analysis. Quantitation from this data may be achieved by integrating the area of selected ions and comparing them to the area of the external standard.

113

The sensitivity of the determination may be significantly improved for quantitative purposes by using the technique of selected ion monitoring (SIM), also known as multiple ion detection (MID). This technique monitors up to 9 ions at a sensitivity 10-100 greater than the normal operating mode. This technique is used for quantitation of compounds in samples where the increased sensitivity is necessary for detection or accurate determination. 2.0 <u>Range and Sensitivity</u>

The detection limit of the GC/MS/COMP system has been determined to be about 5-50 ng/ $\mu$ L for pesticides such as  $\gamma$ -BHC, p,p'-DDE, atrazine, trifluralin and heptachlor using a 40 m SE-30 capillary column. When SIM was used, the detection limit was about one order of magnitude less (i.e., 0.5-5 ng/ $\mu$ L). The detection limit for tetrabromobiphenyl is about 1 ng/ $\mu$ L in the SIM mode using 45 x 0.2-cm i.d. column packed with 2 percent OV-101 coated on Gas-Chrom Q.

For an instrumental detection limit of  $1 \text{ ng/}\mu\text{L}$ , the overall sensitivity of the method should be about 6 ng/mL (6 ppb) milk assuming a 50 mL milk sample extracted and extract concentrated to 0.3 mL. This detection limit may be improved by using SIM and may be worsened by background interferences. 3.0 Precision and Accuracy

When electron capture gas chromatography (GC/ECD) was used, the mean recoveries from cow's milk for seven replicates ranged from 57 to 93 percent for six model compounds. Thus, the results obtained may be as little as half the actual amount in the sample. The relative standard deviations (RSD) for the above replicates ranged from 11 to 33 percent, with the average RSD at 21.7 percent. Thus the precision of the method is about  $\pm$  20 percent. It is anticipated that accuracy and precision will improve with experience with the method.

# 4.0 Apparatus

#### 4.1 Gas Chromatograph

A Fisher-Victoreen 4400 gas chromatograph with an  $^{3}$ H electron capture detector, a  $10^{-13}$  AFS electrometer, and a 1.0 mV recorder is used.

# 4.2 Gas Chromatography Column

For most compounds, separation is achieved using a 40 m SCOT glass capillary column coated with 1 percent SE-30 and 0.32 percent Tullanox. For

•

the compounds of very low volatility (e.g. the higher PBBs) which will not chromatograph on the capillary column, a 45- x 0.2-cm i.d. glass column packed with 2 percent OV-101 on Gas-Chrom Q is used.

#### 4.3 Liquid Chromatography Column

A 24-mm i.d. glass column with a Teflon stopcock is used.

#### 4.4 Gas Chromatography/Mass Spectrometer

An LKB 2091 gas chromatograph/mass spectrometer with 2 PDP 11/4 computer is used. The system is equipped with a glass jet separator and is used with either glass capillary or packed glass column.

#### 5.0 <u>Materials</u>

```
Kuderna-Danish evaporators:
```

5 mL receivers

250 mL KD flasks

Snyder columns

500 mL flat-bottom boiling flasks

250 mL separatory funnels

Clean glass wool

Whatman 1 P/S filter paper

Florisil

Sodium sulfate (anhydrous)

```
Acetone "Distilled in Glass", redistilled
Pentane "Distilled in Glass", redistilled
Toluene "Distilled in Glass", redistilled
Ethyl ether "Distilled in Glass"
```

#### 6.0 Procedure

#### 6.1 Extraction

- (1) Mix 50 mL (or volume available up to 50 mL) of a milk sample with clean glass wool and 150 mL of acetone to precipitate the proteins.
- (2) Decant and filter the acetone/water layer.
- (3) Repeat steps 1 and 2 with two 50 mL acetone fractions.
- (4) Concentrate to about 20 mL using a Kuderna-Danish evaporator.
- (5) Extract the precipitate with 40 mL of toluene; decant and filter the toluene layer.

- (6) Combine the toluene extract and the acetone extract with shaking.
- (7) Let the layers separate and draw off toluene (top) layer.
- (8) Repeat Steps 5-7 with 40 mL toluene and then with 10-20 mL toluene.
- (9) Discard the lower water layer.
- (10) Dry the organic layer with anhydrous sodium sulfate and concentrate to desired volume using a flat-bottom boiling flask and Snyder column. Quantatively transfer to a vial and concentrate to 5-10 mL under a gentle stream of nitrogen.
- 6.2 Florisil Column Chromatography<sup>(1)</sup>
  - (1) Prepare Florisil by heating to 130°C for at least 5 hours.
  - (2) Prepare a 24-mm i.d. column so that the Florisil is 10 cm high after settling.
  - (3) Place about 1 cm of anhydrous sodium sulfate on top of the Florisil.
  - (4) Rinse column with 40-50 mL pentane, never allowing the solvent to go below the  $Na_2SO_A$  layer, as channeling may result.
  - (5) Add up to 10 mL of sample to column.
  - (6) Elute with 200 mL of 6 percent ethyl ether/pentane solution at <5 mL/min.
  - (7) Collect and concentrate in a Kuderna-Danish evaporator.
  - (8) Evaporate under nitrogen stream to ~ 1.5 mL. Quantitatively transfer to a vial, store in a freezer.
  - (9) If sample solidifies after concentration, repeat the Florisil cleanup (Steps 1-8).

#### 6.3 Standards

Standards are spiked into the sample following the extraction and workup  $(d_{10}$ -pyrene was used at 200 ng/mL).

6.4 Analysis

6.4.1 GC/MS/COMP Analysis for Semivolatiles

Inject 0.2  $\mu$ L onto a 40 m SE-30 SCOT capillary at 60°C initially, program at 6°/min to 240°C, then hold until no more peaks are observed. Collect mass spectral data at 2 sec/scan from m/z 20-500. Compounds amenable to this analysis include organic compounds with volatility lower than that for purgeable compounds. Only the very low volatile compounds (e.g. higher PBBs) will not elute from the capillary.

#### 6.4.2 GC/MS/COMP Analysis for Low Volatile Compounds

6.4.2.1 Normal Procedure

Inject 1.0  $\mu$ L onto a 45 x 0.2-cm i.d. glass column packed with 2 percent OV-101 on GasChrom Q at 220°C initially, program to 300° at 12°/min and hold until all peaks have eluted. A helium flow rate of 20 mL/min is used. The mass spectrometer is scanned from m/z 20-1000 at 2 sec/scan.

#### 6.4.2.2 Alternate Procedure

Using the same chromatographic conditions analyze the sample by SIM. Preselect up to 8 ions characteristic of the compound(s) of interest and one ion characteristic of the standard. Retention times provide qualitative identifications. Peak areas may be used for quantification as discussed below. This alternate procedure has 10-100 times better sensitivity than the full scan mode and provides faster quantitative results. The main disadvantage is that only preselected compounds may be identified.

In addition, if specific halogenated compounds are found to be present with little interference in most samples, they may be analyzed by GC/ECD. This procedure improves the sensitivity and reduces the analysis time (since GC/MS/COMP requires an offline data output). If GC/ECD is used, approximately 10 percent of the analyses are verified by GC/MS/COMP.

6.4.3 Qualitative Data Interpretation

Spectra are interpreted by visual comparison with standard spectral reference collections (2,3) where possible. Where standard spectra are not available, tentative identifications are made based upon interpretation of the mass spectrum. Where possible, the GC retention time is also used to assist in the identification procedure.

All identifications and interpretations are checked independently by other experienced chemists or spectroscopists to assure that the interpretations are correct.

#### 6.4.4 Quantitative Analysis

In order to eliminate the need to construct complete calibration curves for each compound to be quantified, the method of relative molar response (RMR) is used. Successful use of this method requires information on the exact amount of standard added and the relationship of RMR (unknown) to the RMR (standards). In general, the RMR for a compound is determined for a



characteristic ion (parent or fragment) in its mass spectrum. The integrated ion current may also be used, but is generally less precise. The value of RMR is determined from at least three independent analyses. The method of calculation is as follows:

(1) RMR<sub>unknown/standard</sub> = 
$$\frac{A_{unk}/moles_{unk}}{A_{std}/moles_{std}}$$

A = peak area, determined by integration or triangulation of the total ion current <u>or</u> for a selected mass of each compound

(2) RMR<sub>unk/std</sub> = 
$$\frac{A_{unk}/g_{unk}/GMW_{unk}}{A_{std}/g_{std}/GMW_{std}}$$

A = peak area, as above g = number of grams present GMW = gram molecular weight

Thus, in the sample analyzed:

(3) 
$$g_{unk} = \frac{A_{unk}/GMW_{unk}/g_{std}}{A_{std}/GMW_{std}/RMR_{unk}/std}$$

- 7.0 References
- Horowitz, W., ed., <u>AOAC Methods of Analysis</u>, 12th ed., Association of Official Analytical Chemists, Washington, DC. (1975).
- 2. McLafferty, F. W., E. Stenhagen, and S. Abrahammson, ed., "Registry of Mass Spectral Data," John Wiley and Sons, New York (1974).
- Eight Peak Index of Mass Spectra. Vol. I (Tables 1 and 2) and II (Table 3), Mass Spectrometry Data Centre, AWRE, Aldermaston, Reading, RG74PR, UK (1970).

Protocol Prepared, June, 1980

#### APPENDIX D

.

.

# VOLATILE COMPOUNDS IDENTIFIED IN SELECTED PURGES OF MOTHER'S MILK

•

| Table D-1. | VOLATILE | COMPOUNDS | IDENTIFIED | IN | PURGE | OF | SAMPLE | NO. | 1081 |
|------------|----------|-----------|------------|----|-------|----|--------|-----|------|
|            |          | (Baye     | onne, NJ)  |    |       |    |        |     |      |

.

| Chronato-<br>graphic<br>Peak No. | Intion<br>Temp.<br>(*C) | Corporal                                                                                                       | Chromato-<br>graphic<br>Peak No. | Elution<br>Temp.<br>(*C) | Cripcust                                      |
|----------------------------------|-------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------|--------------------------|-----------------------------------------------|
| 14                               | 34                      | carbon diozide                                                                                                 | 42                               | 150                      | 6-5CLAG                                       |
| 13                               | 56                      | chlorotrifluorom chane.                                                                                        | 424                              | 152                      |                                               |
| 2                                | 61                      | DIDDAJese                                                                                                      | 423                              | 152                      | C.E., isomer (test.)                          |
| 3                                | 65                      | C.R. isomer                                                                                                    | 43                               | 154                      | 5 10<br>C.H., isomer (test.)                  |
| 4                                | 66                      | C.R., isomer                                                                                                   | 44                               | 156                      | eilozene                                      |
| 5                                | 67                      | C.E. isomer                                                                                                    | 45                               | 159                      | C.E. isomer (tent.)                           |
| 6                                | 73                      | acetaldehvde                                                                                                   | 46                               | 161                      | chlorobersens                                 |
| 7≜                               | 73                      | écetope                                                                                                        | 47                               | 163                      | 1-chlorohamane (cast.)                        |
| 73                               | 74                      | trichlorofluoremethane                                                                                         | 4.0                              | 166                      | ethylbenzene                                  |
| 8                                | 76                      | D~behtane                                                                                                      | 49                               | 168                      | zylene isomer                                 |
| 9                                | 77                      | isopropagol                                                                                                    | 50                               | 171                      | 3-heptanone                                   |
| 10                               | 79                      | arthylene chloride                                                                                             | 51                               | 171                      | 2-heptacost                                   |
| 11                               | 80                      | from 113                                                                                                       | 52                               | 173                      | STYTERS                                       |
| 12                               | 83                      | carbon disulfide                                                                                               | 534                              | 173                      | C.B. isomer                                   |
| 13                               | 33                      | e-butanel                                                                                                      | 538                              | 173                      | Calas isomer                                  |
| 14                               | 87                      | Cyclopediade                                                                                                   | \$30                             | 174                      | <u>p-beptenal</u>                             |
| 15                               | 89                      | C.H.O. isoner                                                                                                  | 530                              | 174                      | xylebs isomer                                 |
| 16                               | 91                      | a o j<br>methyl ethyl ketone                                                                                   | 54                               | 175                      | C isomer (tent.)                              |
| 17                               | 92                      | C.H., isomr                                                                                                    | 55                               | 178                      | <u>8-200208</u>                               |
| 18                               | 94                      | e 12<br>bezažiuprobenzene (int. std.)                                                                          | 56                               | 179                      | Cially isoner                                 |
| 19                               | 95                      | p-bezane                                                                                                       | 57                               | 181                      | 3-methyl-l-iodobutane                         |
| 20                               | 96                      | chloroform                                                                                                     | 584                              | 163                      | isopropylbenzene                              |
| 21                               | 97                      | C.R., incomes                                                                                                  | 568                              | 184                      | Contes inter                                  |
| 22                               | 99                      | C_E., isouer                                                                                                   | 59                               | 198                      | C <sub>11</sub> E <sub>24</sub> isomer        |
| 234                              | 102                     | perfluerocolumns (int. std.)                                                                                   | 60A                              | 189                      | Cinkis isomer                                 |
| 238                              | 102                     | metbylcyclopentane                                                                                             | 603                              | 189                      | C_B, G isomet (test.)                         |
| 24                               | 104                     | 1,1,1+trichlerosthese                                                                                          | 614                              | 191                      | benazldehyde                                  |
| 25                               | 105                     | C.E. isomer                                                                                                    | 613                              | 191                      | p-propyl benzeze                              |
| 26                               | 108                     | bassune                                                                                                        | 62                               | 293                      | C <sub>1</sub> -alkyl bensens                 |
| 27                               | 1.12                    | cyclohezane                                                                                                    | 63                               | 194                      | Color isomer (test.)                          |
| 26A                              | 213                     | ethyl winyl kecome                                                                                             | 66                               | 195                      | C <sub>g</sub> B <sub>18</sub> isomt          |
| 283                              | 234                     | 2-pentanope                                                                                                    | 63                               | 196                      | C <sub>11</sub> R <sub>24</sub> isomer        |
| 29                               | 715                     | C <sub>a</sub> E <sub>10</sub> 0 (test.)                                                                       | 66                               | 197                      | octasse least                                 |
| 30                               | 1.16                    | g-pentanal                                                                                                     | 67                               | 199                      | C <sub>11</sub> E <sub>24</sub> isomer        |
| 31A                              | 19                      | trichloroethylane                                                                                              | 64                               | 200                      | 2-pentylfuran                                 |
| 318                              | 119                     | C <sub>7</sub> B <sub>12</sub> or C <sub>6</sub> B <sub>8</sub> 0 isomer                                       | 69A                              | 201                      | C <sub>11</sub> N <sub>24</sub> isoner        |
| 32                               | 122                     | h-haptene                                                                                                      | 693                              | 202                      | g-octsnel                                     |
| <b>33</b>                        | 126                     | CgE16 isomer                                                                                                   | 70                               | 203                      | silozza                                       |
| 34                               | 129                     | CyB24 isomer                                                                                                   | 714                              | 204                      | C10 <sup>R</sup> 22 Secont                    |
| 35                               | 134                     | 1-chioropentane                                                                                                | 713                              | 205                      | dichlorobensese                               |
| 36                               | 135                     | and a second | 72                               | 206                      | C <sub>21</sub> B <sub>24</sub> isomer        |
| 37                               | 138                     | toluese                                                                                                        | 734                              | 210                      | C10 <sup>E</sup> 14 isouar                    |
| 38                               | 243                     | C <sub>6</sub> H <sub>12</sub> O isomer (tent.)                                                                | 738                              | 210                      | C <sub>9</sub> E <sub>16</sub> isomer (tent.) |
| 39                               | 145                     | g-bezacal                                                                                                      | 730                              | 210                      | ast. hydrocarbon                              |
| 40                               | 147                     | Callis isomer                                                                                                  | 24                               | 211                      | sat, hydrocarbon                              |
|                                  |                         |                                                                                                                | 1                                |                          |                                               |

- Continued -

| Chrossto-<br>graphic<br>Peak No. | Elucion<br>Temp.<br>(*C) | Coupound                 | Garonato-<br>graphic<br>Peak No. | Elution<br>Temp.<br>(*C) | Compound                               |
|----------------------------------|--------------------------|--------------------------|----------------------------------|--------------------------|----------------------------------------|
| 75                               | 21%                      | limesee                  | \$6                              | 240                      | unsat. hydrocarboa                     |
| 76                               | 215                      | ant. hydrocarbos         | 87                               | 240                      | silomene                               |
| 77A                              | 215                      | unset. bydrocarboa       | 88                               | 240                      | asphthelese                            |
| 773                              | 216                      | C11H74 isomer (tent.)    | \$9                              | 240                      | C10 <sup>20</sup> 0 isomer (tent.)     |
| 78                               | 218                      | monochlorodecana (cant.) | 1 10                             | 240                      | g-dodecane                             |
| 79A                              | 219                      | C <sub>oline</sub> o     | 91                               | <b>Z4</b> 0              | ankaova                                |
| 798                              | 219                      | ecetophenone             | 92                               | 240                      | unset. hydrocathon                     |
| 60                               | 223                      | est. hydrocarbou         | 93                               | 240                      | eilozane                               |
| #1                               | 222                      | set. hydrocarbos         | 94                               | 240                      | C <sub>11</sub> E <sub>22</sub> iccust |
| 82                               | 221                      | 2-20040026               | 95                               | 240                      | ailozane                               |
| 83                               | 225                      | dimethylstyrene          | 96                               | 240                      | THE ROOM                               |
| 84                               | 227                      | <u>9-096666</u> ]        | 97                               | 240                      | silomae                                |
| 85                               | 230                      | <u>p-undecane</u>        | 1                                |                          |                                        |

-

Table D-1 (cont'd.)

.



Figure D-1. Total ion current chromatogram from GC/MS analysis for volatiles in sample no. 1081 (Bayonne, NJ).

۸

.

٠

| Chronato-<br>graphic<br>Peak No. | Elation<br>Temp.<br>("C) | Compound                                                          | Chromato-<br>graphic<br>Paak No. | Elution<br>Temp.<br>(°C) | Conground                             |
|----------------------------------|--------------------------|-------------------------------------------------------------------|----------------------------------|--------------------------|---------------------------------------|
| 1                                | 38                       | Carboa diaxide                                                    | 34                               | 140                      | coluene                               |
| 2                                | 59                       | chlorotrifluoromethese                                            | 354                              | 141                      | 1-pentanol                            |
| 3.                               | 60                       | dimethyl ether                                                    | 358                              | 142                      | (BROWD)                               |
| 4                                | 67                       | C_N.A isomer                                                      | 36                               | 145                      | C <sub>7</sub> E <sub>16</sub> incor  |
| 54                               | 74                       | isopeniane                                                        | 37                               | 146                      | g-bezenel                             |
| 5a                               | 74                       | trichlerofluoromethese                                            | 38                               | 149                      | Calling isour                         |
| sc                               | 75                       | ecetope                                                           | 394                              | 150                      | united Wa                             |
| 50                               | 75                       | C <sub>s</sub> R <sub>10</sub> isomer                             | 391                              | 151                      | Callis incher                         |
| 44                               | 77                       | g-pentana                                                         | 404                              | 152                      | C <sub>R</sub> B <sub>18</sub> iconst |
| 65                               | 78                       | Leoptese                                                          | 408                              | 153                      | ET404-4-OSTEDA                        |
| 6C                               | 78                       | iaoptopanol                                                       | 41                               | 153                      | cetrachloroethyiepe                   |
| áD.                              | 79                       | C <sub>6</sub> E <sub>12</sub> isomer                             | 42A                              | 154                      | C <sub>9</sub> H <sub>20</sub> isomer |
| 6Z                               | 79                       | visylidine chloride                                               | 428                              | 254                      | set. bydrocerbon                      |
| 7                                | 81                       | unthylane chlofide                                                | 42C                              | 154                      | unset. hydrocarbon                    |
| 8                                | 82                       | Press 113                                                         | 43                               | 155                      | C <sub>3<sup>H</sup>16</sub> isomer   |
| 9                                | \$4                      | carboa disulfide                                                  | 44A                              | 121                      | CgH14 isomer                          |
| 10                               | 85                       | 2-emthylpropanal                                                  | [ 44B                            | 157                      | silomana                              |
| ц                                | 87                       | cyclopentane                                                      | 45                               | 161                      | unset. hydrocarbon                    |
| 12                               | 90                       | wakaova                                                           | 46A                              | 162                      | sat. hydrocarbon                      |
| 13                               | 92                       | esthyl ethyl ketone                                               | 468                              | 162                      | unsat. hydrocathon                    |
| 14                               | 94                       | C <sub>6</sub> H <sub>12</sub> isomer                             | 47                               | 163                      | uninova                               |
| 15                               | 96                       | bezafluorobensene (int. std.)                                     | 48                               | 165                      | chlorohezene                          |
| 16                               | 97                       | B-pexere                                                          | 49                               | 167                      | stbylbensee                           |
| 17                               | 98                       | chloroform                                                        | 50                               | 169                      | zylape isomer                         |
| 18                               | 101                      | C <sub>6</sub> N <sub>12</sub> isomer                             | 51                               | 173                      | 2-beptencos                           |
| 19                               | 104                      | perfluorotolusse (int. std.)                                      | 524                              | 174                      | STATEDE                               |
| 20A                              | 106                      | 1,1.1-trichloroethene                                             | 528                              | 175                      | 2-g-butylfuran (tent.)                |
| 208                              | 107                      | 3-methylbutanel (tent.)                                           | 53A                              | 175                      | g-heptanal                            |
| 21                               | 109                      | 2-methylbotanel                                                   | 338                              | 176                      | zylene istmer                         |
| 22                               | 110                      | beazeae                                                           | 54                               | 177                      | G <sub>p</sub> I <sub>16</sub> isomer |
| 23                               | 111                      | cerèqe tetrachloride                                              | 55                               | 179                      | C <sub>5</sub> B <sub>20</sub> isomer |
| 244                              | 113                      | cyclebezene                                                       | 56                               | 181                      | ast. bydrocarbon                      |
| 248                              | 113                      | Wethyltetrahydrofutan (tent.)                                     | 57                               | 181                      | C <sub>9</sub> B <sub>18</sub> isomet |
| 25 <b>A</b>                      | 113                      | C7814                                                             | 584                              | 182                      | 3-methyl-1-iodobutane                 |
| 25B                              | 115                      | ethyl vinyl ketone                                                | 560                              | 183                      | C <sub>gH18</sub> isomer              |
| 26                               | 115                      | 2~pentanone                                                       | 594                              | 184                      | [sopropylbenzene                      |
| 278                              | 117                      | vieyl propionete (tent.)                                          | 59B                              | 185                      | ast. Nydrocarbon                      |
| 253                              | 121                      | trichloroethylene                                                 | 60                               | 189                      | bydrocarbon                           |
| 28A                              | 123                      | C <sub>7</sub> E <sub>12</sub> of C <sub>6</sub> E <sub>8</sub> O | 61                               | 190                      | C10816 isomer                         |
| 203                              | 124                      | Wakaowa                                                           | <b>6</b> 2                       | 190                      | unant. bydrocarboa                    |
| 27                               | 127                      | C <sub>7</sub> S <sub>14</sub> isomer                             | - 63                             | 191                      | Dennaldebyde                          |
| 30                               | 130                      | C <sub>y</sub> H <sub>14</sub> isomer                             |                                  | 192                      | g-propylbansane (test.)               |
| 31                               | 132                      | dimenyl disulfide                                                 | - 43                             | 194                      | trimthylbenzene isourt                |
| 32                               | 136                      | 1-chlotopescape                                                   | <b>#</b>                         | 196                      | isomyl formate (test.)                |
| 22                               | 138                      | unkowa.                                                           | 67A                              | 196                      | wakgowa .                             |

# Table D-2. VOLATILE COMPOUNDS IDENTIFIED IN PURGE OF SAMPLE NO. 1040 (Bayonne, NJ)

- Costinued -

| Chromato-<br>graphic<br>Peak Ho. | Elucion<br>Temp.<br>(*C) | Compound                               | Chromato-<br>graphic<br>Pask No. | Elution<br>Temp.<br>(*C) | Conpound                               |
|----------------------------------|--------------------------|----------------------------------------|----------------------------------|--------------------------|----------------------------------------|
| 673                              | 297                      | ast. hydrocarbon                       | 84                               | 220                      | unk nown                               |
| 68A                              | 198                      | C <sub>9</sub> E <sub>20</sub> isomer  | - #5                             | 222                      | Acatopheneos                           |
| 683                              | 199                      | C <sub>3</sub> -alkyl banzapa          | #6                               | 223                      | aat. bystocarboe                       |
| 69                               | 200                      | ast. bydrocarbon                       | 87                               | 225                      | C <sub>10</sub> E <sub>22</sub> issuer |
| 70                               | 201                      | 2-pentyl furan                         | 14                               | 226                      | dissthy18tyrans                        |
| 71                               | 203                      | C <sub>q</sub> -alkyl benzene          |                                  | 228                      | p-sessel                               |
| 72                               | 203                      | ¢10 <sup>8</sup> 20                    | 904                              | 230                      | eilceane                               |
| 73                               | 204                      | allestas                               | 908                              | 231                      | eflorane                               |
| 74                               | 206                      | dichlorobensene                        | 91                               | 234                      | tetramethylbenzame (tent.)             |
| 75                               | 207                      | Cy-alkyl benavne (zent.)               | 92                               | 239                      | Silókahe                               |
| 76                               | 209                      | C.B.A                                  | 93                               | 240                      | allonage                               |
| 77                               | 211                      | dischylsthylbensens isomer             | 94                               | 240                      | naphthalene                            |
| 78                               | 212                      | manthese (test.)                       | 95                               | 240                      | C <sub>12</sub> E <sub>26</sub> isomet |
| 79                               | 213                      | limopens                               | 96                               | 240                      | tinkeowa                               |
| 80                               | 216                      | C <sub>11</sub> E <sub>22</sub> isomet | 97                               | 240                      | #110xen#                               |
| 61                               | 216                      | unsat. hydrocarbon                     | 98                               | 240                      | 2-widecabon4                           |
| 82                               | 217                      | sat. bydrocarbon                       | 99                               | 240                      | C, R.                                  |
| 63                               | 215                      | · unkoova                              | 100                              | 240                      | silozane                               |

Table D-2 (cont'd.)

.

,

•



Figure D-2. Total ion current chromatogram from GC/MS analysis for volatiles in sample no. 1040 (Bayonne, NJ).

| Chronsto-   | Tuton.    | Contract                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ChrowAto- | Taxa. | Concernd                                 |
|-------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------|------------------------------------------|
| Peak No.    | (*0)      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Peak No.  | (**)  | ••••••••••••••••••••••••••••••••••••••   |
| 3           | <u>41</u> | Tendo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 203       | 113   | viet) propionete                         |
| •           | 65        | eather dieride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 21        | 114   | n-bentangl                               |
| •           | £7        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 774       | 116   | C T Samer                                |
| <u> </u>    | 47        | disk) ogsåt fluggenskans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 223       | 112   |                                          |
|             | 44        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 170       | 118   |                                          |
| *           | 97        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 220       | 110   |                                          |
| 24          | 7¥<br>43  | Botese recent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           | 196   | Chyl Luran (Const.)                      |
| 20          | 71        | E-antepe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           | 120   |                                          |
| ж<br>       | 72        | acatalochyde                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           | 123   | Z,Z,4-CTIMeLBy1-J-pentena                |
| 50          | 73        | butene incont                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 25        | 124   | 100hemanal                               |
| 64          | 74        | chlorethan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 26A       | 125   | C <sub>6</sub> I <sub>10</sub> 0 isomer  |
| 7           | 75        | tetramethyleilane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 263       | 127   | 4-methyl-2-pentexope                     |
| <b>M</b>    | 76        | tricblorofluoromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 260       | 127   | CgB <sub>16</sub> isomer                 |
| 83          | 78        | 1-pentepe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 27        | 128   | dinathy] disulfide                       |
| 8C          | 78        | achtone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 28        | 129   | díbydropy <del>yan</del>                 |
| 94          | 79        | isopropenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 29        | 131   | chloropestane                            |
| 98          | 79        | g-yestane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 30A       | 234   | toluese                                  |
| 10A         | 81        | unthylene chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 303       | 237   | C <sub>S</sub> H <sub>15</sub> Loomer    |
| 103         | 83        | Prest 113 .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 31        | 139   | C <sub>c</sub> E <sub>y 2</sub> 0 isomer |
| 20C         | 85        | carbon disulfide (trace)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 324       | 141   | g-bezanel                                |
| 100         | 86        | mathyl winyl ketone (trace)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 323       | 143   | C.B., isomer                             |
| 10 <u>r</u> | 86        | methyl propanol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 334       | 146   | C TO                                     |
| 107         | 86        | nitromethane (tent.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 333       | 147   | C.E., isomer                             |
| 114         | 68        | CTC10PED LADE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 34        | 148   | tetrachloroethylene                      |
| 113         | 89        | 2-methyl pentane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 35        | 149   | C.R., isomer                             |
| 124         | 90        | vinvi acetate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 36        | 151   | silozane                                 |
| 128         | \$1       | n-butenal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 37        | 156   |                                          |
| 134         | 97        | Sebethyl Bantana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 384       | 156   |                                          |
| 198         | 41        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 162       | 154   | 9718                                     |
| 344         | <u>64</u> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 380       | 164   | Tabarana) (sana )                        |
| 141         | 67        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 300       | 154   | -vennet (test./                          |
| 140         | 27<br>84  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 374       | 1.96  |                                          |
| 38          | 100       | the start of the second s |           | 137   | State Langer                             |
| 20<br>344   | 101       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -04       | 104   |                                          |
| 143         | 101       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           | 101   | C9"18 100MOT                             |
| 144         | 101       | persiuorotoluene (int. std.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 40C       | 101   | e-beptassos                              |
| 100         | 142       | methyl cyclopentane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 414       | 162   | zylene isomet                            |
| 1/4         | 104       | g-methyl scetamide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 413       | 163   | phenylacetylene                          |
| 178         | 105       | 1,1,1-trichlorgethans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 424       | 164   | 3-beptenope                              |
| 170         | 106       | 3, 3-dimethylogetan (tant.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 423       | 165   | 2-heptenco+                              |
| 184         | 106       | pessese                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 43        | 166   | C <sub>7</sub> E <sub>12</sub> D (tent.) |
| 163         | 109       | carbon tetrachloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 444       | 167   | Styrema                                  |
| 194         | 110       | 1-butano1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 443       | 168   | P-pebranej                               |
| 191         | 110       | cyclobezate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 440       | 168   | mylane isomer                            |
| 190         | 111       | C38100 1somer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | مده ا     | 269   | set. hydrocarbos                         |
| <b>19</b> D | 112       | ethyl winyl ketons (tent.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 453       | 170   | C <sub>g</sub> R <sub>jé</sub> icomar    |
|             | ***       | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>I</b>  |       |                                          |

# Table D-3. VOLATILE COMPOUNDS IDENTIFIED IN PURGE OF SAMPLE NO. 1107 (Jersey City, NJ)

.

-

.

- Continued -

| graphic<br>prinki terComputed<br>(C)problet<br>(C)Computed<br>(C)47173est. byfrocathen64208 $C_{g}$ -lifylincates48174 $c_{g}$ Lg isomer688209 $C_{g}$ Lg isomer48175est. byfrocathen70110 $C_{g}$ Lg isomer498175est. byfrocathen71110 $C_{g}$ Lg isomer498175est. byfrocathen71110 $C_{g}$ Lg isomer498174mikeon71110 $C_{g}$ Lg isomer498174chapte724211est. byfrocathen499174 $C_{g}$ Lg isomer724211est. byfrocathen504174isoperpi benese728212escalis (test.)51197 $C_{g}$ Lg isomer734213 $C_{g}$ Lg isomer51198testastic734213 $C_{g}$ Lg isomer51198testastic734214 $C_{g}$ Lg isomer52181testastic734215 $C_{g}$ Lg isomer53184testastic734215 $C_{g}$ Lg isomer53184testastic734215testastic54187testastic744215testastic55187testastic7772C_{g}Lg isomer54187testastic7772C_{g}Lg isomer55188187testastic784216testastic <tr<< th=""><th>Chromeco-</th><th>flution</th><th></th><th>Chromato-</th><th>Elucion</th><th></th></tr<<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Chromeco-           | flution       |                          | Chromato-           | Elucion       |                                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------|--------------------------|---------------------|---------------|----------------------------------------|
| 47       373       set. hydrocathen       64.       306 $C_{11}T_{22}$ isomer         44       374 $C_{11}T_{22}$ isomer       688       309 $C_{11}T_{22}$ isomer         454       175       set. hydrocathen       70       210 $C_{11}T_{22}$ isomer         456       175       set. hydrocathen       71.       210 $C_{11}T_{22}$ isomer         456       174 $C_{11}T_{0}$ isomer       72.       211       set. hydrocathen         457 $C_{11}T_{0}$ isomer       72.       212       set. hydrocathen         568       176 $C_{11}T_{0}$ isomer       73.       212       set. hydrocathen         510       177 $C_{11}T_{0}$ isomer       73.       213 $C_{11}T_{0}$ isomer         511       176 $C_{11}T_{0}$ isomer       73.       213 $C_{11}T_{0}$ isomer         512       181       basalistyte       73.       213 $C_{11}T_{0}$ isomer       74.         523       182       options       73.       213 $C_{11}T_{0}$ isomer       74.         53       184       mytocathen       78.       213 $C_{11}T_{0}$ isomer         54       187       tet. hydr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | graphic<br>Yeak Wo. | Temp.<br>(*C) | Coupound                 | graphic<br>Peak No. | Temp.<br>(*C) | Compound                               |
| 44       174 $C_{11}T_{22}$ isomer       648       209 $C_{11}T_{22}$ isomer         444       175       act. bydrosethom       70       110° $C_{11}T_{22}$ isomer         456       174       mixore       714       110° $C_{11}T_{22}$ isomer         457       174       mixore       724       211       wat. bydrosethom         458       176       isoperproj basesen       728       221       wat. bydrosethom         458       176       isoperproj basesen       724       212       wat. bydrosethom         508       177 $C_{11}T_{22}$ isomer       724       212       wat. bydrosethom         511       176       isoperproj basesen       724       212       wat. bydrosethom         512       181       trans-basesen       744       213       C_{i1}T_{i2} isomer         512       182       orpicate       735       213       G_{i1}T_{i2} isomer         513       184       group/basesen       764       213       Scenard         514       187       beasedigride       784       216       group         514       187       beasedigride       784       216       group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 47                  | 173           | set. hydrocarbos         | 674                 | 208           | Celityibensese                         |
| 444       175       att, bytreastors       70       210* $t_{11}^{11} t_{22}^{11}$ isomer         458       173       attyl mathyl priobermen       711       210 $t_{11}^{11} t_{22}^{11}$ isomer         450       174       makeom       711       210 $t_{11}^{11} t_{22}^{11}$ isomer         450       176       makeom       713       211       set. hydrocarbon         504       176       isoproyl beasen       724       211       set. hydrocarbon         504       176 $c_{11}^{11} t_{10}^{11}$ isomer       723       212       decklin (isot.)         504       176 $c_{11}^{11} t_{10}^{11}$ isomer       733       211 $c_{11}^{11} t_{12}^{11}$ isomer         511       176 $c_{11}^{11} t_{10}^{11}$ isomer       733       212 $t_{11}^{11} t_{12}^{11}$ isomer         523       182       beansidety       734       214 $t_{11}^{11} t_{12}^{11}$ isomer         513       187       beansidety       734       215 $t_{11}^{11} t_{12}^{11}$ isomer         534       186       rylass isomer       768       216 $t_{11}^{11} t_{12}^{11}$ isomer         54       187       beansidetyle       724       223 $t_{11}^{11} t_{$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 46                  | 174           | G. J. Secure             | 698                 | 209           | C. H. isour                            |
| 498173athyl mathyl syslekarman714210 $T_{11}^{11}$ 211 $T_{12}^{11}$ 211490174 $C_{11}^{11}$ | 494                 | 175           | att. bydrocatbon         | 70                  | 210*          | C. In incast                           |
| 45C       176       makewes       713       211       philip         450       176 $\zeta_{11}^{-1} \zeta_{10}^{-1} downer       728       211       set. hydrocarbon         503       177       \zeta_{10}^{-1} \zeta_{22}^{-1} downer       728       212       set. hydrocarbon         51       176       \zeta_{10}^{-1} \zeta_{10}^{-1} downer       738       212       set. hydrocarbon         524       181       trans-t-beptenal       730       213       \zeta_{11}^{-1} \zeta_{12}^{-1} downer         523       182       o-referenal       730       214       \zeta_{11}^{-1} \zeta_{12}^{-1} downer         531       184       proportionation       768       215       \zeta_{11}^{-1} \zeta_{12}^{-1} downer         533       184       proportionation       768       216       genenani         54       186       rylass former       774       217       \zeta_{11}^{-1} \zeta_{12}^{-1} downer         54       187       beasecistrile (trace)       768       216       genenani         55       187       beasecistrile (trace)       768       219       genenani         54       187       beasecistrile (trace)       78       220       clineans         55       182       peatyl faran$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 493                 | 175           | athyl mathyl sycloberane | 714                 | 210           | C <sub>11</sub> E <sub>22</sub> isoset |
| 490176 $C_{\mu}T_{\mu}0$ isomer72A211set. bydrocarbon508176isoproyl beases728212deckin (deck.)511176 $C_{\mu}T_{2}$ isomer738212deckin (deck.)513186 $C_{\mu}T_{2}$ isomer738211 $C_{11}T_{2}$ isomer514181trans-2-septenal736213 $C_{\mu}$ elkyl beases528182 $e_{\mu}$ tione738213 $C_{\mu}$ elkyl beases521182teasidebyde734214 $C_{11}T_{2}$ isomer53184greveryl beases738215 $G_{\mu}$ elkyl beases54187set. bydrocarbon768214greenami54187beast. bydrocarbon768216greenami554187set. bydrocarbon778216allocane54187beast. bydrocarbon778219greenami55187beast. bydrocarbon778220allocane56197beast. bydrocarbon778220allocane57188set. bydrocarbon778220allocane58190ptract774220sales59192peasyl fatan80221 $C_{10}T_{12}$ isomer60193greetami814223 $C_{11}T_{12}$ isomer613194trimethylbeases isomer823224 $C_{2}T_{12}$ isomer614194trimethylbeases844                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 490                 | 176           | ukowa                    | 713                 | 211           | phthalide (cent.)                      |
| 564       176       isoproryl baseses       723       212       decais (test.)         508       177 $C_{10}T_{22}$ isses       734       212       est. byfroathon         511       176 $C_{10}T_{22}$ isses       734       212       est. byfroathon         513       181       cramo-b-hoptessa       735       213 $C_{11}T_{22}$ isses       isses         524       181       cramo-b-hoptessa       74       213 $C_{11}T_{22}$ isses       isses         525       182       bassidebyfe       738       214 $C_{11}T_{22}$ isses       isses         534       184       gritopistes       738       215 $C_{11}T_{22}$ isses       isses         54       186       rylass isses       768       216       gruntesses         554       187       bessocitril (crass)       764       218 $C_{10}T_{12}$ isses         554       187       bessocitril (crass)       768       219       gruntesses         561       187       bessocitril (crass)       788       220 $C_{11}T_{22}$ isses         57       185       sest. hydroarbon       783       223 $C_{12}T_{23}$ isses         581                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 490                 | 176           | C.E. 0 isomr             | 724                 | 211           | sat. bydrocarbos                       |
| 569       177 $C_{10}T_{22}$ issuer       73A       212       sat. bydrocarbon         51       176 $C_{2}T_{10}$ (sourt (esc.)       733       212 $C_{11}T_{2}$ (sourt (sourt)         524       181       trans-2-heptenal       735       213 $C_{1}^{-1}T_{2}^{-1}$ (sourt)         524       182       trans-2-heptenal       736       213 $C_{1}^{-1}T_{2}^{-1}$ (basent isourt)         531       184       g-propylassime       738       215 $C_{1}^{-1}T_{2}^{-1}$ (basent isourt)         54       184       g-propylassime       738       216 $C_{1}^{-1}T_{2}^{-1}$ (basent isourt)         54       187       best isourt       768       216       g-mannal         55       187       best isourt       768       219       g-mannal         55       187       best isourt       768       219       g-mannal         56       187       best isourt       794       220       cilesson         58       190       pristoplasson       793       220       cilesson         58       190       pristoplasson       794       220       cilesson         59       192       pantyl furan       80       2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SQA                 | 176           | isopropyl bestese .      | 723                 | 212           | decalin (tent.)                        |
| 51       176 $C_{3} M_{2} G$ isomer (test.)       738       212 $C_{11} M_{2} G$ isomer         524       141       erans-begreenal       730       213 $C_{11} M_{2} G$ isomer         524       142       orpisese       731       213 $C_{11} M_{2} G$ isomer         53       144       groupylassise       733       215 $C_{11} M_{2} G$ isomer         53       144       groupylassise       733       215 $C_{11} M_{2} G$ isomer         54       156       tytes isomer       764       213       set. hydrocarbon         54       157 $C_{10} M_{2} G$ isomer       77       217 $C_{11} M_{2} G$ isomer         558       157       158       set. hydrocarbon       784       210       setimese         54       150       phenol       794       220 $C_{11} M_{2} G$ isomer       58         58       150       triasthylbonson       798       220 $C_{11} M_{2} G$ isomer       50         59       152       pestriplocation       821 $C_{12} M_{2} G$ isomer       51         613       164       trimethylbonson isomer       823       224       2-matryldocalis (cont.)         62<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 503                 | 177           | C. T. Inoner             | 734                 | 212           | ast. bydrocarbon                       |
| 524       181       cran-2-beptenel       730       213 $C_{1,0}^{1}$ altylbansans isomet         528       182       orgiona       74       213       Zenemasona         531       184       grophylbansane       751       214 $C_{1,1}^{1}$ grophylbansane         531       184       grophylbansane       753       215 $C_{n,1}^{1}$ grophylbansane         54       185       totasonitic (crace)       761       214 $C_{1,1}^{1}$ grophylbansane         54       187       bestonitic (crace)       763       215       cillegrophylbansane         54       187       bestonitic (crace)       764       213       cillegrophylbansane         55       187       bestonitic (crace)       764       213       cillegrophylbansane         54       187       bestonitic (crace)       788       219       grophylbansane       grophylbansane         54       180       perciaal       80       221       C $_{1,0}^{1}$ grophylbansane       isomer         55       192       pestyl farm       81       222       C grophylbansane       isomer         604       193       grootsall       81       223       C grophylbansane       isomer <td>\$1</td> <td>178</td> <td>C.A. 0 isomer (test.)</td> <td>738</td> <td>212</td> <td>C. S. Isomet</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$1                 | 178           | C.A. 0 isomer (test.)    | 738                 | 212           | C. S. Isomet                           |
| 323       182 $a-pisesa$ 74       213       2-monsames         326       182       banaldshyde       751       214 $G_{11}M_{12}$ isoser         33       184 $g-proylessame$ 753       215 $G_{11}M_{12}$ isoser         34       186 $mjless$ isomer       753       215 $G_{rot}ministriation         354       187       f_{11}M_{12} isoser       773       217       G_{11}M_{12} isoser         354       187       f_{12}M_{12} isoser       773       216       g_{11}M_{12} isoser         354       187       f_{12}M_{12} isoser       778       218       G_{11}M_{12} isoser         354       180       persol       788       219       g_{rotsans}         354       190       persol       798       220       c_{11}M_{22} isoser         368       190       persol       798       220       c_{11}M_{21} isoser         360       193       g-orisal       81       222       C_{12}M_{21} isoser         40A       193       g-orisal       81       223       C_{12}M_{21} isoser         414       trimsthylmesse isoser       81       224       C_{12}M_{21} isoser$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 52A                 | 181           | e 14<br>Ezans-2-beștensi | 73C                 | 213           | C <sub>1</sub> -alkylbensens isouet    |
| 322       182       beamsldebyde       754       214 $C_{11}H_{22}$ isomer         33       184       greproylbeases       753       215 $C_{g}$ -alkyl beases isomer         34       186       ryless isomer       764       213       set.hydrocathon         354       187       set.hydrocathon       763       216       greensaml         358       187       C_{10}H_{22} isomer       77       217 $C_{11}H_{22}$ isomer         37       188       est.hydrocathon       783       219       greensaml         354       197       besnoititie (trace)       784       218 $C_{11}H_{22}$ isomer         37       188       est.hydrocathon       783       220       cilsease         354       190       persoi       798       220 $C_{11}H_{22}$ isomer         38       190       trimthylbeases       isomer       60       221 $C_{10}H_{20}$ isomer         403       192       persoi       813       224 $C_{12}H_{24}$ isomer         404       193       beasefuran       823       224 $C_{12}H_{24}$ isomer         403       194       trimthylbeases isomer       833       224                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 523                 | 182           | a-pissas                 | 74                  | 213           | 2-10048004                             |
| 53       184       g-propylbassas       733       213 $C_{0}^{-1} C_{1}^{-1}$ bessass isomer         54       186       rylass isomer       764       215       sat. bydrosasta       sat.         534       187       sat. bydrosathon       763       216       greathon         534       187       sat. bydrosathon       763       216       greastal         54       187       besochtrile (trace)       784       213 $C_{11} R_{22}$ isomer         57       188       sat. hydrosathon       783       220       cilezze         581       190       phenol       794       220       cilezze         581       190       printerbylbesses       795       220       cilezze         59       192       pestyl furan       40       221       ci_1 R_{22} isomer         603       193       protesses isomer       83       224       ci_2 R_{24}^{-1} isomer         613       194       ci_0 R_{20}^{-1} jon       453       226       ci_1 R_{22}^{-1} isomer         613       194       ci_0 R_{20}^{-1} jon       453       226       ci_1 R_{24}^{-1} isomer         614       219       silezze       642       227                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 52C                 | 182           | banzaldebyde             | 75A                 | 214           | C., N., isomer                         |
| 34       186       Tylacs isomer       76A       213       sat. bydrocarbon         534       187       est. bydrocarbon       763       214       grammal         535       187 $C_{10}Z_{12}$ isomer       77       217 $C_{11}Z_{12}$ isomer         54       187       bestochitrile (trace)       784       218       sat. bydrocarbon         54       180       sat. hydrocarbon       783       219       grundecane         54       190       phenol       784       220       stimuse         54       190       phenol       784       220       stimuse         54       190       phenol       784       220       stimuse       somer         54       190       protecane       80       221 $C_{11}Z_{12}$ isomer       stimuse       somer         538       190       trastripibenses isomer       81       222 $C_{11}Z_{12}$ isomer       stimuse       somer         603       193       bestofuran       823       224 $C_{12}Z_{12}$ isomer       62         613       194 $C_{10}Z_{10}$ isomer       83       226 $C_{11}Z_{12}$ isomer         614       226                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 53                  | 184           | a-propylheases           | 753                 | 215           | C,-alkyl bessess isomer                |
| 534       137       set. hydrocarbox       763       214       gresnaml         538       137 $C_{11}B_{12}$ isomer       77       217 $C_{11}B_{12}$ isomer         54       137       besuonistrile (tracs)       784       218 $C_{11}B_{12}$ isomer         57       188       set. hydrocarbox       788       219       greeneams         54       190       phenol       794       220       silessee         58       190       trimethylbename       798       220 $C_{11}B_{22}$ isomer         59       192       pestyl futua       40       221 $C_{10}B_{16}$ isomer         604       193       grestaal       81       222 $C_{10}B_{16}$ isomer         613       194       trimethylbename isomer       823       224 $C_{12}B_{24}$ isomer         614       194       trimethylbename isomer       83       226 $C_{10}B_{10}$ isomer         613       194 $C_{11}B_{22}$ isomer       83       226 $C_{12}B_{24}$ isomer         614       194       greecame       84A       225 $C_{12}B_{24}$ 100         613       194 $C_{11}B_{12}$ isomer       84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 54                  | 186           | zyless isomer            | 76A                 | 215           | sat. bydrocarbon                       |
| 338187 $C_{10}B_{22}$ isomer77217 $C_{11}B_{22}$ isomer54187beaucaitrile (trace)784218 $C_{10}B_{12}$ 0 isomer57188sat. hydrocathon788219grundscame584190phenol794220silonner581190trimethylbensen795220 $C_{11}B_{22}$ isomer582190trimethylbensen795220 $C_{11}B_{22}$ isomer59192pentyl furan80221 $C_{10}B_{10}$ isomer604193grotsani81222 $C_{1}S_{2}$ isomer614194trimethylbensen isomer823224 $C_{12}B_{24}$ isomer615194 $C_{10}B_{20}$ isomer83224 $C_{12}B_{24}$ isomer618194 $C_{10}B_{20}$ isomer83224 $C_{12}B_{24}$ isomer619science84A225 $C_{12}B_{24}$ isomer62195silonce84225 $C_{12}B_{24}$ isomer631196 $C_{11}B_{22}$ isomer84225 $C_{12}B_{24}$ isomer644200unknown84226 $c_{11}B_{20}$ isomer645201unknown848228 $C_{11}B_{20}$ isomer644200unknown845229 $C_{10}B_{10}$ isomer645201 $c_{4}=klylbensens isomer867230ushown645201c_{4}=klylbensens866230c_{11}B_{10} isomer$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 55A                 | 187           | sat. hydrocarboo         | 761                 | 216           | g-sonanal                              |
| St       187       besociatrile (trace)       784       218 $C_{11}B_{12}$ isomer         57       188       set. Aydrocathon       788       219       grundecane         58       190       phenol       784       220       cilmasc         58       190       trimethylbename       798       220       cilmasc         59       182       peanyl furan       80       221       Cigmin isomer         604       193       grootsamin       81       222       Cigmin isomer         604       193       grootsamin       824       223       Cigmin isomer         614       194       trimethylbename isomer       823       224       Cigmin isomer         613       194       trimethylbename isomer       823       224       2testryldecalin (test.)         614       194       trimethylbename       844       225       Cigmin isomer         613       194       Cigmon       843       226       Cigmon       644         614       295       sitemer       844       225       Cigmon       656         613       196       Cigmon       845       226       cisomer       657                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 558                 | 187           | C. ala, isomer           | 77                  | 217           | C., N., LAGRAT                         |
| 57       185       sst. hydrocarbon       788       219       grundscame         584       190       phenol       754       220       silessne         589       190       triastlylbensene       798       220       silessne         59       192       pestyl furas       60       221 $C_{1n}R_{12}$ isomer         604       193       pectaal       81       222 $C_{1n}R_{22}$ isomer         603       193       beasofuran       824       223 $C_{12}R_{24}$ isomer         614       194       trimethylbensene isomer       828       224 $C_{1n}R_{24}$ isomer         613       194       trimethylbensene isomer       83       224 $2-akkylbensene isomer         614       194       trimethylbensene       840       225       C_{12}R_{24} isomer         613       196       C_{10}R_{20}       843       226       C_{12}R_{24} isomer         614       200       reskiptbensene isomer       85       226       C_{12}R_{24} isomer         615       197       dichierobensene       85       226       C_{12}R_{24} isomer         615       201       reskiptbensene       85       226       <$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5 <del>E</del>      | 187           | bennomitrile (trace)     | 76A                 | 218           | C. H. D isoner                         |
| 344.       190       phenol.       794.       220       silexame         58B       190       trimsthylbensene       795.       220 $C_{11}H_{22}$ isomer         59       192       pentyl furan       40       221. $C_{10}H_{16}$ isomer         604.       193       pentyl furan       81.       222. $C_{10}H_{16}$ isomer         603.       193       beasofuran       81.       222. $C_{12}H_{26}$ isomer         614.       194. $C_{10}H_{20}$ isomer       823.       224. $C_{12}H_{26}$ isomer         613.       194. $C_{10}H_{20}$ isomer       83.       224. $C_{22}H_{26}$ isomer         613.       194. $C_{10}H_{20}$ isomer       83.       226. $C_{2}H_{24}$ isomer         614.       255.       eilexane       844.       225. $C_{12}H_{24}$ isomer         613.       194. $C_{10}H_{20}$ isomer       844.       225. $C_{12}H_{24}$ isomer         614.       256.       g_1H_{22} isomer       845.       226. $C_{10}H_{20}$ isomer         614.       260.       unknown       853.       228. $C_{11}H_{20}$ isomer         614.       200.       unknown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 57                  | 188           | sat. hydrocarbou         | 783                 | 219           | n-undecene                             |
| 580       190       trimethylbenses       795       220 $C_{11}H_{22}$ isomer         59       192       pentyl furan       60       221 $C_{10}H_{16}$ isomer         604       193       g=octsaal       61       222 $C_{12}H_{24}$ isomer         604       193       g=octsaal       61       222 $C_{12}H_{24}$ isomer         603       193       bensofuran       624       223 $C_{12}H_{24}$ isomer         613       194       trimethylbensess isomer       63       224 $C_{12}H_{24}$ isomer         613       194       trimethylbensess isomer       63       224 $C_{12}H_{24}$ isomer         613       194 $C_{10}H_{20}$ isomer       63       224 $C_{12}H_{24}$ isomer         613       196 $C_{11}H_{22}$ isomer       64       225 $C_{12}H_{24}$ isomer         638       196 $C_{11}H_{22}$ isomer       64       228 $C_{11}H_{21}$ isomer         644       200       uknown       65       228 $C_{12}H_{24}$ isomer         644       200       uknown       662       229 $C_{10}H_{10}$ isomer         645       201 $C_{11}H_{25}$ isomer       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SEA                 | 190           | phenol                   | 79A                 | 220           | silozane                               |
| 39192pentyl furan40221 $C_{10}H_{15}$ isomer604193g-octanal81222 $C_{10}H_{15}$ isomer608193bensofuran81222 $C_{10}H_{15}$ isomer614194trimethylbenses isomer823224 $C_{10}H_{25}$ isomer613194 $C_{10}H_{20}$ isomer832242-machyldecalin (tent.)62195siluzane844225 $C_{12}H_{26}$ 634196 $C_{10}H_{20}$ of843226 $C_{2}$ -alkylbensens isomer638196g-decame842226ci_make (tent.)639196 $C_{11}H_{22}$ isomer853226ci_make (tent.)630196 $C_{11}H_{22}$ isomer853226ci_make (tent.)630196 $C_{11}H_{22}$ isomer853228 $C_{11}H_{20}$ isomer644200unknown853228 $C_{10}H_{10}$ isomer645201ciknown862229 $C_{10}H_{10}$ isomer646201waknown865229 $C_{10}H_{10}$ isomer647201ci_1Hylbensen866230 $C_{11}H_{11}$ isomer648203sat. hydrocathon87230sat. hydrocathon641203sat. hydrocathon87230sat. hydrocathon642201ci_1Hyl isomer84230sat. hydrocathon643203sat. hydrocathon87230sat. hydrocathon <td>583</td> <td>190</td> <td>trinethylbensene</td> <td>798</td> <td>220</td> <td>C. R., isomer</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 583                 | 190           | trinethylbensene         | 798                 | 220           | C. R., isomer                          |
| 404       193 <b>x</b> -octaanl       81       222 $C_{12}$ -sitylbenness isomer         608       193       bensofuran       824       223 $C_{12}$ , $Z_{24}$ isomer         614       194       trimethylbenness isomer       823       224 $C_{12}$ , $Z_{24}$ isomer         613       194 $C_{10}$ , $B_{20}$ isomer       83       224 $Z_{12}$ , $Z_{24}$ isomer         613       194 $C_{10}$ , $B_{20}$ isomer       83       224 $Z_{12}$ , $Z_{24}$ isomer         613       194 $C_{10}$ , $B_{20}$ isomer       83       226 $C_{12}$ , $Z_{12}$ , $Z_{12}$ , isomer         631       196 $Z_{11}$ , $B_{22}$ isomer       843       226 $C_{12}$ , $Z_{12}$ , $Z_{12$                                                                                                                                                                                                                                                                                                                                                                              | 59                  | 192           | peatyl furan             | 80                  | 221           | C.H. iscur                             |
| 608193bensofuran62A223 $C_{12}T_{26}$ isomer614194trimethylbensene isomer823224 $C_{12}T_{24}$ isomer613194 $C_{10}T_{20}$ isomer832242-methyldecalic (tent.)62195silvance84A225 $C_{12}T_{24}$ 63A196 $C_{3}T_{10}O$ 843226 $C_{3}$ -alkylbensene isomer633196 $g$ -decame84C226 $C_{1}T_{24}$ isomer633196 $g$ -decame842226 $c_{1}loomer$ 642200unknown853228 $C_{11}T_{24}$ isomer643200trimethyl bensene isomer86A228 $C_{11}T_{24}$ isomer644200unknown865229 $C_{10}T_{10}O$ isomer645201 $C_{4}$ -alkylbensene867230unknown646201 $c_{4}$ -alkylbensene867230 $c_{11}T_{16}$ isomer644203sat. hydrocarbon867230 $c_{11}T_{16}$ isomer644203sat. hydrocarbon84230sat. hydrocarbon645204 $c_{11}T_{22}$ isomer89230sat. hydrocarbon646205 $ast.$ hydrocarbon84230sat. hydrocarbon646203 $c_{11}T_{22}$ isomer89230sat. hydrocarbon646204 $a_{1}T_{22}$ isomer89230sat. hydrocarbon647205sat. hydrocarbon91230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 60A                 | 193           | b-octanal                | 41                  | 222           | Celkylbengene isomer                   |
| 61A       194       trimethylbensene isomere       823       224 $C_{12}T_{24}$ isomer         61B       194 $C_{10}B_{20}$ isomer       83       224       2-methyldecalin (test.)         62       195       silsmane       344       225 $C_{12}T_{26}$ 63A       196       g-decame       344       225 $C_{12}T_{26}$ 63B       196       g-decame       344       225 $C_{12}T_{26}$ 63B       196       g-decame       848       226 $C_{3}$ -alkylbensens isomer         63C       197       dichlorobensene       85       226       eilomase (test.)         63D       196 $C_{11}B_{22}$ isomer       864       228 $C_{12}B_{24}$ isomer         644       200       unknown       863       228 $C_{11}B_{20}$ isomer         642       201       unknown       861       229 $C_{10}B_{12}$ 0 isomer         642       201       unknown       862       229 $C_{10}B_{12}$ 0 isomer         642       201       ast. hydrocarbon       87       230       unknown         645       202 $C_{11}B_{25}$ isomer       862       229 $C_{10}B_$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 608                 | 193           | bensofuran               | 824                 | 223           | C. H., isoset                          |
| 613       194 $C_{10}D_{20}$ isomar       83       224       2-methyldecalic (test.)         62       195       silexase       34A       225 $C_{12}T_{26}$ 63A       196 $C_{7}T_{10}O$ 348       226 $C_{3}$ -alkylbensame isomer         63B       196       griectase       84C       226 $C_{3}$ -alkylbensame isomer         63D       196 $C_{11}T_{22}$ isomer       842       226       eiloxase (test.)         63D       196 $C_{11}T_{22}$ isomer       853       228 $C_{12}T_{24}$ isomer         64A       200       unknown       853       228 $C_{12}T_{24}$ isomer       644         64A       200       unknown       863       228 $C_{10}T_{12}O$ isomer       644         644       200       unknown       865       229 $C_{10}T_{10}O$ isomer       646         644       201 $C_{4}$ -alkylbensame       867       230       unknown       647         642       201       uaknown       867       230       uaknown       648       233       isomer         644       203       ast. hydrocarbon       87       230       ast. hydrocarbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 61A                 | 194           | trinsthylbenzene isonere | 823                 | 224           | C. E. isouer                           |
| 6210 7010 7014225 $C_{12}B_{26}$ 63A196 $C_{12}B_{10}O$ 848226 $C_{3}$ -alkylbansaus isomer633196 $g^{-decase}$ 84C226 $C_{4}$ -alkylbansaus isomer633196 $C_{11}B_{22}$ isomer85226eilomane (tent.)630198 $C_{11}B_{22}$ isomer86A222 $C_{12}B_{24}$ isomer64A200unknown85B224 $C_{11}B_{20}$ isomer (trace)648200trimethyl bansaus isomer86C229 $C_{12}B_{24}$ isomer644201 $C_{4}$ -alkylbansaus86D229 $C_{10}B_{12}O$ isomer642201 $c_{4}$ -alkylbansaus86F230 $unknown$ 651202 $C_{11}B_{25}$ isomer86G230 $C_{11}B_{16}O$ isomer644203sat. hydrocarbon87230sat. hydrocarbon652202 $C_{11}B_{25}$ isomer86G230 $C_{11}B_{16}O$ isomer648203sat. hydrocarbon87230sat. hydrocarbon648203isomer89230sat. hydrocarbon653204 $c_{11}B_{22}$ isomer89230sat. hydrocarbon654203sat. hydrocarbon91230sat. hydrocarbon655204 $c_{11}B_{22}$ isomer89230sat. hydrocarbon656204 $c_{11}B_{22}$ isomer89230sat. hydrocarbon657204sathyl styruns </td <td>613</td> <td>194</td> <td>C. B. isoner</td> <td>83</td> <td>224</td> <td>2-12-24<br/>2-mechyldecalin (tent.)</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 613                 | 194           | C. B. isoner             | 83                  | 224           | 2-12-24<br>2-mechyldecalin (tent.)     |
| 63A196 $C_{1}T_{10}O$ 443226 $C_{3}$ -alkylbansaue isomer63B196g-decame84C226 $C_{3}$ -alkylbansaue isomer63C197dichierebensene85226 $eilomas$ (tent.)63D196 $C_{11}T_{22}$ isomer86A228 $C_{12}T_{24}$ isomer64A200unknown86B228 $C_{11}T_{20}$ isomer (trace)64B200trimethyl bensene isomer86C229 $C_{10}T_{10}O$ isomer64C201unknown86D229 $C_{10}T_{10}O$ isomer64E201 $C_{4}$ -alkylbansane86F230unknown65202 $C_{11}T_{22}$ isomer86G230 $C_{12}T_{16}$ isomer644203ast. bydrocarban86F230silerzan65202 $C_{11}T_{22}$ isomer86G230 $C_{12}T_{16}$ isomer644203ast. bydrocarban86230 $c_{12}T_{16}$ isomer645203ast. bydrocarban84230sat. bydrocarban646203isomer89230sat. bydrocarban647203ast. bydrocarban84230sat. bydrocarban6482031isomer89230sat. bydrocarban649204 $e_{11}T_{22}$ isomer89230sat. bydrocarban646204 $C_{11}T_{22}$ isomer89230sat. bydrocarban647205ast. bydrocarban91230s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 62                  | 195           | eilszape                 | 544                 | 225           | 6l.,                                   |
| 11.17.1017.1011.11.11.11.11.11.633196 $\frac{1}{2}$ -decase84C226 $C_4$ -alkylbearsus isour630197dichiorobenrene85226eilorane (tent.)641200unknown863228 $C_{12}S_{24}$ isouer643200trimethyl bearsus isouer863228 $C_{12}S_{24}$ isouer643200trimethyl bearsus isouer862229 $C_{12}S_{24}$ isouer644201unknown860229 $C_{10}S_{12}O$ isouer645201 $C_4$ -alkylbearsus866229 $C_{10}S_{12}O$ isouer642201 $c_4$ -alkylbearsus867230unknown65202 $C_{11}S_{23}$ isouer866230 $C_{11}S_{16}$ isouer65203act. hydrocarbon87230eat. hydrocarbon65203iduonoi87230eat. hydrocarbon65204 $C_{11}S_{23}$ isouer89230eat. hydrocarbon65204 $C_{11}S_{23}$ isouer89230eat. hydrocarbon65204 $C_{11}S_{23}$ isouer89230eat. hydrocarbon65205sac. hydrocarbon91230eat. hydrocarbon65204 $C_{11}S_{23}$ isouer89230eat. hydrocarbon65205sac. hydrocarbon91230eat. hydrocarbon65206 $C_{11}S_{23}$ isouer92 <td>63A</td> <td>196</td> <td>C_1L_0</td> <td>141</td> <td>226</td> <td>-12-26<br/>Celkylbensene isomer</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 63A                 | 196           | C_1L_0                   | 141                 | 226           | -12-26<br>Celkylbensene isomer         |
| 11       11       11       12       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14 <th14< th="">       14       14       <th< td=""><td>633</td><td>196</td><td>sedecase</td><td>BAC .</td><td>226</td><td>Caikylbearane isonet</td></th<></th14<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 633                 | 196           | sedecase                 | BAC .               | 226           | Caikylbearane isonet                   |
| 61D       196 $C_{11}B_{22}$ isomer       66A       228 $C_{12}B_{24}$ isomer         64A       200       unknown       563       228 $C_{11}B_{20}$ isomer (trace)         643       200       trimethyl bensene isomer       66C       229 $C_{10}B_{10}$ isomer (trace)         644       201       unknown       66D       229 $C_{10}B_{10}$ isomer         642       201       unknown       66E       229 $C_{10}B_{10}$ isomer         642       201       sat. hydrocarban       66E       230 $U_{11}B_{10}$ isomer         644       203       sat. hydrocarban       86F       230 $U_{11}B_{10}$ isomer         645       203       sat. hydrocarban       87       230       unknown         65       202 $C_{11}B_{25}$ isomer       86G       230 $C_{11}B_{16}$ isomer         648       203       inmonene       84       230       sat. hydrocarban         646       203       inmonene       89       230       sat. hydrocarban         646       204       wethyl styrma       90       230       sat. hydrocarban         647       205       sat. hydrocarban       91       230<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 63C                 | 197           | dichlorobenzene          | 15                  | 226           | silomas (tent.)                        |
| 64.4       200       unknown       563       228 $C_{11}^{12}Z_{24}$ isomer (trace)         64.4       200       trimethyl bensese isomer       66C       229 $C_{12}Z_{24}$ isomer (trace)         64.8       200       trimethyl bensese isomer       66C       229 $C_{10}E_{12}O$ isomer         64.2       201       unknown       86B       229 $C_{10}E_{12}O$ isomer         64.2       201       set. bydrocarban       86F       230       unknown         64.2       201       set. bydrocarban       86F       230       unknown         65       202 $C_{11}E_{25}$ isomer       86G       230 $C_{11}E_{16}$ isomer         65.4       203       ast. bydrocarban       87       230       silower         648       203       limonen'       84       230       set. bydrocarban         646.2       204 $C_{11}E_{22}$ isomer       89       230       set. bydrocarban         648       203       limonen'       90       230       set. bydrocarban         640       204       methyl styrune       90       230       set. bydrocarban         647       205       set. kydrocarban       91       230<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 630                 | 196           | C. H. incons             |                     | 228           | C.S., inches                           |
| 643       200       trimethyl bensese isomer       66C       229 $C_{12}T_{24}$ isomer         644       201       unknown       66D       229 $C_{10}T_{12}$ isomer         640       201 $C_{4}$ -elkylbensene       66E       229 $C_{10}T_{10}$ isomer         642       201       set. bydrocarbon       66E       229 $C_{10}T_{10}$ isomer         644       201       set. bydrocarbon       86F       230 $T_{11}T_{16}$ isomer         644       203       ast. bydrocarbon       87       230       silower         648       203       limonene       84       230       set. bydrocarbon         648       203       limonene       84       230       set. bydrocarbon         646       204 $C_{11}T_{22}$ isomer       89       230       set. bydrocarbon         645       204       mthyl styrme       90       230       set. bydrocarbon         645       204       mthyl styrme       91       230       set. bydrocarbon         645       204       mthyl styrme       91       230       set. bydrocarbon         645       205       sat. bydrocarbon       91       230       set. bydro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 644                 | 200           |                          | 863                 | 228           | C. H., isomet (tTice)                  |
| 64C201unknown86D229 $C_{10}B_{12}$ 0 isomer64D201 $C_{4}$ -alkylbansene86E229 $C_{10}B_{16}$ 0 isomer64E201est. bydrocarbon86F230 $unknown$ 63202 $C_{11}B_{25}$ isomer86G230 $C_{11}B_{16}$ isomer64A203ast. bydrocarbon87230silorane64B203limonenie88230sat. bydrocarbon64C204 $C_{11}B_{22}$ isomer89230sat. bydrocarbon64D204methyl styrane90230sat. bydrocarbon64D204methyl styrane90230sat. bydrocarbon64D204methyl styrane91230sat. bydrocarbon64D205sat. bydrocarbon91230sat. bydrocarbon67A205sat. bydrocarbon91230sat. bydrocarbon67B206 $C_{11}B_{22}$ isomer92230sat. bydrocarbon67C206disthylbensons isomer93330unsat. bydrocarbon64B207sat. hydrodarbon94230g-dodennat64B207sat. hydrodarbon95' 230sat. bydrocarbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 641                 | 200           | trimethyl bentene immer  | MC                  | 229           | 11-20<br>6                             |
| 640201 $C_4$ -alkylbansens662229 $C_{10}B_{16}$ 0 isver642201sat. hydrocarboa867230unknown65202 $C_{11}B_{25}$ isomer866230 $C_{11}B_{16}$ isomer644203sat. hydrocarboa87230silozana645203limonenie88230sat. hydrocarboa646203limonenie88230sat. hydrocarboa646204 $C_{11}B_{22}$ isomer89230sat. hydrocarboa646204 $enthyl exympt90230sat. hydrocarboa647205sat. hydrocarboa91230sat. hydrocarboa677206C_{11}B_{22} isomer92230sat. hydrocarboa677206C_{11}B_{22} isomer93330unsat. hydrocarboa648207sat. hydrodarboa94230g-dodenane648207sat. hydrodarboa95' 230sat. hydrodarboa$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MC                  | 201           | uakporp                  | 860                 | 229           | 12 24<br>C. R. O lesser                |
| 642201sat. hydrocarboa867230unknown65202 $C_{11}E_{25}$ isomer866230 $C_{12}E_{16}$ isomer66A203sat. hydrocarbon87230siloware66B203limonenie88230sat. hydrocarbon66C204 $C_{11}E_{22}$ isomer89230sat. hydrocarbon66D204enthyl styrme90230sat. hydrocarbon66D204enthyl styrme90230sat. hydrocarbon67A205sat. hydrocarbon91230sat. hydrocarbon67B206 $C_{11}E_{22}$ isomer92230sat. hydrocarbon67B206 $C_{11}E_{22}$ isomer92230sat. hydrocarbon67B206 $C_{11}E_{22}$ isomer93330unsat. hydrocarbon67A205sat. hydrocarbon94250g-dodenane67C206disthylbenzene isomer93330sat. hydrocarbon64B207sat. hydrocarbon94250g-dodenane64B207sat. hydrocarbon95' 230sat. hydrocarbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 64D                 | 201           | Csikylbensene            | 862                 | 229           |                                        |
| 63202 $C_{11}T_{23}$ isomer866230 $C_{11}T_{16}$ isomer64203ast. hydrocarbon87230silorane648203limonene88230sat. hydrocarbon660204 $C_{11}T_{22}$ isomer89230sat. hydrocarbon660204enthyl styrme90230sat. hydrocarbon660204enthyl styrme90230sat. hydrocarbon671205sat. hydrocarbon91230sat. hydrocarbon672206 $C_{11}T_{22}$ isomer92230sat. hydrocarbon672206 $disthylbensson isomer93330unsat. hydrocarbon648207sat. hydrocarbon94230g-dodennes648207satsphences95' 230sat. hydrocarbon$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 64Z                 | 201           | sat. bydrocarban         | 267                 | 230           | 10-16                                  |
| 64A203ast. hydrocarbon87230silorane64B203limonene87230sat. hydrocarbon66C204 $C_{11}R_{22}$ isomer89230sat. hydrocarbon66D204esthyl styrme90230sat. hydrocarbon67A205sat. hydrocarbon91230sat. hydrocarbon67B206 $C_{11}R_{22}$ isomer92230sat. hydrocarbon67C206disthylbensson isomer93330unsat. hydrocarbon64B207sat. hydrocarbon94250g-dodennes64B207sat. sydrocarbon95' 230sat. hydrocarbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 65                  | 202           | C. L. incnet             | 860                 | 230           | C.E. Isomer                            |
| 6482031 impone54250sat. hydrocarbon660204 $C_{11}T_{22}$ isomer39230sat. hydrocarbon660204methyl styrma90230sat. hydrocarbon67A205sat. hydrocarbon91230sat. hydrocarbon67B206 $C_{11}T_{22}$ isomer92330sat. hydrocarbon67C2064isthylbensson isomer93330unsat. hydrocarbon68A207sat. hydrocarbon94230g-dodennas68B207sat. satsphenoes95230sat. hydrocarbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 664                 | 201           | ant, bydrocathon         | 87                  | 230           | -11-16                                 |
| 64C     204     C <sub>11</sub> T <sub>22</sub> isomer     89     230     sat. hydrocarboa       64D     204     methyl styrune     90     230     sat. hydrocarboa       67A     205     sat. hydrocarboa     91     230     sat. hydrocarboa       67B     206     C <sub>11</sub> T <sub>22</sub> isomer     92     330     sat. hydrocarboa       67C     206     4isthylbensson isomer     93     330     unsat. hydrocarboa       64B     207     sat. hydrocarboa     94     230     g-dodennas       64B     207     sat. hydrocarboa     95     ' 230     sat. hydrocarboa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 463                 | 203           | Limonepe                 |                     | 230           | sat. kvdrpcarboo                       |
| 44D204mathyl styrms90230sat. bydrocarboa67A205sat. bydrocarboa91230sat. bydrocarboa67A205sat. bydrocarboa91230sat. bydrocarboa67B206C <sub>11</sub> R <sub>22</sub> isomer92230saphthalene67C2064isthylbensegs isomer93330unsat. bydrocarboa64A207sat. bydrocarboa94230g-dodennas64B207sat. bydrocarboa95' 230sat. bydrocarboa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 66C                 | 204           | C. B. isomet             |                     | 230           | sat. hydrocarboa                       |
| 67A     205     sat. hydrocarbon     91     230     sat. hydrocarbon       67B     206     C <sub>11</sub> R <sub>22</sub> isomer     92     230     saphthalene       67C     206     4isthylbanasas isomer     93     330     unsat. hydrocarbon       64A     207     sat. hydrocarbon     94     250     g-dodemnat       64B     207     sattophenoas     95     730     sat. hydrocarbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 66D                 | 204           | 11-22<br>methyl styrane  | *0                  | 230           | ast, hvdrocarbon                       |
| 473206C11 #22isomet92230asphthalene670206disthylbanzage isomet93330unset. hydrocarbon648207sat. hydrocarbon94250g-dodenane648207acstophenoae95730sat. hydrocarbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 674                 | 205           | ast, hvirscathes         | 41                  | 230           | ast. brdrocerbos                       |
| 67C     206     4isthylbansan isomar     93     330     unsat, hydrocarbon       688     207     sat. hydrocarbon     94     230     g-dodenna       648     207     scatophenoce     25     230     sat. hydrocarbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 473                 | 206           | C. I. incurr             | 82                  | 230           | asphtheleos                            |
| 648     267     set. hydrodarbon     94     230     g-dodesane.       648     267     set.ophenose     95     230     set. hydrocarbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 670                 | 206           | 41athylbensee iemet      | •3                  | 130           | mast. huireerboo                       |
| 488 207 Acatophenone 25 ' 230 sec. hydrocarbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 634                 | 207           | sat, hydrocerboo         |                     | 230           |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 683                 | 267           | Acatobianosa             |                     | 230           | eat, hudrocarbos                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |               |                          |                     |               |                                        |

Table D-3 (cont'd.)

- Continued -

•

| Chromats-<br>prephis<br>sak No. | fluction<br>Temp.<br>(*C) | Cospound         | Chromato-<br>graphic<br>Peak No. | listics<br>femp.<br>(*C) | Compound               |
|---------------------------------|---------------------------|------------------|----------------------------------|--------------------------|------------------------|
| 96                              | 230                       | cilozane         | 105                              | 230                      | unkaowa                |
| 97                              | 230                       | 2-undecanone     | 106                              | 230                      | 2~tridecence           |
| 98                              | 230                       | sat. hydrocarbon | 107                              | 230                      | aat. hydrocarbon       |
| <b>9</b> 9                      | 230                       | unicaova         | 108                              | 230                      | silozane               |
| 100                             | 230                       | eiloxene         | 109                              | 230                      | phthalate              |
| 101                             | 230                       | est. hydrocerbon | 110                              | 230                      | lactone isomer (test.) |
| 102                             | 230                       | unknova ·        | 111                              | 230                      | diisobutyrata isomer   |
| 103                             | 230                       | diphenyl ether   | 112                              | 230                      | C12H770 isomer         |
| 104                             | 230                       | sat. bydrocsrbon |                                  |                          | ** **                  |

Table D-3 (cont'd.)

---

.



Figure D-3. Total ion current chromatogram from GC/MS analysis for volatiles in sample no. 1107. (Jersey City, NJ).

# Table D-4. VOLATILE COMPOUNDS IDENTIFIED IN PURGE OF SAMPLE NO. 1115 (Jersey City, NJ)

| Chrometo-<br>graphic<br>Peak No. | Elucios<br>Temp.<br>(*C) | Compound                                                     | Chromato-<br>graphic<br>Pask No. | Klution<br>Temp.<br>(°C) | Composed                              |
|----------------------------------|--------------------------|--------------------------------------------------------------|----------------------------------|--------------------------|---------------------------------------|
| 34                               | 62                       | tarbon diozide                                               | 24                               | 120                      | C.K. inter                            |
| 18                               | 63                       | Estat) socal                                                 | 25                               | 122                      | dimethyldigulfide                     |
| 2                                | 65                       | carbonyl sulfide (test.)                                     | 26                               | 122                      | dibydropyres                          |
| 34                               | 67                       | chlorons thans                                               | 27                               | 124                      | ch lot open tane                      |
| 33                               | 68                       | ur Levre                                                     | 28                               | 126                      | asksow                                |
| 44                               | 76                       | Trichlorofluoromechane                                       | 29A                              | 228                      | toluese                               |
| 48                               | 76                       | acatape .                                                    | 298                              | 129                      | 1-pentanol                            |
| 54.                              | 77                       | Sappapiane                                                   | 30                               | 131                      | 4-methyl-2-pentanone                  |
| SB                               | 78                       | 14opropanol                                                  | n                                | 134                      | <u>p-batenal</u>                      |
| 6A                               | 80                       | nethylane chloride                                           | 324                              | 136                      | C <sub>8</sub> H <sub>16</sub> isomer |
| 63                               | 81                       | Preon 113                                                    | 328                              | 137                      | furaldabyde (tent.) (trate)           |
| 6C                               | 82                       | carbon disulfiés (crace)                                     | 33                               | 138                      | <u>p</u> octane                       |
| 6D                               | 82                       | unknown                                                      | 344                              | 140                      | tettechloroethylene                   |
| 7                                | 83                       | unknown                                                      | 343                              | 340                      | dichloropropage (trace)               |
| 84                               | 86                       | cyclopestane                                                 | 340                              | 341                      | uskaova                               |
| 83                               | 87                       | mathy] isopropy? knows                                       | 354                              | 142                      | CsHgH2                                |
| 80                               | 89                       | <u>p-butecal</u>                                             | 353                              | 142                      | C <sub>g</sub> E <sub>16</sub> ischer |
| 9                                | 90                       | 1-bezens (tent.)                                             | 36                               | 143                      | silorane                              |
| 204                              | 92                       | bezafluorobenzane (int. std.)                                | 374                              | 146                      | 2-bezapal                             |
| 103                              | 92                       | g-bezane                                                     | 372                              | 247                      | chlotobessese                         |
| 114                              | 94                       | chloroform (trace)                                           | 384                              | 148                      | C <sub>2</sub> B <sub>14</sub> isomer |
| 118                              | 94                       | machyl furam                                                 | 388                              | 149                      | 5-methyl-3-hydrofuran-2-one (text.)   |
| 12                               | 96                       | wast. bydrocarbon                                            | 39                               | 151                      | e-furfuryl eleobol                    |
| 13                               | 98                       | perfluorateluene (int. std.)                                 | 40                               | 151                      | ethylbengene                          |
| 344                              | <del>99</del>            | crotonaldehyde (tent.)                                       | 4 <u>14</u>                      | 132                      | C <sub>9</sub> H <sub>18</sub> isomer |
| 343                              | 100                      | 1,1,1-trichloroschane                                        | 418                              | 152                      | $C_4 \pi_4 H_2 O$ (tent.)             |
| 14C                              | 100                      | 3-methylburneal                                              | 42A                              | 153                      | xylana isomet                         |
| 15                               | 102                      | 2-methylbutanal (tent.)                                      | 423                              | 153                      | phenylacetylens                       |
| 164                              | 104                      | benzape (                                                    | 42C                              | 155                      | 5-methy1-3-beneache                   |
| 163                              | 105                      | carbon tetrachloride (trace)                                 | 43a                              | 155                      | 2-beptonese                           |
| 16C                              | 105                      | 1-butanol (tept.)                                            | 438                              | 156                      | c <sub>7</sub> #120                   |
| 17                               | 106                      | uzknova                                                      | 448                              | 157                      | CyE <sub>20</sub> (trace)             |
| 184                              | 107                      | ethyl vinyl hetone                                           | 44 <u>8</u>                      | 158                      | 317760#                               |
| 183                              | 107                      | 2-pestanone                                                  | 44C                              | 158                      | h-peptaoal                            |
| 19                               | 108                      | winyl propionata                                             | 44D                              | 159                      | zylene isoner                         |
| 204                              | 109                      | p-pentanal                                                   | 45                               | 159                      | C <sub>gR18</sub> incomr              |
| 203                              | 110                      | sat. hydrocarben                                             | 46                               | 160                      | 2-furyl methyl hetone (tent.)         |
| 200                              | 110                      | mechylbarane (tent.) (trace)                                 | 47                               | 162                      | <u>B-090504</u>                       |
| 214                              | 111                      | 1-bezene                                                     | 48                               | 165                      | iodopentane                           |
| 213                              | 112                      | trichlorosthylene                                            | 49                               | 166                      | Wakaowh                               |
| 210                              | 112                      | etbylfuren (tent.)                                           | 50                               | 170                      | trans-7-heptens1                      |
| 224                              | 114                      | 2,5-dimethylfuren                                            | 514                              | 171                      | banzal dehyde                         |
| 223                              | 114                      | E-paptane                                                    | 513                              | 172                      | 5-methyl-2-furfural                   |
| 220                              | 115                      | C62, inter                                                   | 510                              | 172                      | weiter with                           |
| 434                              | 116                      | unitativity.                                                 | 510                              | 173                      | E-propylbeaseas                       |
| 438                              | 117                      | C <sub>5</sub> E <sub>6</sub> E <sub>2</sub> (tent.) (trace) | \$Z <b>A</b>                     | 174                      | mylane isomer                         |

-Costinged-

•

# Table D-4 (cont'd.)

| Chromaco-<br>graphic<br>Peak No. | Elation<br>Tamp.<br>(°C) | Compound                                | Chromaco-<br>graphic<br>Peak No. | Elution<br>Temp.<br>("C) | Compound                                 |
|----------------------------------|--------------------------|-----------------------------------------|----------------------------------|--------------------------|------------------------------------------|
| 528                              | 175                      | bensonizzile                            | 71.4                             | 199                      | 2-100880084                              |
| 52C                              | 175                      | octabobe                                | 713                              | 200                      | dimethylstypene (trace)                  |
| 52D                              | 175                      | C10 <sup>H</sup> 22                     | nc                               | 200                      | Celkylbensene (trace)                    |
| 52E                              | 176                      | C <sub>q</sub> -alkylbenzens            | 710                              | 200                      | CinRist isomer                           |
| 53A                              | 176                      | 1-chloro-3-sthylbanzane (tant.)         | 72                               | 202                      | g-occanal                                |
| 538                              | 176                      | dibromodichlotoBethane (tent.)          | 73                               | 204                      | undecane                                 |
| 53C                              | 176                      | phenol.                                 | 74                               | 212                      | unsat. hydrocarbon                       |
| 530                              | 177                      | sat. hydrocathon                        | 75                               | 213                      | CIOHISO ISCORT                           |
| 53E                              | 177                      | 5-methyl-3-heptenone (tent.)            | 76A                              | 214                      | g-pentylbensene                          |
| 53F                              | 177                      | wakaowa                                 | 763                              | 215                      | silozane                                 |
| 54                               | 178                      | 6-methy1-2-heptanone                    | 177                              | 216                      | set. hydrocerbon                         |
| 55                               | 180                      | pentyl furst                            | 76                               | 218                      | 2-decenoue                               |
| 56                               | 180                      | g-octanal                               | 79A                              | 229                      | asphthelene                              |
| 57A                              | 181                      | bensofuran (trace)                      | 793                              | 220                      | C19B22 isouet                            |
| 578                              | 182                      | Calkylbentene                           | 60                               | 221                      | g-deceps]                                |
| \$7C                             | 162                      | Cicling interer                         | 81                               | 223                      | n-dodecane                               |
| 57D                              | 182                      | C,I,0 isomet                            | #2                               | 225                      | est. hydrocarbon                         |
| 58                               | 182                      | silozane                                | 834                              | 226                      | uninova                                  |
| \$9                              | 184                      | p-decase                                | 838                              | 227                      | methyl cianoline (tant.) (trace)         |
| 60                               | 184                      | dichlorobentene                         | 84                               | 228                      | lactons isomer (tent.)                   |
| 61                               | 187                      | С <sub>в</sub> П, " -                   | 85                               | 231                      | oxygenated hydrocarbon                   |
| 62A                              | 168                      | C <sub>z</sub> -alkylbenzena            | 86                               | 233                      | phenyl hemne                             |
| 623                              | 165                      | phenylacezaldehyde                      | 87                               | 237                      | C10 <sup>2</sup> 16 <sup>0</sup> (tent.) |
| 62C                              | 186                      | C. H. LICHET                            | 68                               | 238                      |                                          |
| 63A                              | 190                      | Lincoens                                | 89                               | 239                      | undecape                                 |
| 63B                              | 190                      | 1,5-cibeols                             | 90                               | 240                      | Cinfig0 (tent.)                          |
| 63C                              | 191                      | C. H. a (trace)                         | 91A                              | 240                      |                                          |
| 64                               | 192                      | unset. hydrocarbon                      | 913                              | 240                      | silozane                                 |
| 65A                              | 192                      | sat. bydrocarbon                        | 92                               | 240                      | unsat, hydrocarbon                       |
| 653                              | 193                      | seatophanose                            | 93                               | 240                      | sat. hydrocarbon                         |
| 66A                              | 194                      | m-bucylbensett (tent.)                  | 94                               | 240                      | 2,2,4-trimethylpents-1,3-diol            |
| 663                              | 195                      | C.E.O. (tent.)                          |                                  |                          | di-isobutyraza (BRG)                     |
| 67                               | 196                      | C <sub>11</sub> E <sub>2</sub> , isomer | 95                               | 240                      | sat. bydrocarbog                         |
| 68                               | 196                      | AA AA                                   | 96                               | 240                      | C <sub>14</sub> S <sub>to</sub> isomer   |
| 69                               | 197                      | unimova                                 | 97                               | 240                      | unset, hydrocarbon                       |
| 7QA                              | 198                      | C. H isomet                             | 98                               | 240                      | sat. hydrocarbon                         |
| 708                              | 196                      | sat. hydrocarbou                        | 99                               | 240                      | CisHin incomer                           |
|                                  | -                        | -                                       | 100                              | 240                      | set. hydrocarbon                         |

.

•


.

•

,

٠

Figure D-4. Total ion current chromatogram from GC/MS analysis for volatiles in sample no. 1115 (Jersey City, NJ).

2

1

.

| Chromaco-   | flution   |                                                 | Chronsto- | flucion        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------|-----------|-------------------------------------------------|-----------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Peak No.    | ("C)      | Comborder                                       | Fask No.  | 1999).<br>(*ci | Coupound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|             |           |                                                 |           |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 14          | 38        |                                                 | 334       | 145            | tetrechloroethyless                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1           | 35        | chistoctilluoromethade                          | 338       | 146            | Calle isour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2           | ••        | CAR SAME                                        | 34        | 147            | C <sub>7</sub> E <sub>14</sub> O isomer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 3           | 86        | C <sub>4</sub> Z <sub>10</sub> Second           | 35        | 149            | \$1]extas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 44          | 70        | scetaldebyde                                    | 364       | 123            | C <sub>6</sub> H <sub>12</sub> O isomer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 43          | 70        | C <sub>5</sub> I <sub>12</sub> isomer           | 341       | 154            | chlorobensest (trace) ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| SA          | 71        | trichlorofluorous thene                         | 37        | 156            | chlorohexane (trace)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 52          | 72        | 808 C 008                                       | 34        | 159            | ethylbeusene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <b>6</b> 4  | 73        | E-bestere                                       | 394       | 361            | set. bydrocatboa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 61          | 74        | isopropenol                                     | 393       | 161            | xylene incont                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 7▲          | 77        | Free 113                                        | 390       | 162            | withows.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 73          | 77        | asthylene chloride                              | 390       | 162            | C <sub>g</sub> E <sub>20</sub> isomer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 8           | 79        | carbos disulfide                                | 40        | 164            | 3-beptanone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 9A.         | 83        | C <sub>5</sub> H <sub>10</sub> incor '          | 41        | 165            | 2-heptanona                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 92          | 63        | C <sub>5</sub> B <sub>14</sub> isomar           | 424       | 164            | etytene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 10          | 84        | C <sub>5</sub> H <sub>10</sub> O isomet (test.) | 423       | 167            | C <sub>0</sub> I <sub>16</sub> isomer (test.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 31A         | 87        | machyl athyl become                             | 420       | 167            | est. bydrocsfbos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 113         | 87        | Call, 2 Secont                                  | 434       | 168            | g-teptanel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 124         | 89        | benefluorobensene (int. std.)                   | 438       | 168            | zylana isomet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 128         | 89        | g-bessee                                        | 44        | 169            | 3-000404                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 13          | 91        | chloroform                                      | 45        | 170            | C. E. issuer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 344         | <b>96</b> | perfluerotoluege (int. std.)                    | 46        | 173            | C. H. Isober                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 148         | 56        | an thy isy clopestane                           | 47        | 175            | C. L. iconer (tent.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 154         | 98        | 1,1,1-trichlorgethese                           | 1 444     | 177            | 10-22<br>isorroylbenzens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 158         | 98        | 1-butanol (test.)                               | 488       | 177            | C. L. femer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 16          | L02       | baszene                                         | 49        | 201            | -10-22<br>C. E. incher                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 17          | 104       | eyelohezase                                     | 504       | 102            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 184         | 106       | C.E., isomer                                    | 500       | 181            | C.H. 0 (eccert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 188         | 107       | C.H. O isoner                                   | 514       | 184            | 16 mart                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 140         | 109       | C.L. isonet                                     |           | 184            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 19          | 109       | orgentanti                                      | 100       | 184            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 20A         | 112       | trichloroethylene                               | 494       | 144            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 203         | 112       | C.B. Somer                                      | 2         | 107            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 21          | 115       | -7-12                                           | 343       | 100            | al provide a series and a series of the seri |
| 22          | 119       | C 1 .                                           | 33        | 167            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| **          | 134       |                                                 | 34        | 189            | ERAL. BYSTOCATOCS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4.3<br>94.4 | 126       |                                                 | 35        | 190            | C11224 180847                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 448<br>948  | 149       | enedi, systemstood                              | 564       | 190            | Callo isoner                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 67.8<br>76  | 126       |                                                 | 568       | 192            | C <sub>10</sub> 22 isoter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 40<br>44    | 1.51      | mast. ayerocarsos (tent.)                       | 57        | 192            | C11H24 isomet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 40          | 191       |                                                 | 54        | 194            | 2-yeutylfuran                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 27          | 101       | 1-postanol                                      | 59        | 194            | C <sub>11</sub> E <sub>24</sub> isomer (tent.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 24          | 134       | G <sub>4</sub> B <sub>4</sub> isomer            | 60A       | 195            | Cy-alkylbensene isomer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 29          | 136       | C <sub>6</sub> E <sub>12</sub> 0 isomer         | 603       | 195            | C <sub>10</sub> E <sub>20</sub> isomer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 30          | 138       | 2-bezzaal                                       | ရ         | 197            | siloune                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 71          | 140       | CgI16 isoser                                    | 62A       | 196            | set. hydrocarbos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 32          | 143       | 2-octane                                        | 623       | 198            | dichlorobeazeae                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |           |                                                 | -         |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

## Table D-5. VOLATILE COMPOUNDS IDENTIFIED IN PURGE OF SAMPLE NO. 2048 (Pittsburgh, PA)

.

.

-Centinued-

Chromato-Elucion Listics Chrobatographic Peak No. graphic Feak No. Compound 2000. (\*C) Compound 70mp. (\*C) 82 231 634 200 unsat. bydrocarbos unsat. hydrocarbon 83 232 200 est. hydrocarbon (tent.) C11820 LOUMER 63B 84 233 upest. hydrocarbon C10H180 isomer 64 202 854 235 2-ethy1-1-hexapol 65 203 siloxane 85B 236 C10H180 isomer **6**6A 206 11906556 C108140 isomer 85C 236 668 206 C108180 isomer unsat. bydrocarbon 67 208 sat. hydrocarbos (tenz.) 86 238 68 209 ast. hydrocarbon 87 240 sat, bydrocathou 69 211 C\_-alkylbensene 88A 240 asphthalens 70 212 acetophenons 888 240 C10E220 isomer (tent.) 71 213 sat. hydrocarbon 89A 240 u-terpineol (test.) 72 214 sat. hydrocarbon 891 240 unsat. hydrocarbon 215 73 sat. hydrocarbon 90 240 n-dodecane C\_-alkylbenzené 748 216 91 240 ailgtate CgE160 istest 748 217 92 240 unsat, hydrocarbon dimithylatyrane 75A 218 93 silozane 240 sat. bydrocarbou 75B 219 94 240 2-undecanose p-00sapal 76 220 95 240 silozace 77 222 g-undecane 96 260 C13B28 isomer 78 223 97 siloxape 240 silosane 79 226 decempic said (test.) C\_-alkylbenzene 98 240 226 C\_-alkylbensepe BOA 99 240 C<sub>24</sub>E<sub>30</sub> isomer 227 808 unknown unset. bydrocarbon 100 240 81 229 sat. hydrocarbos 101 240 afloxage

Table D-5 (continued)

÷.



Figure D-5. Total ion current chromatogram from GC/MS analysis for volatiles in sample no. 2048 (Pittsburgh, PA).

٠

| graphic<br>Pesk No. | 1.000 ·<br>(*C) | Compound                              | graphic     | Trap. | Benering A                                     |
|---------------------|-----------------|---------------------------------------|-------------|-------|------------------------------------------------|
| PERL PD.            | 19              |                                       | I Bash Ma   | 100   | Acceleration of the second                     |
|                     |                 |                                       |             |       | ······································         |
| 1                   | 59              | carbos diozide                        | 33          | 116   | trichloroethylene                              |
| 24                  | 60              | propylane (traca)                     | 344         | 118   | <u>P-paptana</u>                               |
| 20                  | <b>6</b> 1      | dichlorodifluoromethane (crace)       | 343         | 319   | Cyll4 inumer                                   |
| <b>34</b>           | 62              | dimethyldifluorosilsne                | 35          | 122   | C <sub>2</sub> I <sub>16</sub> isomer          |
| 33<br>26            | 63              | isobutane                             | 36          | 124   | C <sub>7</sub> E <sub>34</sub> isomer          |
| 44                  | 64              | C <sub>4</sub> I <sub>8</sub> incomer | 37          | 226   | dimethyl disulfide                             |
| 43                  | 65              | h-buthhe (trace)                      | 38          | 127   | 1010-000                                       |
| 3                   | 66              | Acecaldehyde                          | 39          | 129   | C <sub>7</sub> 2 <sub>34</sub> incomer (tent.) |
| 6                   | 68              | chieroethase (trees)                  | 40          | 133   | tolumpe                                        |
| 7                   | 71              | methapol                              | 41          | 135   | dibromochlorowsthese (trace)                   |
| 8.                  | 73              | acetose                               | 42          | 139   | E-person)                                      |
| <b>81</b>           | 73              | trichlorofluoramethene                | 43          | 141   | Callis isomer                                  |
| 94                  | 75              | isopropens]                           | - 44        | 144   | D-OCTUDE                                       |
| 93                  | 75              | <u>B</u> -peotene                     | 45A         | 145   | tetrachloroetbylese                            |
| 90                  | 76              | C <sub>5</sub> E <sub>8</sub> isourt  | 458         | 346   | C <sub>g</sub> E <sub>16</sub> isomer (test.)  |
| 10                  | 77              | C6812 isomer                          | 46          | 347   | uskoons                                        |
| 114                 | 78              | methylane chierida                    | 47 <b>A</b> | 349   | unsat. bydrocarbon                             |
| 313                 | 79              | 2-methyl-2-propanel                   | 473         | 149   | ailgrape                                       |
| 110                 | 80              | Press 213                             | 48          | 132   | C <sub>g</sub> E <sub>18</sub> income          |
| 12                  | <b>61</b>       | C6814                                 | 49          | 153   | chlorobensene                                  |
| 134                 | 82              | carbos digulfida                      | 504         | 158   | achylbenzene                                   |
| 13B                 | 83              | C <sup>7</sup> B <sup>8</sup> O       | 503         | 259   | C <sub>o<sup>B</sup>18</sub> isomer            |
| 24                  | 85              | p-propanol (tent.)                    | 51A         | 160   | aylans incus:                                  |
| 25A                 | 86              | cyclopestana                          | 51B         | 160   | phenylacecylane                                |
| 153                 | 82              | C <sub>6</sub> E <sub>12</sub> isomer | 52A         | 162   | 3-heptenose                                    |
| 16                  | 87              | C <sub>6</sub> H <sub>14</sub> incmer | 328         | 163   | 2-heptenone                                    |
| 17                  | 88              | Vinyl acetate ·                       | 53          | 164   | 8277826                                        |
| 18                  | 89              | h-butanal                             | 54          | 166   | xylase isosvr                                  |
| 19                  | 90              | methyl ethyl batone                   | 55          | 167   | a-beptanal                                     |
| 20                  | 91              | CgE, stoner                           | 56          | 169   | 2-800484                                       |
| 21                  | 93              | hazafluorobensene (int. acd.)         | 57          | 170   | C.,E., isour                                   |
| 22                  | 94              | 4-besau                               | 56A         | 173   | 10 11<br>imopropylbenzese                      |
| 234                 | 94              | athyl storate                         | 563         | 174   | CE. isomer                                     |
| 233                 | <del>9</del> 5  | chloroform                            | 59          | 176   | C.E. isoner                                    |
| 24                  | 96              | C.L. isomer                           | 60          | 177   | C. E. Isost                                    |
| 23A J               | 100             | perflubrocolumns (int. atd.)          | 61          | 179   | 0-Diame                                        |
| 258 1               | 100             | methylcyclopentane                    | 624         | 180   | bensajdeh7de                                   |
| 26 )                | 101             | C.R., isoner                          | 623         | 180   | p-propylbaasepe                                |
| 274 }               | 102             | 1.1.1-trichlorestheme                 | 634         | 182   | C. J. Jeimer                                   |
| 278 2               | 103             | Cation Sacast (tant.)                 | 633         | 182   | Lu 10                                          |
| 24 . 2              | 106             | bensene                               | 4           | 184   | trinsthylbensene isomer                        |
| 29 ່ ງ              | 107             | carbon tetrachloride (trace)          | 65          | 183   | C. I. Ischer                                   |
| 304 3               | 108             | g-butanol (tent.)                     | 66          | 185   | bentouitrile                                   |
| 301 2               | 196             | CTC10bexase                           | 674         | 184   | methylheptanoge isomer                         |
| 31. 3               | 111             | mathyl propyl hacona                  | 673         | 186   | 0-sethyletyrese                                |
| 32 1                | 113             | g-pentènal                            | 684         | 187   | trimthylbongane isomer                         |

### Table D-6. VOLATILE COMPOUNDS IDENTIFIED IN PURGE OF SAMPLE NO. 2071 (Pittsburgh, PA)

- continued -

.

.

| Chronato-<br>graphic<br>Peak No. | Elution<br>Yeap.<br>(*C) | Compound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Chromato-<br>graphic<br>Peak No. | Turion<br>Temp.<br>(*C) | Coepound                                          |
|----------------------------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-------------------------|---------------------------------------------------|
| 483                              | (87                      | act. hydrocarbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 43                               | 221                     | dimethylszyrane                                   |
| <del>692</del>                   | 188                      | ethyl p-caproate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 4                              | 211                     | sat. hydrocarbon                                  |
| 693                              | 166                      | pencylfuran (tent.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 85                               | 212                     | camohene (cunt.)                                  |
| 70A                              | 190                      | bensofuran (tent.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 86                               | 214                     | silozane                                          |
| 703                              | 190                      | C <sub>4</sub> -alkylbanzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 87                               | 215                     | set. hydrocarbon                                  |
| 70C                              | 190                      | trimethylbesteps isomer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 68                               | 216                     | methyl captylace                                  |
| 700                              | 191                      | phenol (trace)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 89                               | 222                     | silowase                                          |
| n                                | 192                      | \$1101608                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 90                               | 223                     | camphor                                           |
| 72A                              | 192                      | C10H22 isomer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 91                               | 225                     | C <sub>10</sub> E <sub>18</sub> 0 (trace) (tent.) |
| 728                              | 193                      | dichlorobensens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 92                               | 227                     | silozane                                          |
| 720                              | 193                      | unknown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 93                               | 230                     | trichlorodenzane (trace)                          |
| 72D                              | 194                      | C <sub>10</sub> E <sub>16</sub> isomer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 94A                              | 231                     | ethyl caprylate                                   |
| 73                               | 194                      | sat. hydrocarbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 943                              | 232                     | paphthelene                                       |
| 74                               | 196                      | Close isomer (tent.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 95                               | 235                     | g-dedecase                                        |
| 75A                              | 196                      | C10816 isoner                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 56                               | 239                     | unsat. hydrocathon (tent.)                        |
| 758                              | 197                      | C <sub>4</sub> -elkylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 97                               | 240                     | 51103804                                          |
| 76                               | 199                      | limonene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 98A                              | 240                     | 2-undecesone                                      |
| 17                               | 201                      | anithmatic and a second s | 983                              | 240                     | set. hydrocarbon                                  |
| 78                               | 203                      | set. bydrocarbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 39                               | 240                     | sat. hydrocarbon                                  |
| 79A                              | 205                      | scatophenons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 100                              | 240                     | sethyl decenosts                                  |
| 798                              | 205 .                    | C10H16 Sacmer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 101                              | 240                     | silozeno                                          |
| 80                               | 207                      | eat. hydrocarboa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 102                              | 240                     | C14E30 (test.)                                    |
| 81                               | 206                      | unknova                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 103                              | 240                     | ethyl decempate                                   |
| 82                               | 210                      | 2-00040004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 104                              | 240                     | unsat. bydrocarbon                                |
|                                  |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | •                                |                         |                                                   |

٠

¢

4

Table D-6 (continued)

.

۰,



Figure D-6. Total ion current chromatogram from GC/MS analysis for volatiles in sample no. 2071 (Pittsburgh, PA).

4

.

-

٠

| Chronato-<br>graphic<br>Peak No. | Elucion<br>Imp.<br>("C) | Compound                     | Chromato-<br>graphia<br>Pask No. | Elector<br>Temp. | Coupould                      |
|----------------------------------|-------------------------|------------------------------|----------------------------------|------------------|-------------------------------|
| t                                | t7                      | earbas 41arida               |                                  |                  | 0 T 0 44444                   |
| 13                               | 54                      | chlore stiflungemerkene      | 12                               | 130              | 612° 100000                   |
| 2                                | 62                      | chlarmathere                 | l u                              | 141              | E H Isoner                    |
| 1                                | 43                      | C.E. inches                  | 1                                | 144              | -B-16                         |
|                                  | 68                      | dimerbyldtfluorontlane       | 1 11                             | 145              |                               |
| SA                               | 70                      | actylaldebyde                | 10                               | 147              | fureldebrde incom             |
| 58                               | 71                      | Actione                      | 1                                | 149              | C E farmer                    |
| 36                               | 72                      | fatte                        |                                  | 150              |                               |
| 6                                | 73                      |                              | 424                              | 153              | C B . famer                   |
| 7                                | 74                      | i-mreasol                    | 429                              | 153              |                               |
| 84                               | 76                      | mathylens chlotide           | 414                              | 155              |                               |
| 41                               | 17                      | Press 113                    | 438                              | 154              | CH O second                   |
| ,                                | 79                      | carbos disulfide (traca)     | 44                               | 158              | 510 <sup>-</sup>              |
| 10                               | 80                      | C.B.D isoner                 | -                                | 159              |                               |
| 11                               | 85                      | C.T. O incomer               | 458                              | 159              |                               |
| 12                               | 16                      | s-10                         | 1.50                             | 160              | disting alashal               |
| 114                              | 87                      | methyl athyl ketone          | 450                              | 161              |                               |
| 138                              | AB.                     | C.H. isomer                  | 1.44                             | 147              |                               |
| 144                              | 90                      | berafluorobenene (inc. erd.) | 44                               | 164              | CH O factor                   |
| 143                              | 90                      | 2-methylfuran                |                                  | 165              | C.T. James                    |
| 140                              | 90                      | -berene                      |                                  | 166              | -6-16                         |
| 154                              | 92                      |                              | 411                              | 166              | C.B. O. incomer               |
| 153                              | 93                      | 3-methylfutan                | ARC                              | 167              | -7*10°2                       |
| 16                               | 94                      | C.I. frant                   | 194                              | 169              | C T O james                   |
| 174                              | 97                      | serfluorateluses (inc. scd.) | 401                              | 170              |                               |
| 178                              | 97                      | mathyleyelopentees           | 30                               | 172              |                               |
| 16                               | 58                      | C.B.O isomet                 | 514                              | 171              | C.R., import                  |
| 19                               | 100                     | 1.1.I-trichlorosthene        | 510                              | 173              | C.T. ismer                    |
| 20                               | 3.04                    | bestere                      | 52                               | 175              | mkadim                        |
| 21                               | 3.06                    | C.S., Leaser                 | 51                               | 176              | C.I. incher                   |
| 224                              | 308                     | etbyl vinyl ketsee           | 54                               | 178              | C.B., issuer                  |
| 223                              | 106                     | C.I. O isomer                | 55                               | 180              | C.B. incher                   |
| 23                               | 3.09                    | C.I. 0 14000T                | 56                               | 181              | 10-20<br>C.T., inches (sent.) |
| 24                               | 110                     | s-peatenel                   | 574                              | 182              | methylfuraldebyda (ecner      |
| 25 <b>A</b>                      | 113                     | C.B. isont                   | \$23                             | 192              | henraldshyde                  |
| 253                              | 113                     | Tichloroschylens             | SI                               | 284              | mechylfuraldabyda iernet      |
| 25C                              | 114                     | C, 3_0                       | 594                              | 186              |                               |
| 26A                              | 316                     | e a<br>p-bestane             | 593                              | 187              | C. M. Secont                  |
| 263                              | 117                     | acetic acid                  | 590                              | 188              | C. E. isoner                  |
| 27                               | 120                     | 2-vieylfuren                 | 40                               | 189              | -10-22                        |
| 28                               | 122                     | C.R., incomet (tent.)        | 41                               | 190              | 11-74<br>C.I0-isomer          |
| 29                               | 123                     | C.R., incust                 | 624                              | 191              |                               |
| 30                               | 125                     | / 14<br>dimethyl disulfide   | 623                              | 191              | C. B. Secure (test.)          |
| 31                               | 126                     | dibydropyran (teat.)         | 634                              | 192              | C. L. Some                    |
| 32                               | 133                     | Columne                      | 638                              | 193              | 2-sestylfuran                 |
| 33                               | 134                     | C,H <sub>14</sub> Semar      | 4                                | 194              | s-octanal                     |
|                                  |                         | - conti                      | aund -                           | -                | -                             |

# Table D-7. VOLATILE COMPOUNDS IDENTIFIED IN PURGE OF SAMPLE NO. 3053 (Baton Rouge, LA)

----

.

139

| Chromato-<br>graphic<br>Peak No. | Elution<br>Temp.<br>(°C) | Compound                                                    | Chromsto-<br>graphic<br>Peak No. | Elution<br>Temp.<br>('C) | Compound                                 |
|----------------------------------|--------------------------|-------------------------------------------------------------|----------------------------------|--------------------------|------------------------------------------|
| 65Å                              | 194                      | C <sub>3</sub> -alky] benzene isomer                        | 873                              | 231                      | C <sub>12</sub> R <sub>24</sub> isomer   |
| 653                              | 194                      | unknown                                                     | 864                              | 234                      | eiloxage                                 |
| 66                               | 196                      | silomaas                                                    | 683                              | 234                      | C1081002 (tent.)                         |
| 67A                              | 197                      | <u>p-decese</u>                                             | 89                               | 235                      | sat. hydrocarbon                         |
| 673                              | 298                      | dichlorobensene                                             | 90                               | 236                      | C12R26 isomer                            |
| 68                               | 199                      | unsat. bydrocarbos                                          | 91                               | 237                      | C12B26 isomer                            |
| 69                               | 201                      | Colis isomer                                                | 97A                              | 238                      | CicE200 Sacmer                           |
| 70                               | 202                      | Calkylbenzene (tent.)                                       | 923                              | 239                      | unsat. hydracarbon                       |
| 71                               | 204                      | C <sub>g</sub> B <sub>6</sub> O <sub>2</sub> isomer         | 934                              | 240                      | naphthalana (Frace)                      |
| 724                              | 204                      | lisonene                                                    | 938                              | 240                      | C <sub>12</sub> H <sub>22</sub> incomer  |
| 723                              | 204                      | sst. hydrocarbon                                            | 944                              | 240                      | n-decenel                                |
| 73A                              | 207                      | ussat. hydrocarbon                                          | 948                              | 240                      | C12R24 isomer                            |
| 738                              | 207                      | C <sub>11</sub> E <sub>24</sub> incomer                     | 95                               | 240                      | D-dodecase                               |
| 74A                              | 206                      | sat. hydrocarbon                                            | 96                               | 240                      | C <sub>13</sub> R <sub>28</sub> isomer   |
| 745                              | 209                      | ace tophenona                                               | 97                               | 240                      | sat. hydrocarbon                         |
| 75                               | 210                      | C <sub>4</sub> -alkylbenzene                                | 98A                              | 240                      | CITE INCOME                              |
| 76                               | 211                      | C11E24 iscuer                                               | 98B                              | 240                      | C <sub>11</sub> E <sub>20</sub> O isomer |
| 778                              | 212                      | C11H24 isourt                                               | 99                               | 240                      | C13R28 isomer                            |
| 773                              | 212                      | unsat. hydrocarbon                                          | 100                              | 240                      | C13E28 isomer                            |
| 77C                              | 213                      | est. hydrocatbon                                            | 101                              | 240                      | C13B28 isomer                            |
| 770                              | 213                      | C <sub>c</sub> H <sub>c</sub> O <sub>2</sub> isomer         | 102                              | 240                      | C10R160 isomer                           |
| 78A                              | 214                      | C <sub>7</sub> E <sub>8</sub> C <sub>2</sub> isomer (tent.) | 103                              | 240                      | C13E24 isomer                            |
| 788                              | 215                      | C11E24 isomer                                               | 104                              | 240                      | <u>p-underenal</u>                       |
| 79                               | 217                      | C108160 isomer                                              | 105                              | 240                      | g-tridecase                              |
| 80                               | 218                      | <u>b-nosenal</u>                                            | 106                              | 240                      | C10B160 isomer                           |
| 61                               | 221                      | <u>n-undecane</u>                                           | 107                              | 240                      | silozane                                 |
| 82                               | 222                      | unset. hydrocarbon                                          | 108                              | 240                      | unsat. bydrocatbon                       |
| 83                               | 224                      | sat, hydrocarbon                                            | 109                              | 240                      | ubset. bydrocerbon                       |
| 84                               | 226                      | C12E26 Isomer                                               | 110                              | 240                      | <u>ierezebob-g</u>                       |
| 85                               | 227                      | Bat. bydrocarbon                                            | 111                              | 240                      | <u>B-tätradecase</u>                     |
| 86                               | 228                      | C <sub>12</sub> H <sub>26</sub> isomer                      | 112                              | 240                      | unsac. hydrocarbon                       |
| 87a                              | 229                      | eilozane                                                    | 113                              | 240                      | 1-Ptotedecaps                            |

Table D-7 (continued)

••



Figure D-7. Total ion current chromatogram from GC/MS analysis for volatiles in sample no. 3053 (Baton Rouge, LA).

| Chrone to-          | Elution     |                                                 | Chromato- | Elution |                                               |
|---------------------|-------------|-------------------------------------------------|-----------|---------|-----------------------------------------------|
| graphic<br>Real No. | Temp.       | Compound                                        | graphie   | Temp.   | Cospound                                      |
| FEEL NO.            | <u>(-</u> ) |                                                 | Feat mor  |         |                                               |
| 1                   | 59          | carbon dioxida                                  | 339       | 248     | unsat. hydrocarbos                            |
| 2                   | 61          | dichloredifluoremethene                         | 34        | 130     | CgH16 isomer (tent.)                          |
| 34.                 | 65          | sulfur dioxide                                  | 35        | 152     | eflorene                                      |
| 38                  | 65          | C <sub>4</sub> Hg isomer                        | 364       | 155     | C <sub>9</sub> H <sub>18</sub> isomer         |
| 4                   | 71          | C <sub>5</sub> H <sub>20</sub> isomer           | 363       | 155     | C <sub>9</sub> E <sub>20</sub> isomer (tent.) |
| SA                  | 73          | trichlorofluoromathana                          | 37        | 161     | ethylbensene '                                |
| 51                  | 74          | acatosà                                         | 344       | 143     | zylene isomer                                 |
| 64                  | 76          | 1sopropanol                                     | 363       | 164     | C <sub>g</sub> E <sub>20</sub> isomer         |
| 63                  | 76          | g-pestase                                       | 39A       | 168     | styreps                                       |
| 60                  | 77          | C <sub>5</sub> H <sub>6</sub> isomer            | 393       | 16\$    | C <sub>g</sub> B <sub>20</sub> isomer         |
| 78                  | 80          | methylene chloride                              | 40        | 169     | zylene isomer                                 |
| 75                  | 81          | Preon 113                                       | 41        | 170     | Cellon Loomet                                 |
|                     | 82          | carbon disulfids                                | 42        | 173     | Callon isoner                                 |
| 9                   | 84          | p-butanal                                       | 434       | 177     | sat. hydrocarbos                              |
| 10A                 | 87          | -<br>cytlopentane                               | 433       | 177     | Calkyl bensens (tent.)                        |
| 103                 | 88          | Cally isomer                                    | 44        | 178     | C. Las isomer                                 |
| 11                  | 89          | C <sub>s</sub> E <sub>10</sub> 0 isomer         | 45        | 179     | C <sub>10</sub> U <sub>22</sub> isomer        |
| 124                 | 91          | C.E., O issuer                                  | 46        | 181     | sat. hydrocarbon                              |
| 128                 | 92          | C <sub>2</sub> 2,, isoper                       | 47        | 183     | silozape                                      |
| 13                  | 94          | benafluorobanzana (int. atd.)                   | 48        | 186     | bangaldshyda                                  |
| 14                  | 95          | g-bezene                                        | 49        | 1.69    | unicova                                       |
| 25                  | 96          | chloreferm                                      | 50        | 189     | Cithe issuer                                  |
| 164                 | 101         | perfluorotoluene (int. etd.)                    | 51        | 191     | Calkyl benzent                                |
| 163                 | 101         | msthyleyclopentana                              | 52        | 192     | C <sub>T1</sub> E <sub>24</sub> Asomer        |
| 17A                 | 104         | 1,1,1-trichloroethene                           | 53        | 193     | C <sub>11</sub> E <sub>74</sub> incomer       |
| 173                 | 104         | C <sub>5</sub> E <sub>10</sub> 0 iscust (test.) | 544       | 194     | C <sub>11</sub> E <sub>24</sub> iscust        |
| 18                  | 106         | CAR, O isomer.                                  | 543       | 195     | Calkyl benzene                                |
| 19                  | 108         | bensebe                                         | 55A       | 196     | ellenne                                       |
| 20                  | 109         | carbon tecrachloride                            | 55B       | 197     | CitEn Incons                                  |
| 21                  | 220         | C <sub>g</sub> E <sub>1,2</sub> income          | 56        | 195     | dicblorobestent                               |
| 22                  | 111         | CgH, 0 isomer (tent.)                           | 57        | 202     | Cy-sikyl benzene                              |
| Z3                  | 112         | CgE, 0 isomer (test.)                           | 58        | 204     | linosent                                      |
| 24                  | 114         | p-pentanel                                      | 59        | 206     | sat. hydrocarbon                              |
| 25                  | 117         | trichloroethylene                               | 60        | 208     | sat. hydrocarbon                              |
| 26                  | 120         | p-beptene                                       | 61A       | 212     | acatophenone                                  |
| 27                  | 123         | C.E., isomer                                    | 613       | 213     | sat. hydrocarbon                              |
| 28                  | 126         | C.H., isomer                                    | 62        | 214     | sat. hydrocarbos                              |
| 29                  | 128         | dimethyl disulfide                              | 63        | 217     | set. hydrocarbos                              |
| 30                  | 135         | toluens                                         | 4         | 222     |                                               |
| 314                 | 142         | p-bershal                                       | 65        | 233     | cilozat                                       |
| 318                 | 144         |                                                 | 4         | 240     | n-dotacase                                    |
| \$2                 | 146         | -8-16                                           | 67        | 74.0    | mast. bydrocarbon                             |
| *14                 | <br>14F     | E                                               | 46        | 240     |                                               |
|                     | 1-4         | Part Graves on Fullyname                        |           | 440     | a sa an   |

#### Table D-8. VOLATILE COMPOUNDS IDENTIFIED IN PURGE OF SAMPLE NO. 3111 (Baton Rouge, LA)

.



\*

Figure D-8. Total ion current chromatogram from GC/MS analysis for volatiles in sample no. 3111 (Baton Rouge, LA).

### APPENDIX E

## SEMIVOLATILE COMPOUNDS IDENTIFIED IN SELECTED

### EXTRACTS OF MOTHER'S MILK

٠

| Chronato-<br>graphic<br>Pask No. | Elecion<br>Temp.<br>(*C) | Conpound                     | Chromato-<br>graphic<br>Feak No. | #1ution<br>Temp.<br>(*C) | Compound                       |
|----------------------------------|--------------------------|------------------------------|----------------------------------|--------------------------|--------------------------------|
| 34                               |                          | tolutae                      | 25                               |                          | vokosvo                        |
| 13                               |                          | zylane iemer                 | 26                               |                          | whow                           |
| 2                                |                          | silement                     | 27                               |                          | eilgzabe                       |
| 3                                |                          | #110####                     | 28                               |                          | siloxans                       |
| 4                                |                          | stlowes                      | 29                               |                          | d <sub>10</sub> -pyrese (std.) |
| 5                                |                          | allouses                     | 30                               |                          | sac. and unsat, bydrocarbons   |
| 6                                |                          | ellenne .                    | 31                               |                          | eilozza                        |
| 7                                |                          | \$110240e                    | 32                               |                          | 202                            |
| 8                                |                          | silemme                      | 33                               |                          | saknowa                        |
| 9                                |                          | dimethylbiphanyl (tant.)     | 344                              |                          | silezape                       |
| 10                               |                          | siloune                      | 348                              |                          | ankaova                        |
| 11A                              |                          | silozane                     | 35                               |                          | uskoova                        |
| 118                              |                          | unknown                      | 36                               |                          | sat. and unsat. hydrocarbous   |
| 12                               |                          | silozace                     | 37                               |                          | stlozane                       |
| 13                               |                          | aat. hydrocarbon             | 38                               |                          | sat. and unsat. hydrocarbous   |
| 34                               |                          | eilozane                     | 39                               |                          | set. and unsat. hydrocarboas   |
| 15                               |                          | silonma                      | 40                               |                          | silouse                        |
| 16                               |                          | est. bydrocarbon             | 41                               |                          | elloupe '                      |
| 17                               |                          | ast. and weset. hydrocarbons | 42                               |                          | silozme                        |
| 18                               |                          | atlazane                     | 43                               |                          | silozana                       |
| 19                               |                          | eilemee                      | 44                               |                          | stlement                       |
| 20                               |                          | etiozane                     | 45                               |                          | sileme                         |
| 21                               |                          | eat. bydrocarbou             | 46                               |                          | lycoperment                    |
| 22                               |                          | phthelate (text.)            | 47                               |                          | cholesteryl acatate            |
| 23                               |                          | silozane                     | 48                               |                          | eilozane                       |
| 24                               |                          | est. and unset, hydrocarboas |                                  |                          |                                |

.

## Table E-1. SEMIVOLATILE COMPOUNDS IDENTIFIED IN EXTRACT OF SAMPLE 1032 (Bayonne, NJ)

٠

.



Figure E-1. Total ion current chromatogram from GC/MS analysis for Semivolatiles in sample 1032 (Bayonne, NJ).

146

| Chromato-<br>graphic<br>Peak No. | Elucion<br>Temp.<br>("C) | Coupound                         | Chromato-<br>graphic<br>Peak No. | Elution<br>Sump.<br>(*C) | Conpound                     |
|----------------------------------|--------------------------|----------------------------------|----------------------------------|--------------------------|------------------------------|
| 1                                |                          | talutot                          | 28                               |                          | unsat. hydrocarbon           |
| 2                                |                          | eiloune                          | 294                              |                          | unsat. hydrocarbos           |
| 3                                |                          | eilezene                         | 292                              |                          | 205                          |
| 4                                |                          | eilersee                         | 30                               |                          | eat. and unsat. hydrocarbons |
| 5                                |                          | eiloxene                         | 1 21                             |                          | Silozane                     |
| 6                                |                          | 2,6-di-cert-buzyl-4-methylphanol | 32                               |                          | pentachlorobiphenyl          |
| 7                                |                          | methyl dodecenoste               | 23                               |                          | ast. and unsat. bydrocarboos |
|                                  |                          | ethyl butyrate (tent.)           | 1 34                             |                          | silozene                     |
| 9                                |                          | stiezane                         | 35                               |                          | sat. and unsat. hydrocarbons |
| 10                               |                          | sat, hydrocarbon                 | 36                               |                          | hexechlorobiphenyl           |
| 11                               |                          | silozane                         | 37                               |                          | silozane                     |
| 12                               |                          | e110xxxxe                        | 38                               |                          | est. hydrocarbon             |
| 13                               |                          | sat. hydrocarbon                 | 39                               |                          | ailozas                      |
| 14                               |                          | silcume                          | 40                               |                          | sat. and unsat. hydrocarboos |
| 15                               |                          | eilemme                          | 414                              |                          | sat. and unsat. hydrocarboas |
| 16                               |                          | allazabe                         | 418                              |                          | heptachlorobiphenyl          |
| 17                               |                          | sat. and unsat. bydrocarbons     | 42                               |                          | eflorene                     |
| 18                               |                          | set. bydrocerboa                 | 43                               |                          | sat. and unsat. hydrocarbons |
| 19                               |                          | wekowe.                          | 44                               |                          | silomene                     |
| 20                               |                          | ailoune                          | 45                               |                          | silozane                     |
| 21                               |                          | set. and unset. hydrocarbons     | 46                               |                          |                              |
| 22                               |                          | unitaria.                        | 47                               |                          | eliozane                     |
| 23                               |                          | unkasva.                         | 46                               |                          | silense                      |
| 24                               |                          | ailonane                         | 49                               |                          | lycopersene                  |
| 25                               |                          | silozza                          | 50                               |                          | eilomace                     |
| 26                               |                          | dia-pyress (int. std.)           | 51                               |                          | cholesteryl scetate          |
| 27                               |                          | silorane                         |                                  |                          |                              |

## Table E-2. SEMIVOLATILE COMPOUNDS IDENTIFIED IN EXTRACT OF SAMPLE 2121 (Pittsburgh, PA)

.

.



.

Figure E-2. Total ion current chromatogram from GC/MS analysis for semivolatiles in sample 2121 (Pittsburgh, PA).

.

| Chromato-<br>graphic<br>Peak No. | Lintion<br>Temp.<br>(*C) | Compound                 | Chrosato-<br>graphic<br>Feak No. | Elucion<br>Temp.<br>(*C) | Cosposed                   |
|----------------------------------|--------------------------|--------------------------|----------------------------------|--------------------------|----------------------------|
| 1                                |                          | methylene chloride       | 32                               |                          | 4.10-277464                |
| 2                                |                          | toluese                  | 334                              |                          | ast. hydrocarbos           |
| 3                                |                          | silozane                 | 338                              |                          | unset. hydrocarbon         |
| 4                                |                          | set. hydrocarbon         | 34                               |                          | ellogene                   |
| 5                                |                          | sat. hydrocathon (tent.) | 35                               |                          | DDZ                        |
| 6                                |                          | siloxee                  | 364                              |                          | uskaova                    |
| 7                                |                          | sac. bydrocsrbos (test.) | 368                              |                          | unsat. bydrocarbon         |
| \$                               |                          | silozane                 | 37A                              |                          | siloxane                   |
| 9                                |                          | sat. hydrocarbon (tant.) | 378                              |                          | witeova                    |
| 10                               |                          | silorage                 | 86                               |                          | sat. hydrocarbon (tent.)   |
| 11                               |                          | sat. hydrocarbon         | 39                               |                          | silozane                   |
| 12                               |                          | sat. hydrocarboo         | 40                               |                          | unsat. hydrocarbon (tent.) |
| 13                               |                          | uningro                  | 41                               |                          | silomane                   |
| 14                               |                          | unkoova                  | 42                               |                          | sat. bydrocarbon (gant.)   |
| 15                               |                          | sat. hydrocarbon         | 43                               |                          | silorane                   |
| 16                               |                          | silozene                 | 44                               |                          | eat. bydrocarbon           |
| 17                               |                          | sat. bydrocarbon         | 45                               |                          | sat. bydrocarbon           |
| 18                               |                          | silozaat                 | 46A                              |                          | sat. hydrocatboa           |
| 19                               |                          | silozans                 | 463                              |                          | silozane                   |
| 20                               |                          | sat. bydrocarbon         | 47                               |                          | eilorens                   |
| 21                               |                          | set. bydrocathon         | 48                               |                          | set. hydrocarboo           |
| 22                               |                          | siloxaot                 | 49                               |                          | silozane (test.)           |
| 23                               |                          | silomae                  | 50A                              |                          | #110xane                   |
| 24                               |                          | silozzos                 | 503                              |                          | sat. hydrocarbon           |
| 25                               |                          | set. hydrocarbon         | 51                               |                          | sat. hydrocarbon           |
| 26                               |                          | silcane                  | 52                               |                          | lycopetacae                |
| 27A                              |                          | sat, hydrocarboo         | 53A                              |                          | Bilozane                   |
| 273                              |                          | unset. hydrocarbon       | 538                              |                          | cholesceryi scetate        |
| 28                               |                          | valcovo.                 | 54                               |                          | silozane                   |
| 29                               |                          | voknova                  | 55                               |                          | sat. hydrocarbon           |
| <b>30</b>                        |                          | silotane                 | 56                               |                          | unknown                    |
| 31                               |                          | silozene                 | 57                               | ····                     | ¢1)02104                   |

## Table E-3. SEMIVOLATILE COMPOUNDS IDENTIFIED IN EXTRACT OF SAMPLE 3095 (Baton Rouge, LA)

•

•

t

•



٩.

| Chronaco-<br>graphic<br>Puak No. | Elution<br>Temp.<br>("C) | Coupound                              | Chromata-<br>graphia<br>Feat No. | Elution<br>Temp.<br>(°C) | Coupound                            |
|----------------------------------|--------------------------|---------------------------------------|----------------------------------|--------------------------|-------------------------------------|
| 1                                |                          | toluses                               | 30                               |                          | ellares                             |
| 2                                |                          | eilozana                              | 31                               |                          | eilenne                             |
| 3                                |                          | #ilomme                               | 32                               |                          | d <sub>10</sub> -pyrane (int. std.) |
| 44.1                             |                          | silonne                               | 33                               |                          | ast. and unsat, bydrocarbous        |
| 43                               |                          | sat. hydrocarbon                      | 34                               |                          | eilogene                            |
| 5                                |                          | dilozane                              | 35                               |                          | est. and unset. hydrocathens        |
| 4                                |                          | filozane ·                            | 36                               |                          | dat. and unsat. hydrocathens        |
| 7                                |                          | butyric ethydride (tent.)             | 37A                              |                          | eat. and unset. hydrocathons        |
| •                                |                          | sac. hydrocarbon                      | 373                              |                          | DDE                                 |
| 9A,                              |                          | C <sub>9</sub> B <sub>20</sub> isomer | 38                               |                          | est. and unset. hydrocarbons        |
| 9B                               |                          | unknown                               | 39                               |                          | eilozene                            |
| 10                               |                          | etlomene                              | 40                               |                          | Silezane                            |
| 11                               |                          | sat. hydrocarbon                      | 41                               |                          | sat. and unsat. hydrocarbons        |
| 12                               |                          | sat. hydrocarbon                      | 42A                              |                          | eilezane                            |
| 13                               |                          | silozene                              | 423                              |                          | methyl dehydrosbietete (tant.)      |
| 14                               |                          | \$11cmane                             | 43                               |                          | eilezzoe                            |
| 15                               |                          | set. hydrocarbou                      | 44                               |                          | sat. hydrocarbon                    |
| 16                               |                          | set. bydrocarbon                      | 45                               |                          | ailonson '                          |
| 17                               |                          | sat. hydrocarbon                      | 46                               |                          | ast. and unset. hydrocarbons        |
| 18                               |                          | sat. hydrocarbon                      | 47                               |                          | eilozane                            |
| 19                               |                          | Tinkova                               | 48                               | •                        | phthelate ····                      |
| 20                               |                          | silozene                              | 49 ,                             | ,                        | silomane                            |
| 21                               |                          | set. bydrocarbon                      | 50                               |                          | unknova                             |
| 22                               |                          | sat. and monat. hydrocarbox           | 51                               |                          | silozane                            |
| 23A                              |                          | eiloxane                              | 32                               |                          | #1loxee                             |
| 233                              |                          | sat. and unsat. hydrocarbons          | 53                               |                          | eilezane                            |
| 24                               |                          | eilozana                              | 54                               |                          | lycopersens                         |
| 25                               |                          | sat. and unsat. hydrocarboss          | 55                               |                          | Bilozene                            |
| 26                               |                          | silenese                              | 56                               |                          | cholesteryl scatate                 |
| 27                               |                          | usianu.                               | 57                               |                          | est, and unsat. bydrocerboos        |
| 26                               |                          | ast. and unsat. hydrocarbons          | 56                               |                          | eilerne                             |
| 29                               |                          | sat. and unset. hydrocarbons          | 59                               |                          | Q-sacopherol (vitamia)              |

#### Table E-4. SEMIVOLATILE COMPOUNDS IDENTIFIED IN EXTRACT OF SAMPLE 4093 (Charleston, WV)

.



Figure E-4. Total ion current chromatogram from GC/MS analysis for semivolatiles in sample 4093 (Charleston, WV).



#### UNITED STATES DEPARTMENT OF COMMERCE

National Technical Information Service

5285 Port Royal Roed Springfield, Virginia 22161 OFFICE OF THE DIRECTOR





Dear Professional:

I wish I could tell you how much time and money the NTIS Abstract Newsletters could save you.

But, I can't. Because I don't know how much time and money you unknowingly spend on costly research that actually duplicates the work of others. Yet this research information is readily available to you when you know how to access it.

That's what NTIS Abstract Newsletters are all about.

#### NTIS Abstract Newsletters Summarize 70,000 New Reports Annually

You see, NTIS information specialists index, analyze, and categorize 70,000 new research documents a year. Each report is judged for its potential value for thousands of current subscribers. Then it is summarized in a brief abstract and published in one or more Newsletters. You receive only those abstracts of interest to your professional field.

NTIS exists to help you find--and provide you with-research results and information. You'll know what you need to know--when you need to know it--with NTIS Abstract Newsletters. The Newsletters are a speedy, comprehensive, economical way for you to keep current on the latest research and to cut your risk of duplicating work already available in a report from NTIS.

Your Newsletters will suggest possible directions and starting points for your own research. Knowing research applications of others will help you get more out of every research dollar you invest.

#### Worldwide Sources

The NTIS collection also contains selected information on scientific and technical developments around the world.

NTIS is now actively expanding its sources of foreign technology to add to more than 300,000 foreign reports already on hand--including translated materials from the U.S.S.R., other Eastern European countries, Japan, and major Western countries.

#### Low Subscription Rate

By now, you may well be apprehensive over the cost of this remarkable Newsletter service. If so, you will be pleasantly surprised to learn you can subscribe to the *Energy Abstract Newsletter*, for example, for about \$1.83 a week!

NTIS is a unique self-supporting Government agency offering economical information products and services on a costrecovery basis.

#### You Get Reports on Research Not Published By Any Other Source

NTIS Abstract Newsletters let you know about all Gevernment-sponsored research in your field. Each week yeu'll learn about research not reported or available from any other source.

And when you spot a report you need, NTIS can provide it for you in a matter of days, usually for about \$14 in paper copy or only \$4.50 in microfiche. Your Newsletters contain a handy report order form for your convenience.

#### Annual Subject Index Included

Your subscription includes an Annual Subject Index to give permanent reference value to your Newsletter.

2.0.8 GOVERNMENT PRINTING OFFICE. 1983 - 30L-009 227/526

Of course, your subscription is tax deductible as a business expense in most instances. More than that, when you consider the wasted time and costly mistakes the Newsletters can help you avoid, you will begin to appreciate what a practical investment NTIS Abstract Newsletters really are. For example: MANUFACTURING TECHNOLOGY: one of the newest Newsletters that meets industry's most pressing need right now...brings news of the latest research on robotics and CAD/CAM. \$125\* FOREIGN TECHNOLOGY: abstracts of latest technological and scientific research in all fields from Japan, United Kingdom, France, U.S.S.R., and countries all over the world. SPECIAL CHARTER RATE: \$75\* · ENVIRONMENTAL POLLUTION & CONTROL: one of the most sought after Newsletters covering air, noise, solid wastes, water, pesticides, radiation, health and safety and environ-\$95\* mental impact statements. • ENERGY: brings you a wealth of information on energy use; supply and demand; power and heat generation; energy policies, regulations and studies; engines and fuels, and much more. \$95\* · COMPUTERS, CONTROL, AND INFORMATION THEORY: important information, and lots of it, concerning this, one of the fastest growing and \$95\* most competitive industries worldwide. • MATERIAL SCIENCES: applicable to nearly every industry with abstracts touching on a \$80\* huge variety of processes and products. • MEDICINE & BIOLOGY: covers an enormous range of information from anatomy to zoology. Every facet of medicine and biology is touched upon. \$75\*

And any one of the abstracts in these Newsletters may be the added element of success for your ongoing research, contract proposals, cost reduction efforts, and profits.

NTIS regularly publishes information not available elsewhere, and frequently brings you news of research before it appears in professional journals and magazines. You simply should not risk acting without benefit of complete, current information on what's happening in Government-sponsored research in your field.

\*One-year subscription rate

(Over, please)

You need NTIS Abstract Newsletters and here's how to order them.

Complete the order form at the bottom of this letter and mail it back today to the address below. You may use any of the options listed in order to pay for your subscription.

You are guaranteed satisfaction. If your Newsletters do not satisfy you for any reason, you may cancel and receive a credit or refund for the balance of your subscriptions.

I invite you to subscribe today.

Sincerely,

laponio

Joseph F. Caponio Acting Director



Please start my subscription to the following Abstract Newsletters:

## **Other Titles:**

| Special Offer Only:<br>Foreign Technology<br>- Save \$15 or \$30 -                                                                            | Title additional subscriptions to this Newsletter \$25 each Title                                                                                                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Charter Rate: 2 yrs. \$150 □ (Reg. Rate \$180)<br>Charter Rate: 1 yr. \$75 □ (Reg. Rate \$90)<br>Additional subscriptions \$25 each annually. | <ul> <li>pius additional subscriptions to this Newsletter \$25 each</li> <li>Charge to my Deposit Account No</li> <li>Here is my check to NTIS for \$</li> <li>Cost</li> </ul> |
| Name Occupation Company Address City / State/ZIP                                                                                              | \$       Charge to       □ American Express       □ VISA         \$       □ MasterCard         \$       Card No.          \$       Expires          TOTAL       \$             |
|                                                                                                                                               | Signature (required to validate order)                                                                                                                                         |

PR-733-3 4/83