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Folate

SUMMARY

Folate functions as a coenzyme in single-carbon transfers in the
metabolism of nucleic and amino acids. The primary indicator
used to estimate the Recommended Dietary Allowance (RDA) for
folate is erythrocyte folate in conjunction with plasma homocys-
teine and folate concentrations. The RDA for both men and women
is 400 µg/day of dietary folate equivalents (DFEs). DFEs adjust for
the nearly 50 percent lower bioavailability of food folate compared
with that of folic acid: 1 µg of dietary folate equivalent = 0.6 µg of
folic acid from fortified food or as a supplement taken with meals
= 1 µg of food folate = 0.5 µg of a supplement taken on an empty
stomach. To reduce the risk of neural tube defects for women
capable of becoming pregnant, the recommendation is to take
400 µg of folic acid daily from fortified foods, supplements, or
both in addition to consuming food folate from a varied diet. The
evidence available on the role of folate in reducing the risk of
vascular disease, cancer, and psychiatric and mental disorders is
not sufficiently conclusive to use risk reduction of these condi-
tions as a basis for setting the Estimated Average Requirement
(EAR) and the RDA.

In the U.S. adult population from 1988 to 1994, which was before
cereal grains were fortified with folate, the reported median in-
take of folate from food was approximately 250 µg/day, but this
value underestimates current intake. The ninety-fifth percentile of
intake from food and supplements was close to 900 µg/day overall
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and nearly 1,700 µg/day for pregnant women. After the fortifica-
tion of cereal grains with folate—which became mandatory for
enriched grains in the United States as of January 1, 1998, and is
now authorized in Canada—average intake of folate is expected to
increase by about 80 to 100 µg/day for women and by more for
men. The Tolerable Upper Intake Level (UL) for adults is set at
1,000 µg/day of folate from fortified food or as a supplement,
exclusive of food folate.

BACKGROUND INFORMATION

Folate is a generic term for this water-soluble B-complex vitamin,
which functions in single-carbon transfer reactions and exists in
many chemical forms (Wagner, 1996). Folic acid (pteroylmono-
glutamic acid), which is the most oxidized and stable form of folate,
occurs rarely in food but is the form used in vitamin supplements
and in fortified food products. Folic acid consists of a p-aminoben-
zoic acid molecule linked at one end to a pteridine ring and at the
other end to one glutamic acid molecule. Most naturally occurring
folates, called food folate in this report, are pteroylpolyglutamates,
which contain one to six additional glutamate molecules joined in a
peptide linkage to the γ-carboxyl of glutamate.

Function

The folate coenzymes are involved in numerous reactions that
involve (1) deoxyribonucleic acid (DNA) synthesis, which depends
on a folate coenzyme for pyrimidine nucleotide biosynthesis (meth-
ylation of deoxyuridylic acid to thymidylic acid) and thus is required
for normal cell division; (2) purine synthesis (formation of glycina-
mide ribonucleotide and 5-amino-4-imidazole carboxamide ribonu-
cleotide); (3) generation of formate into the formate pool (and
utilization of formate); and (4) amino acid interconversions, in-
cluding the catabolism of histidine to glutamic acid, interconver-
sion of serine and glycine, and conversion of homocysteine to me-
thionine. Folate-mediated transfer of single-carbon units from
serine provides a major source of substrate in single-carbon metab-
olism. The conversion of homocysteine to methionine serves as a
major source of methionine for the synthesis of S-adenosyl-methio-
nine, an important in vivo methylating agent (Wagner, 1996).
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Physiology of Absorption, Metabolism, and Excretion

Absorption, Transport, and Storage

Food folates (polyglutamate derivatives) are hydrolyzed to mono-
glutamate forms in the gut before absorption across the intestinal
mucosa. This cleavage is accomplished by a γ-glutamylhydrolase,
more commonly called folate conjugase. The monoglutamate form
of folate is actively transported across the proximal small intestine
by a saturable pH-dependent process. When pharmacological doses
of the monoglutamate form of folate are consumed, it is also ab-
sorbed by a nonsaturable mechanism involving passive diffusion.

Monoglutamates, mainly 5-methyl-tetrahydrofolate, are present in
the portal circulation. Much of this folate can be taken up by the
liver, where it is metabolized to polyglutamate derivatives and re-
tained or released into the blood or bile. Approximately two-thirds
of the folate in plasma is protein bound. A variable proportion of
plasma folate is bound to low-affinity protein binders, primarily al-
bumin, which accounts for about 50 percent of bound folate. Low
levels of high-affinity folate binders are also present in plasma.

Cellular transport of folate is mediated by a number of different
folate transport systems, which can be characterized as either mem-
brane carriers or folate-binding protein-mediated systems. These
transport systems are not saturated by folate under physiological
conditions, and folate influx into tissues would be expected after
any elevation in plasma folate after supplementation.

Folate concentrations in liver of 4.5 to 10 µg/g were reported
after liver biopsies (Whitehead, 1973). Because the adult male liver
weighs approximately 1,400 g, the total quantity of folate in the
liver would be approximately 6 to 14 mg. If the liver is assumed to
contain 50 percent of the body stores of folate, the estimated total
body folate store would be 12 to 28 mg. Using the same assumption,
Hoppner and Lampi (1980) determined average liver folate con-
centrations to be approximately 8 µg/g (range 3.6 to 14.8 µg/g)
after autopsy; the liver folate content would be approximately 11
mg and total body folate 22 mg.

Metabolism and Excretion

Before being stored in tissue or used as a coenzyme, folate mono-
glutamate is converted to the polyglutamate form by the enzyme
folylpolyglutamate synthetase. When released from tissues into cir-
culation, folate polyglutamates are reconverted to the mono-
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glutamate form by γ-glutamylhydrolase. Folates must be reduced
enzymatically and resynthesized to the polyglutamate form to func-
tion in single-carbon transfer reactions.

The metabolic interrelationship between folate and vitamin B12
may explain why a single deficiency of either vitamin leads to the
same hematological changes. Both folate and vitamin B12 are re-
quired for the formation of 5,10-methylenetetrahydrofolate and in-
volved in thymidylate synthesis by way of a vitamin B12-containing
enzyme. The formation of 5,10-methylene tetrahydrofolate depends
on the regeneration of the parent compound (tetrahydrofolate) in
the homocysteine-to-methionine conversion. This reaction involves
the removal of a methyl group from methyl folate and the delivery
of this group to homocysteine for the synthesis of methionine.
Folate is involved as a substrate (5-methyl-tetrahydrofolate) and vi-
tamin B12 as a coenzyme. The 5,10-methylenetetrahydrofolate deliv-
ers its methyl group to deoxyuridylate to convert it to thymidylate
for incorporation into DNA. In either a folate or vitamin B12 defi-
ciency, the megaloblastic changes occurring in the bone marrow
and other replicating cells result from lack of adequate 5,10-methylene-
tetrahydrofolate.

The major route of whole-body folate turnover appears to be via
catabolism to cleavage products. The initial step in folate catabolism
involves the cleavage of intracellular folylpolyglutmate at the C9-N10
bond, and the resulting p-aminobenzoylpolyglutamates are hydro-
lyzed to the monoglutamate, which is N-acetylated before excretion.

Folate freely enters the glomerulus and is reabsorbed in the prox-
imal renal tubule. The net effect is that most of the secreted folate
is reabsorbed. The bulk of the excretion products in humans are
folate cleavage products. Intact urinary folate represents only a very
small percentage of dietary folate. Biliary excretion of folate has
been estimated to be as high as 100 µg/day (Herbert and Das, 1993;
Whitehead, 1986); however, much of this is reabsorbed by the small
intestine (Weir et al., 1985). Fecal folate losses occur, but it is diffi-
cult to distinguish actual losses from losses of folate synthesized by
the intestinal microflora (Krumdieck et al., 1978).

Clinical Effects of Inadequate Intake

Inadequate folate intake first leads to a decrease in serum folate
concentration, then to a decrease in erythrocyte folate concentra-
tion, a rise in homocysteine concentration, and megaloblastic
changes in the bone marrow and other tissues with rapidly dividing
cells.
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Within weeks of the development of early morphological abnor-
malities in the marrow, subtle changes appear in the peripheral
blood (Eichner et al., 1971) when hypersegmentation of the neutro-
phils becomes apparent. The peripheral blood picture is variable
before the development of a clearly increased mean cell volume or
anemia (Lindenbaum et al., 1988). In some deficient individuals,
macrocytes and macroovalocytes are seen on blood smears, but in
others the erythrocytes may show only minimal anisocytosis or no
abnormalities. When folate supply to the bone marrow becomes
rate limiting for erythropoiesis, macrocytic cells are produced. How-
ever, because of the 120-day lifespan of normal erythrocytes, macro-
cytosis is not evident in the early stages of folate-deficient megalo-
blastosis.

As folate depletion progresses further, the mean cell volume in-
creases above normal. Neutrophil hypersegmentation (defined as
more than 5 percent five-lobed or any six-lobed cells per 100 granu-
locytes) is typically present in the peripheral blood at this stage of
macrocytosis and the neutrophil lobe average is elevated.

Macrocytic anemia then develops, as first evidenced by a depres-
sion of the erythrocyte count. Eventually, all three measures of ane-
mia (hematocrit, hemoglobin concentration, and erythrocyte con-
centration) are depressed. At this point, macroovalocytes and
macrocytes are usually detectable in the peripheral blood, and hy-
persegmentation is more impressive (Lindenbaum et al., 1988).

Because the onset of anemia is usually gradual, compensating car-
diopulmonary and biochemical mechanisms provide adaptive ad-
justments to the diminished oxygen-carrying capacity of the blood
until anemia is moderate to severe. Symptoms of weakness, fatigue,
difficulty concentrating, irritability, headache, palpitations, and
shortness of breath therefore typically appear at an advanced stage
of anemia. They may be seen at milder degrees of anemia in some
patients, especially the elderly (Lindenbaum et al., 1988). Atrophic
glossitis may also occur (Savage et al., 1994).

SELECTION OF INDICATORS FOR ESTIMATING
THE REQUIREMENT FOR FOLATE

The primary indicator selected to determine folate adequacy is
erythrocyte folate, which reflects tissue folate stores, as described in
detail below. For some life stage or gender groups, this is used in
conjunction with plasma homocysteine (which reflects the extent of
the conversion of homocysteine to methionine) and plasma or se-
rum folate. Other indicators are discussed briefly below; risk reduc-
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tion of chronic disease or developmental abnormalities is covered
in detail in a later section.

Erythrocyte Folate

Because folate is taken up only by the developing erythrocyte in
the bone marrow and not by the circulating mature erythrocyte
during its 120-day lifespan, erythrocyte folate concentration is an
indicator of long-term status. Erythrocyte folate concentration was
shown to be related to tissue stores by its correlation, although weak,
with liver folate concentration determined by biopsy in the same
individual in a study of 45 subjects (Wu et al., 1975).

Erythrocyte folate concentration does not reflect recent or tran-
sient changes in dietary folate intake. A value of 305 nmol/L (140
ng/mL) of folate was chosen as the cutoff point for adequate folate
status on the basis of the following experiments: On a diet contain-
ing only 5 µg/day of folate, the appearance of hypersegmented neu-
trophils in the peripheral blood of one subject coincided with the
approximate time when the erythrocyte folate concentration de-
creased to less than 305 nmol/L (140 ng/mL) (Herbert, 1962a).
On a diet containing less than 20 µg/day of folate, the appearance
of hypersegmented neutrophils in two subjects preceded the reduc-
tion in erythrocyte folate to concentrations below 305 nmol/L (140
ng/mL) by about 2 weeks (Eichner et al., 1971). In a group of 40
patients with megaloblastic anemia caused by folate deficiency, 100
percent had erythrocyte folate values less than 305 nmol/L (140
ng/mL); values were the lowest in the most anemic subjects and the
highest mean lobe counts occurred in the subjects with the lowest
erythrocyte folate concentrations (Hoffbrand et al., 1966). All 238
pregnant women with erythrocyte folate concentrations below 327
nmol/L (150 ng/mL) were found to have megaloblastic marrow
(Varadi et al., 1966). Eight subjects with erythrocyte folate of less
than 305 nmol/L (140 ng/mL) had eight- to ninefold greater in-
corporation of uracil into DNA than did 14 control subjects and
had a threefold increase in frequency of cellular micronuclei (a
measure of DNA and chromosome damage); folate supplementa-
tion reduced the abnormalities (Blount et al., 1997).

Plasma Homocysteine

In this report, plasma homocysteine concentration refers to total
homocysteine concentration. Plasma homocysteine concentration
increases when inadequate quantities of folate are available to do-
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nate the methyl group that is required to convert homocysteine to
methionine. Controlled metabolic and epidemiological studies pro-
vide evidence that plasma homocysteine rises with reductions in
blood folate indices. Different cutoff values have been used by vari-
ous investigators to define elevated homocysteine concentrations.
The cutoff value for plasma homocysteine cited most often is great-
er than 16 µmol/L, but 14 µmol/L (Selhub et al., 1993) and 12
µmol/L (Rasmussen et al., 1996) have also been used. Ubbink and
coworkers (1995a) used a prediction model to define a reference
range as 4.9 to 11.7 µmol/L. Other investigators have proposed age-
and gender-specific reference intervals (Rasmussen et al., 1996).

Many investigators have reported that plasma homocysteine is sig-
nificantly elevated in individuals who have been diagnosed as folate
deficient on the basis of established serum folate, plasma folate, or
erythrocyte folate norms (Allen et al., 1993; Chadefaux et al., 1994;
Curtis et al., 1994; Kang et al., 1987; Savage et al., 1994; Stabler et
al., 1988; Ubbink et al., 1993).

The evidence supporting the use of homocysteine as an ancillary
indicator of folate status is summarized as follows:

• In 10 young men, folate depletion led to a rise in plasma homo-
cysteine and a decrease in plasma folate (Jacob et al., 1994).

• In young women, a folate intake equivalent to 320 µg/day of
dietary folate equivalents was associated with elevated plasma homo-
cysteine (greater than 14 µmol/L); at this level of intake plasma
homocysteine concentrations were inversely associated with eryth-
rocyte and serum folate concentrations (O’Keefe et al., 1995).

• In a cross-sectional analysis involving elderly individuals, plasma
homocysteine exhibited a strong inverse association with plasma
folate after age, gender, and intakes of other vitamins were con-
trolled for (Selhub et al., 1993); homocysteine values appeared to
plateau at folate intakes greater than approximately 350 to 400 µg/
day. A meta-analysis by Boushey and colleagues (1995) supports the
existence of a plateau when adequate folate is consumed.

Thus, in studies of different types, a similar inverse relationship
between folate intake and plasma homocysteine values is seen for
pre- and postmenopausal women, adult men, and the elderly.

Ward and colleagues (1997) supplemented each of 30 male sub-
jects with 100, 200, or 400 µg of folate. The men were consuming a
regular diet that averaged 281 µg/day of folate. Plasma homocys-
teine, serum folate, and erythrocyte folate were assessed before, dur-
ing, and 10 weeks after intervention. Results, expressed as tertiles of
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baseline plasma homocysteine, showed significant homocysteine
lowering in the top (mean 11 µmol/L) and middle (mean 9 µmol/
L) homocysteine tertiles but not in the bottom tertile (mean 7
µmol/L). All baseline homocysteine values were within the normal
range; the highest was 12.3 µmol/L. Of the three folate doses, 200
µg appeared to be as effective as 400 µg whereas 100 µg was less
effective at lowering homocysteine. These data suggest that there is
a concentration of plasma homocysteine below which folate has no
further lowering effect.

Maternal hyperhomocysteinemia has been implicated as a risk fac-
tor for complications during pregnancy (Burke et al., 1992; Goddijn-
Wessel et al., 1996; Rajkovic et al., 1997; Steegers-Theunissen et al.,
1992, 1994; Wouters et al., 1993), but the relationship between
folate intake and the complications has not been established.

Although plasma homocysteine is a sensitive indicator of folate
status, it is not a highly specific one: it can be influenced by vitamin
B12 status (Stabler et al., 1996), vitamin B6 status (Ubbink et al.,
1995a), age (Selhub et al., 1993), gender (Selhub et al., 1993), race
(Ubbink et al., 1995b), some genetic abnormalities (e.g., methyl-
tetrahydrofolate reductase deficiency) (Jacques et al., 1996; Malinow
et al., 1997), and renal insufficiency (Hultberg et al., 1993). Thus,
plasma homocysteine alone is not an acceptable indicator on which
to base the folate requirement.

Knowledge of the relationships of folate, homocysteine, and risk
of vascular disease was judged too weak to use as the basis for deriv-
ing the Estimated Average Requirement (EAR) for folate. This top-
ic is described in more detail in “Reducing Risk of Developmental
Disorders and Chronic Degenerative Disease.”

Serum Folate

A serum folate concentration of less than 7 nmol/L (3 ng/mL)
indicates negative folate balance at the time the blood sample was
drawn (Herbert, 1987). In all the experimental studies of human
volunteers subjected to folate deprivation, a decrease in the serum
folate concentration, usually occurring within 1 to 3 weeks, was the
first event (Eichner and Hillman, 1971; Eichner et al., 1971; Halsted
et al., 1973; Herbert 1962a; Sauberlich et al., 1987). This initial
period of folate deprivation is followed by weeks or months when
the serum folate concentration is low but there is no other evidence
of deficiency. The circulating folate concentration may also be de-
pressed in situations in which there is no detectable alteration in
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total body folate, such as acute alcohol ingestion (Eichner and
Hillman, 1973).

In population surveys it is generally assumed that measuring
serum folate alone does not differentiate between what may be a
transitory reduction in folate intake or chronic folate deficiency
accompanied by depleted folate stores and functional changes.
Serum or plasma folate is, however, considered a sensitive indicator
of dietary folate intake, as illustrated by the report of Jacques and
colleagues (1993) in which plasma folate doubled across quartiles
of folate intake assessed in a study of 140 people. In a controlled
metabolic study, repeated measures over time in the same individual
do reflect changes in status. Serum folate concentration may be a
worthwhile diagnostic test if used and interpreted correctly in con-
junction with other folate status indices (Lindenbaum et al., 1988).

Urinary Folate

Data from a metabolic study in which graded doses of folate were
fed showed that urinary folate is not a sensitive indicator of folate
status (Sauberlich et al., 1987). In that study, approximately 1 to 2
percent of dietary folate was excreted intact in the urine; excretion
continued even in the face of advanced folate depletion. Other
reports indicate that daily folate excretion on a normal diet ranges
from 5 to 40 µg/day (Cooperman et al., 1970; Retief, 1969; Tamura
and Stokstad, 1973).

The major route of whole-body folate turnover is by catabolism
and cleavage of the C9-N10 bond producing pteridines and p-amino-
benzoylglutamate (pABG) (Krumdieck et al. 1978; Saleh et al.,
1982). Before excretion from the body, most pABG is N-acetylated
to acetamidobenzoylglutamate (apABG). It is not known whether
folate coenzymes are catabolized and excreted or whether they are
recycled after metabolic utilization. In a study designed to estimate
the folate requirements of pregnant and nonpregnant women, Mc-
Partlin and coworkers (1993) quantified the urinary excretion of
pABG and apABG as a measure of daily folate utilization. This ap-
proach does not take into account endogenous fecal folate loss,
which may be substantial (Krumdieck et al., 1978); thus, quantita-
tion of urinary catabolites alone may result in an underestimation
of the requirement.

Indicators of Hematological Status

The appearance of hypersegmented neutrophils, macrocytosis,



Copyright © National Academy of Sciences. All rights reserved.

Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline 
http://www.nap.edu/catalog/6015.html

FOLATE 205

and other abnormal hematological findings occurs late in the de-
velopment of deficiency (see “Clinical Effects of Inadequate In-
take”). Thus, hematological findings were not used to derive the
EAR.

Risk of Neural Tube Defects and of Chronic Degenerative Diseases

The role of folate in the prevention of neural tube defects (NTDs)
was very carefully considered, but not in the context of setting an
EAR. Although the evidence is strong that the risk of having a fetus
with an NTD decreases with increasing intake of folate during the
periconceptional period (about 1 month before to 1 month after
conception), this type of risk reduction was judged inappropriate
for use as an indicator for setting the EAR for folate for women of
childbearing age. There are several reasons for this. The popula-
tion at risk is all women capable of becoming pregnant, but only
those women who become pregnant would benefit from an inter-
vention aimed at reducing NTD risk. The risk of NTD in the U.S.
population is about 1 per 1,000 pregnancies, but the critical period
for prevention—the periconceptional period—is very short. The
definition of EAR, which indicates that half of the individuals in the
population have intakes sufficient to meet a particular criterion,
does not accommodate NTD prevention as an appropriate criterion.
Because of the importance of this topic, it is covered separately in
the later section “Reducing Risk of Developmental Disorders and
Chronic Degenerative Disease.”

The possible use of criteria involving reduction of risk of vascular
disease, certain types of cancer, and psychiatric and mental dis-
orders was also carefully considered. The evidence was not judged
sufficient to use prevention of any chronic disease or condition as a
criterion for setting the EAR; this evidence is also presented in the
section “Reducing Risk of Developmental Disorders and Chronic
Degenerative Disease.”

METHODOLOGICAL ISSUES

Measurement of Blood Folate Values

Substantial variation within and across methods was evident from
the results of an international comparative study of the analysis of
serum and whole-blood folate (Gunter et al., 1996). Results for
whole-blood pools were more variable than for serum pools. The
authors concluded that folate concentrations measured in one lab-
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oratory cannot be compared reliably with those measured in anoth-
er laboratory without considering interlaboratory differences and
that comparing data for different study populations measured by
different methods is difficult.

The Bio-Rad Quantaphase Radioassay was used for the first 4 years
of the Third National Health and Nutrition Examination Survey
(NHANES III) (1988–1991). In 1991 it was determined that the
Bio-Rad radioassay gave results that were 30 percent too high when
external, purified pteroylglutamic acid (PGA) standard solutions
were measured. The Bio-Rad assay was then recalibrated by using
calibrator solutions of PGA concentrations of 2.3, 5.7, 11, 22.6, and
45 nmol/L (1.0, 2.5, 5.0, 10.0, and 20.0 ng/mL). The net effect of
this recalibration was the expected 30 percent reduction in the mea-
sured folate concentrations of a sample. An analysis by another ex-
pert panel (LSRO/FASEB, 1994) provides further information. The
NHANES III laboratory conducted a 19-day comparison study of
NHANES III serum and erythrocyte specimens using the original
and recalibrated Bio-Rad kits and confirmed the 30 percent reduc-
tion. Through the use of a regression equation developed from the
comparison study, the correction was applied to the NHANES III
data generated with the original assay (LSRO/FASEB, 1994).

The NHANES III data (Appendix K) have been corrected for this
method problem associated with inappropriate calibration. Data
from NHANES III are believed to “provide as accurate and precise
an estimation of serum and RBC [red blood cell] folate levels in the
United States population as is possible until a definitive method has
been developed and [this should be considered] as a stand-alone
data set, without applying cutoffs established using other laboratory
methods” (E.W. Gunter, Division of Environmental Health Labora-
tory Sciences, National Center for Environmental Health, Centers
for Disease Control and Prevention, personal communication,
1997).

Earlier, after NHANES II, similar issues were addressed by a Life
Sciences Research Office expert panel (LSRO/FASEB, 1984). Such
an effort is even more warranted related to NHANES III because
this survey (unlike NHANES II) had been designed to provide an
assessment of folate status of the entire U.S. population.

Measurement and Reporting of Food Folate

It is recognized that food folate composition data contained in
currently used databases provide inaccurate estimations of folate
intake of the U.S. population. Because of the limitations of tradi-
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tional analytical methods used in generating the food composition
data for folate, the database values underestimate actual folate con-
tent. Problems with the traditional methods include incomplete re-
lease of folate from the food matrix and possibly incomplete hy-
drolysis of polyglutamyl folates before quantitation. For example,
buffer solutions widely used for sample homogenization in food
analysis have been shown to yield incomplete recovery relative to a
more effective extraction buffer (Gregory et al., 1990). As much as
a twofold greater folate concentration is obtained when an im-
proved extraction procedure rather than an older procedure is used
in the analysis of foods such as green peas and liver (Tamura et al.,
1997).

The use of a trienzyme approach (amylase and protease treat-
ments in addition to folate conjugase) enhances folate yield in food
analysis (Martin et al., 1990; Tamura et al., 1997). Pfeiffer and col-
leagues (1997b) confirmed the effectiveness of the trienzyme ap-
proach for the analysis of cereal-grain foods with or without folate
fortification. The extent of differences among approaches varies
from food to food, and there is no current means of predicting
actual folate content from the existing database values. Analytical
methods used to obtain food folate data for databases have used
extraction procedures (Gregory et al., 1990) and enzyme digestion
treatments that are not optimal for the specific food, resulting in a
significant underestimation of food folate (DeSouza and Eitenmiller,
1990; Martin et al., 1990; Pfeiffer et al., 1997b; Tamura et al., 1997).

Many studies of population groups have used food composition
databases and measures of food intake to estimate folate intake.
The mean estimates in these studies are based on data largely or
entirely from the U.S. Department of Agriculture nutrient database.
For the analytical reasons indicated above, it is likely that all these
estimates of dietary folate intake are underestimates of actual in-
take. Therefore, conclusions regarding the EAR for folate should
not be based on estimates of folate intake from current food com-
position databases.

FACTORS AFFECTING THE FOLATE REQUIREMENT

Factors considered when estimating the folate requirement
include the bioavailability of folic acid and food folate, nutrient-
nutrient interactions, interactions with other food components,
smoking, folate-drug interactions, and genetic variations.
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Bioavailability

As explained below, the bioavailability of folate ranges from about
100 percent for folic acid supplements taken on an empty stomach
to about 50 percent for food folate.

Bioavailability of Folic Acid

When consumed under fasting conditions, supplements of folic
acid are nearly 100 percent bioavailable (Gregory, 1997). Daly and
coworkers (1997) reported incremental increases in erythrocyte
folate in response to graded doses of folic acid, which provides evi-
dence for the high bioavailability of supplemental folate. Additional
work may be necessary to improve the precision of the estimate of
bioavailability (Pfeiffer et al., 1997a).

No published information was found regarding the effect of food
on the bioavailability of folate supplements. Pfeiffer and coworkers
(1997a) recently examined the bioavailability of C13-labeled folic
acid (administered in apple juice) when given with or without a
serving of food; they found a slight (about 15 percent) but insignif-
icant reduction when folic acid was consumed with a portion of
food. From these experimental data the bioavailability of folic acid
consumed with food is estimated to be 85 percent. Studies have not
been conducted to define the bioavailability of folic acid consumed
with entire meals. It is assumed that the bioavailability would be
somewhat lower than that observed with folic acid alone or with a
small portion of food.

Bioavailability of Folate Added to Foods

The recently approved U.S. fortification of breads and grains with
folate has raised interest in the bioavailability of folate provided in
the form of folic acid. On the basis of erythrocyte folate response
over a 3-month study, it was concluded that the folate in a supple-
ment and in fortified bread and breakfast cereal consumed in the
context of normal diet was equally bioavailable (Cuskelly et al.,
1996). Pfeiffer and colleagues (1997a) evaluated the bioavailability
of folate from cereal-grain foods fortified experimentally with C13-
labeled folic acid. In a series of single-dose trials with human sub-
jects, there was a slight but insignificant difference between the
control (water with folic acid) and any of the tested foods (white
and whole-wheat bread, pasta, and rice). This finding indicates high
bioavailability of the folate in the form of added folic acid.
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Overall, the very different studies of Cuskelly et al. (1996) and
Pfeiffer et al. (1997a) complement each other and strongly indicate
that folate added to cereal-grain foods is highly available and effica-
cious. These two studies contradict previous reports of low (30 to 60
percent) bioavailability of folate in experimentally fortified cereal-
grain foods in South Africa (summarized by Colman [1982]). In the
South African studies of folate-deficient pregnant women, the re-
sponse criterion used to estimate bioavailability was either 2-hour
changes in serum folate or changes in erythrocyte folate over time.
The quantity of folate consumed in the fortified foods was not di-
rectly measured in these studies. If the amount was overestimated,
that would explain the lower reported bioavailability (33 to 60 per-
cent) compared with the recent estimates (85 to 100 percent) by
Pfeiffer et al. (1997a) and Cuskelly et al. (1996). The experimental
fortification of these South African foods in the 1970s may have
little relevance to the current fortification process in the United
States and Canada.

The value used in this report—85 percent bioavailability of folic
acid consumed with a meal—is probably an underestimate, the ef-
fect of which may be an underestimation of the folate requirement.

Bioavailability of Food Folate

Perhaps the best data on which to base an estimate of the bioavail-
ability of food folate are provided by Sauberlich and coworkers
(1987). On the basis of changes in blood folate values, the authors
concluded that the bioavailability of food folate was no more than
50 percent that of folic acid. Although this study was not designed
as a quantitative study of food folate bioavailability, the results pro-
vide strong evidence in that regard. Similarly, the data of Cuskelly
and colleagues (1996) suggest that food folate is less bioavailable
than the synthetic form, as evidenced by a smaller increase in eryth-
rocyte folate in the group that received an increased level of folate
from food rather than from the synthetic form. The percentage
bioavailability of folate could not be determined from this study
because food consumption was not controlled.

A stable isotope investigation of the relative bioavailability of
monoglutamyl and polyglutamyl folates consumed in water (con-
trol) or added to lima beans or tomatoes found that the relative
bioavailability of deuterated polyglutamyl folates was equivalent to
that of the monoglutamyl tracer (Wei et al., 1996). However, the
bioavailability of polyglutamyl folate added to orange juice was ap-
proximately 33 percent lower (p < 0.05) than that of the mono-
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glutamyl folate tracer. The authors concluded that naturally occur-
ring polyglutamyl folates in orange juice are approximately 67 per-
cent available—slightly more available than the food folate bioavail-
ability estimate of Sauberlich. Related issues have been discussed in
several reviews on this subject (Gregory, 1989, 1995, 1997).

Bioavailability Estimates and Assumptions

Many controlled studies on folate requirements have used a de-
fined diet (food folate) supplemented with folic acid. Because folic
acid taken with food is 85 percent bioavailable but food folate is
only about 50 percent bioavailable, folic acid taken with food is 85/
50 (i.e., 1.7) times more available. Thus, if a mixture of folic acid
plus food folate has been fed, dietary folate equivalents (DFEs) are
calculated as follows to determine the Estimated Average Require-
ment (EAR):

µg of DFEs provided = µg of food folate + (1.7 × µg of folic acid)

Expressed differently, to be comparable with food folate, only half
as much folic acid is needed if taken on an empty stomach, or

1 µg of DFEs = 1 µg of food folate = 0.5 µg of folic acid taken on
an empty stomach = 0.6 µg of folic acid with meals.

When food folate was the sole source of folate in studies used to
determine requirements, no corrections were applied to convert to
DFEs. Adjustments made for DFEs are indicated, if applicable,
where folic acid was a source of folate. Adjustments cannot be made
for epidemiological studies if data are lacking on the folate sources.
If future research indicates that food folate is more than 50 percent
bioavailable, this could lower the estimated requirements that ap-
pear later in the chapter.

Nutrient-Nutrient Interactions

No reports were found that demonstrate that the intake of other
nutrients increases or decreases the requirement for folate. Howev-
er, coexisting iron or vitamin B12 deficiency may interfere with the
diagnosis of folate deficiency. In contrast to folate deficiency, iron
deficiency leads to a decrease in mean cell volume. In the com-
bined deficiency, interpretation of hematological changes may be
unclear (Herbert, 1962a). A vitamin B12 deficiency results in the
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same hematological changes that occur with folate deficiency be-
cause the vitamin B12 deficiency results in a secondary folate defi-
ciency (Selhub and Rosenberg, 1996).

Interactions with Other Food Components

Fiber

Experimental data do not support the hypothesis that dietary fiber
per se reduces folate bioavailability (Bailey, 1988; Gregory, 1989).
Human studies (Russell et al., 1976) confirmed the negative find-
ings of both rat and chick bioassays regarding the identification of
an inhibitory action of various dietary fiber sources. Certain forms
of fiber (e.g., wheat bran) may decrease the bioavailability of cer-
tain forms of folate under some conditions (Bailey et al., 1988;
Keagy et al., 1988), but many forms of fiber appear to have no
adverse effects (Gregory, 1997).

Experimental evidence in rats indicates that synthesis of folate by
intestinal bacteria influences folate status (Keagy and Oace, 1989;
Krause et al., 1996). Rong and colleagues (1991) reported that bac-
terially synthesized folate in the rat large intestine is incorporated
into host tissue polyglutamates. The applicability of these data to
humans is unknown. Suggestive evidence of a positive association
between dietary fiber intake and folate status in humans was reported
by Houghton and coworkers (1997). Zimmerman (1990) provided
evidence that the monoglutamate form can be transported into the
mucosa of the human colon by facilitated diffusion, allowing for the
possibility of subsequent absorption of folate synthesized in the large
intestine.

Alcohol

Data from surveys of chronic alcoholics suggest that inadequate
intake is a major cause of the folate deficiency that has often been
observed in chronic alcohol users (Eichner and Hillman, 1971;
Herbert et al., 1963). Ethanol intake may aggravate folate deficiency
by impairing intestinal folate absorption and hepatobiliary metabo-
lism (Halsted et al., 1967, 1971, 1973) and by increasing renal folate
excretion (McMartin et al., 1986; Russell et al., 1983).

Cigarette Smoking

Although blood folate concentrations have been reported to be
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lower in smokers than in nonsmokers (Nakazawa et al., 1983; Ortega
et al., 1994; Piyathilake et al., 1994; Senti and Pilch, 1985; Subar et
al., 1990; Witter et al., 1982), data suggest that low intake (Subar et al.,
1990) rather than an increased requirement may account for the
poorer folate status of smokers.

Folate-Drug Interactions

The effects of drug use on folate status reviewed in this section
are limited to effects seen in drugs used in chronic drug therapy of
nonneoplastic diseases that affect a large percentage of the popula-
tion and to oral contraceptive drugs. No information is available on
the effects of these drugs on homocysteine values.

Nonsteroidal Anti-inflammatory Drugs

When taken in very large therapeutic doses (e.g., 3,900 mg/day),
nonsteroidal anti-inflammatory drugs, including aspirin, ibuprofen,
and acetaminophen, may exert antifolate activity (Baggott et al.,
1992; Eichner et al., 1979; Lawrence et al., 1984; Willard et al.,
1992). However, routine use of low doses of these drugs has not
been reported to impair folate status.

Anticonvulsants

Numerous studies have cited evidence of impaired folate status
associated with chronic use of the anticonvulsants diphenylhydan-
toin (phenytoin and Dilantin®) and phenobarbital (Collins et al.,
1988; Klipstein, 1964; Malpas et al., 1966; Reynolds et al., 1966).
Diphenylhydantoin is known to inhibit the intestinal absorption of
folate (Elsborg, 1974; Young and Ghadirian, 1989). Few studies,
however, have controlled for potential differences in dietary folate
intake between groups of anticonvulsant users and nonusers
(Collins et al., 1988). Thus, definitive conclusions cannot be drawn
relative to adverse effects of these drugs on folate status.

Methotrexate

Methotrexate is a folate antagonist that has been used frequently
and successfully in the treatment of nonneoplastic diseases such as
rheumatoid arthritis, psoriasis, asthma, primary biliary cirrhosis, and
inflammatory bowel disease (Morgan and Baggott, 1995). Metho-
trexate has been especially effective in the treatment of rheumatoid
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arthritis (Felson et al., 1990), with efficacy established in numerous
trials (Morgan et al., 1994). Patients with rheumatoid arthritis are
frequently reported to be folate deficient, and folate stores are de-
creased in patients with rheumatoid arthritis who take methotrexate
(Morgan et al., 1987, 1994; Omer and Mowat, 1968). Some of the
side effects of methotrexate administration, such as gastrointestinal
intolerance, mimic severe folate deficiency (Jackson, 1984). When
patients are also given high-folate diets or supplemental folate, there
is a significant reduction in toxic side effects with no reduction in
drug efficacy. It has been recommended that patients undergoing
chronic methotrexate therapy for rheumatoid arthritis increase
folate consumption (Morgan et al., 1994) or consider folate supple-
ments (1 mg/day) (Morgan et al., 1997).

Other Drugs with Antifolate Activity

The following diseases have been treated with drugs having anti-
folate activity: malaria with pyrimethamine, bacterial infections with
trimethoprim, hypertension with triamterene, Pneumocystis carinii
infections with trimetrexate (Morgan and Baggott, 1995), and
chronic ulcerative colitis with sulfasalazine (Mason, 1995).

Oral Contraceptives

A number of early studies of oral contraceptive agents containing
high levels of estrogens suggested an adverse effect on folate status
(Grace et al., 1982; Shojania et al., 1968, 1971; Smith et al., 1975).
However, oral contraceptive use has not been reported to influence
folate status in large-scale population surveys (LSRO/FASEB, 1984)
or in metabolic studies in which dietary intake was controlled
(Rhode et al., 1983).

Genetic Variations

Folic acid and its derivatives are involved in numerous biochemi-
cal reactions that are catalyzed by many different enzymes. As ex-
pected, folate metabolism is under genetic control, and genetic het-
erogeneity exists. To estimate the relative contribution of genetic
and environmental factors in determining folate status, erythrocyte
folate was measured in monozygotic and dizygotic twins (Mitchell
et al., 1997); however, dietary intake was not assessed. The data
were best described by a model in which 46 percent of the variance
is attributable to additive genetic effects, 16 percent to age and sex,
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and 38 percent to random environmental effects including errors
in measurement. A similar study was done for plasma homocysteine,
and the estimated heritability was between 72 percent and 84 per-
cent (Reed et al., 1991). In studies of twins, however, the influence
of genetic factors may be overestimated, especially if environmental
similarities are greater in monozygotic than in dizygotic twins.

A significant genetic heterogeneity in folate metabolism is related
to the activity of 5,10-methylenetetrahydrofolate reductase (MTHFR).
Severe MTHFR deficiency is rare; a reduced activity associated with
a thermolabile form of the enzyme is much more common. A C667T
polymorphism in the gene coding MTHFR has been linked with
thermolability and reduced enzymatic activity (Frosst et al., 1995).
Estimates of the frequency of homozygosity for the MTHFR T677

allele in white populations vary from 2 to 16 percent (van der Put et
al., 1995). Individuals homozygous for the MTHFR T677 allele have
significantly elevated plasma homocysteine (Frosst et al., 1995) and
a tendency to have low plasma and erythrocyte folate concentra-
tions (Ma et al., 1996; Molloy et al., 1997; Schmitz et al., 1996). In
one study (Jacques et al., 1996) elevated fasting homocysteine was
observed in individuals homozygous for the MTHFR T677 allele who
had plasma folate values below 15.4 nmol/L (7.07 ng/mL) but not
in those with plasma folate values above this level. Because 5-meth-
yl-tetrahydrofolate is a required substrate in the remethylation of
homocysteine to methionine, reduced enzyme activity of the T677

polymorphism increases dependence on an adequate folate supply.
More detailed coverage of this genetic variation is provided in
Appendix L.

FINDINGS BY LIFE STAGE AND GENDER GROUP

Infants Ages 0 through 12 Months

An Adequate Intake (AI) is used as the goal for folate intake by
infants.

Method Used to Set the Adequate Intake

The AI reflects the observed mean folate intake of infants con-
suming exclusively human milk. Hematological and growth rate
changes that have been measured in controlled studies of infants
are not considered to be specifically attributable to the adequacy of
dietary folate intake.

Serum and erythrocyte folate values of newborn infants are signif-
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icantly higher than maternal blood concentrations, possibly reflect-
ing an active transport process in utero (Ek, 1980; Landon and
Oxley, 1971). These high blood folate values decline during the
first 6 months in concert with the decline in the rate of cell division
(Landon and Oxley, 1971).

The AI is the quantity of dietary folate that maintains blood folate
concentrations comparable with those of the infant exclusively fed
human milk. When human milk is consumed exclusively, the in-
fant’s serum or plasma folate concentration has been reported to
range from 35 to over 60 nmol/L (16 to 30 ng/mL) whereas eryth-
rocyte values averaged from 650 to over 930 nmol/L (300 to 430
ng/mL) (Ek and Magnus, 1979; Smith et al., 1985; Tamura et al.,
1980). These values reported in infants are much higher than adult
values (Smith et al., 1985), which makes the use of adult norms
inappropriate for infants. Additionally there are no reports of full-
term infants who are exclusively and freely fed human milk mani-
festing any signs of folate deficiency.

The folate concentration of human milk remains relatively con-
stant regardless of maternal dietary folate intake unless there is a
severe maternal deficiency (Metz, 1970). The reported concentra-
tion of folate in human milk varies with the methods used, and
these have changed substantially over the past decade. However,
recent data from the laboratories of Picciano and colleagues (Lim
et al., 1997) are consistent with the data of Brown and colleagues
(1986) and O’Connor and colleagues (1991), all of whom reported
average human milk folate concentrations to be 85 µg/L. The
human milk folate concentration used to estimate AIs for infants
thus is 85 µg/L.

Ages 0 through 6 Months. The AI for infants 0 through 6 months of
age, derived by using the average volume of milk of 0.78 L/day (see
Chapter 2) for this age group and the average folate concentration
in human milk after 1 month of lactation (85 µg/L), is 66 µg/day,
which is rounded to 65 µg. This equals approximately 9.4 µg/kg of
reference body weight. Because this is food folate, the amount is
the same in dietary folate equivalents (DFEs).

Ages 7 through 12 Months. If the reference body weight ratio
method described in Chapter 2 to extrapolate from the AI for folate
for infants ages 0 through 6 months is used, the AI for folate for the
older infants would be 80 µg/day after rounding. The second
method (see Chapter 2), extrapolating from the Estimated Average
Requirement (EAR) for adults and adjusting for the expected vari-
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ance to estimate a recommended intake, gives a comparable AI of
approximately 80 µg/day.

The five studies summarized in Table 8-1 illustrate the data from
controlled studies that measured folate intake and assessed the in-
fants’ status. They include studies in which infants were fed either
human milk or formula. Asfour and colleagues (1977) concluded
that although the observed serum and erythrocyte concentrations
in three groups of infants fed formula were borderline, the folate
values were sufficient to maintain growth, hematopoiesis, and clini-
cal well-being. However, the criteria of growth, hematopoiesis, and
clinical well-being are too nonspecific for evaluating folate status.
Therefore, these data suggest that none of the folate levels (3.6, 4.3,
or 5.0 µg/kg) maintained folate adequacy in all the infants tested
based on serum or erythrocyte folate concentrations. Ek and Mag-
nus (1982) provided data that infant formula containing folate at
78 µg/L supported blood folate concentrations comparable with
those of infants fed human milk. Smith and coworkers (1983) re-
ported that serum folate values of infants fed human milk were
approximately 45 nmol/L (20 ng/mL) at age 6 weeks and 65 nmol/
L (30 ng/mL) at age 12 weeks, whereas erythrocyte folate concen-
trations were approximately 1,000 nmol/L (460 ng/mL) at age 6
weeks and 940 nmol/L (430 ng/mL) at age 12 weeks. Smith and
coworkers (1985) reported that throughout the first 6 months, se-
rum folate concentrations were significantly higher in infants fed
formula than in those fed human milk; erythrocyte folate concen-
trations of approximately 2,200 nmol/L (1,000 ng/mL) at age 4
months clearly show that 158 µg/L of formula is in excess of what is
needed. Salmenpera and colleagues (1986) reported that infants
fed exclusively human milk all maintained adequate plasma folate
concentrations with values twofold to more than threefold higher
than maternal concentrations throughout the study.

Folate AI Summary, Ages 0 through 12 Months

Data from the research studies included in Table 8-1 supports the
AI of 65 µg/day of folate for young infants and of 80 µg/day for
older infants.

AI for Infants
0–6 months 65 µg/day of dietary folate equivalents ≈≈≈≈≈9.4 µg/kg
7–12 months 80 µg/day of dietary folate equivalents ≈≈≈≈≈8.8 µg/kg
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The extent to which the AIs for folate could be lowered and still
meet the physiological needs for infants fed human milk is un-
known.

Special Considerations

No data were found to support the need to adjust dietary intake
of folate on the basis of the type of infant formula compared with
human milk to achieve the same folate status other than that inher-
ent in DFE equivalency.

Children Ages 1 through 8 Years

Method Used to Estimate the Average Requirement

No data were found on which to base an EAR for children. In the
absence of additional information, EARs and RDAs for these ages
have been estimated by using the method described in Chapter 2,
which extrapolates from adult values. The resulting EARs are 120
and 160 µg/day of DFEs for children ages 1 through 3 and 4
through 8 years, respectively.

Folate EAR and RDA Summary, Ages 1 through 8 Years

EAR for Children
1–3 years 120 µg/day of dietary folate equivalents
4–8 years 160 µg/day of dietary folate equivalents

The RDA for folate is set by assuming a coefficient of variation
(CV) of 10 percent (see Chapter 1) because information is not avail-
able on the standard deviation of the requirement for folate; the
RDA is defined as equal to the EAR plus twice the CV to cover the
needs of 97 to 98 percent of the individuals in the group (there-
fore, for folate the RDA is 120 percent of the EAR).

RDA for Children
1–3 years 150 µg/day of dietary folate equivalents
4–8 years 200 µg/day of dietary folate equivalents
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TABLE 8-1 Folate Intake and Status of Infants by Study

Number of
Age of Infants and Folate Dietary Folate

Reference Infants Feeding Type Intake Equivalents

Asfour et al., 2–11 mo 4 formula fed 3.6 µg/kg of 6.1 DFEs/kg
1977 body weighta

4 formula fed 4.3 µg/kga 7.3 DFEs/kg

5 formula fed 5.0 µg/kga 8.5 DFEs/kg

Ek and Magnus, 0–12 mo 33 formula fed 39 µg/Lc 66 DFEs/L
  1982 31 formula fed 78 µg/Lc 133 DFEs/L

Smith et al., 6 wk 14 breastfed 45 µg/L 45 DFEs/L
1983 12 wk 14 breastfed 50 µg/Ld 50 DFEs/L

Smith et al., 1st 6 mo 14 breastfed 85 µg/L 85 DFEs/L
1985

3 and 6 wk 31 formula fed 162 µg/L 275 DFEs/L

3 and 6 wk 22 formula fed 158 µg/L 269 DFEs/L
(plus iron)

12 mo 14 breastfed 85 µg/L 85 DFEs/L
12 mo 31 formula fed 162 µg/L 275 DFEs/L
12 mo 22 formula fed 158 µg/L 269 DFEs/L

(plus iron)

Salmenpera  0–12 mo 200f exclusively NAg –
  et al., 1986 breastfed

a Mean values.
b Mean values at age 4 mo.
c Volume consumed not reported.
d Analyzed using older methods that may have underestimated the folate content.
e Values were estimated from figures.
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f The number of infants in the study decreased from an initial 200 to 7 infants at the
end.

g NA = not available.
h Lowest individual concentration reported for the study period.

Serum Folate Erythrocyte Folate
nmol/L (ng/mL) nmol/L (ng/mL) Comments

8.5 ± 3.5 (3.9 ± 1.6)b 353 ± 148 (162 ± 68)b 2 of 4 in deficient range.

11.1 ± 3.7 (5.1 ± 1.7)b 538 ± 170 (247 ± 78)b 1 of 4 had marginal
erythrocyte folate.

10.7 ± 4.8 (4.9 ± 2.2)b 568 ± 244 (261 ± 112)b 2 of 5 had marginal
erythrocyte and serum
folate.

< 7 (3) (at 2 and 3 mo) < 220 (100) (at 2 and 3 mo) Values at other ages
> 41 (19) (at 2 and 3 mo) > 435 (200) (at 2 and 3 mo) were higher.

45 (20)e 1,000 (460)e Within normal range.
65 (30)e 940 (430)e Within normal range.

54–65 (25–30)e 1,090 down to 915 Within normal range.
(500 down to 420)e

> 130 (60)e 2,200 (1,000)e Above usual normal
range.

> 130 (60)e 2,200 (1,000)e Above usual normal
range.

> 35 (15)e 870 (400)e Within normal range.
> 22 (10)e 760 (350)e Within normal range.
> 22 (10)e 760 (350)e Within normal range.

≥ 11 (5)h NA All infants had adequate
plasma folate
concentrations after
2 mo of age (> 7 nmol/
L [3 µg/L]).
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Children and Adolescents Ages 9 through 18 Years

Method Used to Estimate the Average Requirement

As for younger children, EARs and RDAs for these ages have been
extrapolated from adult values by using the method described in
Chapter 2. Although body size varies because of gender in these age
groups, no conclusive data indicating a difference in requirements
for adults were determined, thus no difference based on gender is
proposed for these age groups.

Folate EAR and RDA Summary, Ages 9 through 18 Years

EAR for Boys
9–13 years 250 µg/day of dietary folate equivalents

14–18 years 330 µg/day of dietary folate equivalents

EAR for Girls
9–13 years 250 µg/day of dietary folate equivalents

14–18 years 330 µg/day of dietary folate equivalents

The RDA for folate is set by assuming a coefficient of variation
(CV) of 10 percent (see Chapter 1) because information is not avail-
able on the standard deviation of the requirement for folate; the
RDA is defined as equal to the EAR plus twice the CV to cover the
needs of 97 to 98 percent of the individuals in the group (there-
fore, for folate the RDA is 120 percent of the EAR).

RDA for Boys
9–13 years 300 µg/day of dietary folate equivalents

14–18 years 400 µg/day of dietary folate equivalents

RDA for Girls
9–13 years 300 µg/day of dietary folate equivalents

14–18 years 400 µg/day of dietary folate equivalents

Adults Ages 19 through 50 Years

Evidence Considered in Estimating the Average Requirement

No single indicator was judged a sufficient basis for deriving an
EAR for adults. That is, it was not deemed appropriate to base the
EAR on an examination limited to studies that provided data only
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on erythrocyte folate, plasma homocysteine, or any other single lab-
oratory value. The main approach to determining the EAR for
adults uses a combination of erythrocyte folate, plasma homocys-
teine, and plasma or serum folate. The focus used was on the ade-
quacy of specific quantities of folate consumed under controlled
metabolic conditions to maintain normal blood concentrations of
these indicators. Cutoff points for the normal range were based on
the occurrence of documented biochemical abnormalities.

The types of studies considered were primarily those in which
maintenance or restoration of folate status was evaluated in con-
trolled metabolic conditions. In these studies folate was provided
either as food or as food plus folic acid. Intakes related to these
status indicators were computed by calculating DFEs, which gives
higher intakes when folic acid is used as part of the protocol than
what the authors describe when reporting their work (see “Bioavail-
ability”).

In addition to data on maintenance or restoration of folate status,
several other types of experimental data were critiqued and com-
pared. These included kinetic estimates of body pool size and daily
turnover (Gailani et al., 1970; Herbert, 1962b, 1968; Krumdieck et
al., 1978; Russell et al., 1983; Stites et al., 1997; Von der Porten et
al., 1992), quantitation of urinary folate catabolites as an index of
folate turnover (McPartlin et al., 1993), and repletion of severe clin-
ical folate deficiency (Hansen and Weinfeld 1962; Herbert, 1962a,
1968; Marshall and Jandl, 1960; Zalusky and Herbert, 1961). Analy-
ses of relationships of dietary folate intake and biochemical indices
of folate status from the Third National Health and Nutrition Ex-
amination Survey are in progress and were thus unavailable for use
in this report.

Metabolic Studies

Two principal studies of healthy human subjects were critiqued
and compared; the amounts of folate ranged from 100 to 489 µg/
day of DFEs (O’Keefe et al., 1995; Sauberlich et al., 1987). Two
additional studies (Jacob et al., 1994; Milne et al., 1983) were also
considered but were given less weight because of the study design.
These four studies are summarized in Table 8-2.

100 to 150 µg/day of DFEs. Sauberlich and colleagues (1987) con-
ducted a controlled depletion-repletion metabolic study (28 days of
depletion followed by 64 days of graded repletion phases, each
phase lasting 21 days) with nonpregnant women. Plasma and eryth-
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TABLE 8-2 Key Controlled Metabolic Studies Providing
Evidence Used to Derive the Estimated Average Requirement
(EAR)a

Type of Baseline
Controlled Number Folate
Metabolic and Age of Intake

Reference Study Subjects (µg) Duration of Study

Milne et al., Maintenance 40 men, NAc 2–8 mo
1983 19–54 y

Sauberlich Depletion- 3 women, 400d 28 d depletion
et al., 1987 repletion 21–40 y 21 d repletion

2 women 400d 28 d depletion
21 d repletion

Jacob et al., Depletion- 10 men, 440e 30 d depletion
1994 repletion 33–46 y 15 d repletion

O’Keefe et al., Maintenance 5 women, NA 70 d
1995 21–27 y

6 women, NA 70 d
21–27 y

rocyte folate concentrations continued to fall in response to reple-
tion with 100 µg of food folate (equal to 100 µg DFEs) for 21 days.
This continued depletion led to the conclusion that 100 µg of di-
etary folate is below the average requirement.

Jacob and coworkers (1994) conducted a controlled depletion-
repletion metabolic study (30 days depletion at 25 µg/day of folate

a The EAR is the intake that meets the estimated nutrient needs of 50% of the
individuals in a group.

b To compute dietary folate equivalents, use the formula µg food folate + (1.7 × µg
folic acid).
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[25 µg DFEs] followed by 15 days repletion at 151 µg/day of DFEs)
with adult males. Although 150 µg of DFEs was insufficient to de-
crease the elevated plasma homocysteine concentration below 16
µmol in 4 of the 10 subjects or to return plasma folate to predeple-
tion concentrations, the repletion period was too short to allow
appropriate evaluation of the primary response variables. Thus, no

c NA = not applicable.
d Analyzed value.
e Calculated value for 9-d baseline diet.

Folate Intake During
Repletion or Maintenance

Dietary
Food Folic Folate
Folate Acid Equivalentsb

(µg) (µg) (µg) Results

200 0 200 Serum and erythrocyte folate decreased
significantly over time, but not below
normal cutoff values.

0 0 0 Plasma and erythrocyte folate decreased
100 0 100 throughout.

0 0 0 Plasma folate stabilized. Erythrocyte
200 0 200 folate decreased throughout.

25 0 25 Plasma homocysteine did not normalize.
25 74 151 Plasma folate (and erythrocyte folate)

did not return to predepletion values.

30 170 319 Homocysteine rose above 16 µmol/L in
2 of 5; erythrocyte and serum folate
values were low in 3 of 5 (<362 nmol/L
[166 ng/mL] and <7 nmol/L [3 ng/
mL], respectively).

30 270 489 Erythrocyte folate and plasma
homocysteine were maintained in all.
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conclusion about the adequacy of 150 µg/day of DFEs can be
reached from this study.

Approximately 200 µg/day of DFEs. Sauberlich and colleagues (1987)
evaluated the repletion response of two subjects and reported that
erythrocyte folate continued to fall in response to 200 µg of food
folate (200 µg DFEs) for 21 days. Data are not sufficient for estimat-
ing the erythrocyte folate response to a longer repletion phase.

Milne and coworkers (1983) used serum and erythrocyte folate to
evaluate maintenance of folate status in 40 men consuming 200 µg/
day of food folate (200 µg DFEs) for periods of 2 to 8 months. Both
serum and erythrocyte folate decreased significantly over time re-
gardless of initial status but not below the cutoff values of 7 nmol/L
(3 ng/mL) and 305 nmol/L (140 ng/ml), respectively. This study
was designed primarily for a different purpose, however, and had
several limitations for the estimation of average requirements: the
diet was changed during the study, subjects were included for dif-
ferent periods of time, and some of the subjects resumed their nor-
mal diet (for 10 days to 2 months) during the study. Thus, the
findings from this study were judged equivocal.

Approximately 320 µg/day of DFEs. O’Keefe and colleagues (1995)
conducted a controlled metabolic study in which five women were
fed a diet that provided 319 µg/day of DFEs (30 µg from food sourc-
es and 170 µg from folic acid). Three of the five had erythrocyte
folate concentrations less than 305 nmol/L (140 ng/mL) and se-
rum folate concentrations less than 7 nmol/L (3 ng/mL). Two of
the subjects had elevated homocysteine concentrations (greater
than 16 µmol/L) and a third subject had a homocysteine concen-
tration greater than 14 µmol/L. (These data were obtained directly
from the investigators of the published study.) These findings sug-
gest that approximately half would have had normal erythrocyte
folate and plasma homocysteine concentrations if 320 µg/day of
DFEs had been consumed.

Approximately 500 µg/day of DFEs. O’Keefe and coworkers (1995)
fed subjects 270 µg as folic acid with 30 µg of food folate, corre-
sponding to 489 µg of DFEs. This level of intake maintained normal
plasma homocysteine, erythrocyte folate, and serum folate values
with no significant increase or decrease throughout the 70-day main-
tenance study. Therefore, 489 µg/day of DFEs could be considered
to be above the average requirement.
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Summary. Of the controlled metabolic studies reviewed above,
greatest weight was given to the study by O’Keefe for five reasons:
(1) it was designed as a maintenance study for the purpose of esti-
mating the folate requirement; (2) although it included only five
subjects, this sample size exceeds that in the Sauberlich study, which
was also rigorously controlled; (3) it evaluated the metabolic re-
sponse of homocysteine in addition to erythrocyte and serum folate;
(4) the diet was fed for 70 days in contrast to very short repletion
phases in other metabolic studies (i.e., 15 days [Jacob et al., 1994],
and 21 days [Sauberlich et al., 1987]); and (5) it provided folate
largely in the form of folic acid, thus minimizing the possibility that
folate intake was underestimated. Moreover, considering the evi-
dence that problems with methods have led to underestimates of
the folate content of food, it is likely that the subjects in the Sauber-
lich et al. (1987) and Milne et al. (1983) studies received more
folate than reported.

Other Evidence Considered

Epidemiological data support an Estimated Average Requirement
(EAR) of approximately 320 µg/day of DFEs. A primary example is
the study by Selhub and colleagues (1993). In this study the preva-
lence of a homocysteine value greater than 14 µmol/L was signifi-
cantly greater among individuals in the lowest four deciles of folate
intake (less than 280 µg/day) as determined from a food frequency
questionnaire. Reported intakes in this study were obtained prior to
folate fortification and do not include supplements, but they in-
clude synthetic folic acid from ready-to-eat or cooked cereals (which
frequently contained added folate) and thus would be higher if
expressed in DFEs.

The amount of folate utilized daily has been estimated by measur-
ing the catabolic products excreted in the urine and then expressing
the sum as folate equivalents by multiplying the value by two (because
the molecular weight of folate is approximately two times that of
catabolites) (McPartlin et al., 1993). This approach may under-
estimate folate requirements because folate coenzymes may be recy-
cled and not catabolized when utilized and because measurement
of urinary catabolites does not account for endogenous folate lost
from the body as a mixture of catabolites and intact folates in the
feces (Caudill et al., 1998).

Results of other studies were considered (Table 8-3). Several
(Gailani et al., 1970; Herbert, 1962a, b; Zalusky and Herbert, 1961)
were found less useful than the previously cited metabolic studies
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TABLE 8-3 Additional Studies of the Folate Status of Adults

Type of Age of
Type of Dietary Subjects Number of

Reference Study Assessment (y) Subjects

Zalusky and Depletion- Folate-free 60 1 male
Herbert, 1961 repletion synthetic diet

Herbert, 1962a Depletion Folate-free diet 35 1 male

Herbert, 1962b Depletion- Defined folate- NAc 1 female
repletion deficient diet

1 female

1 female

Krumdieck Kinetic Not reported 36 1 female
et al., 1978

Von der Porten Kinetic Self-selected diets 22–31 6 males
et al., 1992

Stites et al., 1997 Kinetic Self-selected, 20–30 4 males
folate-adequate
diets

a IM = intramuscular.
b DFEs = dietary folate equivalents. To compute DFEs, use the formula µg folic acid

× 2 for IM injections or µg food folate + (1.7 × µg folic acid) for a combination of food
folate and folic acid.

c Not available.

for estimating the folate requirement because the diets were defi-
cient in more than one nutrient. Ancillary information is provided
by the studies using stable isotope methods to estimate in vivo folate
pool size and the rate of daily utilization. With use of the estimate of
the total body pool folate of 20 mg as extrapolated from liver folate
measurements (Hoppner and Lampi, 1980; Whitehead, 1973), and
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d p.o. = by mouth.
e Typical intake assessed by diet records.
f Average value.

the assumption of a 1 percent daily turnover rate of folate
(Krumdieck et al., 1978; Stites et al., 1997; Von der Porten et al.,
1992), the daily quantity of folate utilized is calculated to be approxi-
mately 200 µg. When 200 µg/day is corrected for the 50 percent
bioavailability of food folate, the DFE is 400 µg/day.

Dietary
Folate Other
Intake Folate
(µg/d) Source Comments

None 50 µg of folic acid IMa Subject was folate deficient and scorbutic at
(100 µg of DFEsb) the beginning of the study; folate injection

produced a reticulocyte response.

5 None Signs and symptoms of deficiency coincided
with a fall in the serum folate level to < 7
nmol/L (3 ng/mL) and a decrease in
erythrocyte folate concentration to < 305
nmol/L (140 ng/mL). Diet was also
deficient in potassium.

5 25 µg of folic acid p.o.d Serum folate activity fell below normal levels
(48 µg of DFEs) in the subject supplemented with 25 µg/d.

5 50 µg of folic acid p.o. Test period was only 42 d. Subjects were on
(90 µg of DFEs) a low-calorie diet.

5 100 µg of folic acid p.o.
(170 µg of DFEs)

None 320 µg of labeled Turnover rate estimated to be ≈1% of total
folic acid body folate pool per day. Subject was

Hodgkin’s disease patient in remission.

200e 1.6 mg/d of labeled Turnover rate was 4.5% of the total body
folic acid folate pool per day.

443f 100 µg of labeled Turnover rate was estimated to be ≈1%.
folic acid + 100 µg of
unlabeled folic acid
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Folate EAR and RDA Summary, Ages 19 through 50 Years

With greatest weight given to the metabolic maintenance study by
O’Keefe along with data considered from the other studies reviewed
above, it was concluded that the data support an EAR of approxi-
mately 320 µg/day of DFEs for the age group 19 through 50 years. A
special recommendation is made for women capable of becoming
pregnant (see “Recommendations for Neural Tube Defects Risk
Reduction”).

EAR for Men
19–30 years 320 µg/day of dietary folate equivalents
31–50 years 320 µg/day of dietary folate equivalents

EAR for Women
19–30 years 320 µg/day of dietary folate equivalents
31–50 years 320 µg/day of dietary folate equivalents

The RDA for folate is set by assuming a coefficient of variation
(CV) of 10 percent (see Chapter 1) because information is not avail-
able on the standard deviation of the requirement for folate; the
RDA is defined as equal to the EAR plus twice the CV to cover the
needs of 97 to 98 percent of the individuals in the group (there-
fore, for folate the RDA is 120 percent of the EAR).

RDA for Men
19–30 years 400 µg/day of dietary folate equivalents
31–50 years 400 µg/day of dietary folate equivalents

RDA for Women
19–30 years 400 µg/day of dietary folate equivalents
31–50 years 400 µg/day of dietary folate equivalents

Adults Ages 51 Years and Older

The aging process has not been associated with a reduction in the
ability to utilize folate (Bailey et al., 1984). Folate status as mea-
sured by serum folate or erythrocyte folate has not been shown to
decline as a function of age (Rosenberg, 1992; Selhub et al., 1993).
In contrast, numerous reports indicate that homocysteine concen-
tration increases as a function of age (Selhub et al., 1993). It has
been postulated (Selhub et al., 1993) that this increase may result
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from an age-related decline in cystathionine β-synthase and possibly
other enzymes involved in homocysteine metabolism (Gartler et al.,
1981).

Evidence Considered in Estimating the Average Requirement

The EAR for men and women ages 51 years and older is based on
evaluation of three types of studies: metabolic (Jacob et al., 1998),
observational folate status assessment of population subgroups (Bates
et al., 1980; Garry et al., 1982, 1984; Jägerstad, 1977; Jägerstad and
Westesson, 1979; Koehler et al., 1996; Ortega et al., 1993; Rosen-
berg, 1992; Sahyoun et al., 1988), and epidemiological (Selhub et
al., 1993).

Jacob and colleagues (1998) conducted a depletion-repletion met-
abolic study in eight post-menopausal women aged 49 to 63 years. A
folate depletion diet (56 µg/day [56 µg/day of DFEs]) was fed for
35 days, followed by three repletion periods in which graded
amounts of folate were added to the diet. After being converted to
DFEs, the three repletion amounts were 150, 450, and 850 µg/day
for 28, 13, and 8 days, respectively. Plasma homocysteine concentra-
tions remained elevated (greater than 12 µmol/L) in five of the
eight women in response to either 150 or 450 µg/day of DFEs.
Plasma folate remained low (less than 7 nmol/L [3 ng/mL]) in five
of the eight subjects in response to 150 µg/day of DFEs but re-
turned to normal in all subjects in response to 450 µg/day. The
short repletion periods limit conclusions regarding the adequacy of
these intake levels. From the plasma folate changes, which do re-
spond quickly, it appears that 450 µg/day was adequate for all sub-
jects and 150 µg/day was inadequate for a large percentage of the
group. Extrapolating from these data, approximately 300 µg/day
would result in normal folate status in approximately 50 percent of
the group and would therefore be consistent with an EAR of 320
µg/day.

The observational folate status assessment studies that provide
data on both folate intake and biochemical measures of folate status
(Table 8-4) provide evidence that tends to support an EAR for older
adults that is equivalent to that for younger adults: 320 µg/day of
DFEs. Data from Selhub and colleagues (1993) (Figure 8-1) show
that the mean homocysteine concentration begins to stabilize when
folate intakes are approximately 300 µg/day. Figure 8-2 presents
data showing the relationship of plasma homocysteine to plasma
folate concentrations (Lewis et al., 1992).
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TABLE 8-4 Observational Status Assessment Studies
Considered in Setting the Estimated Average Requirement
(EAR) for Folate in the Elderly

Number and Folate Intake
Reference Age of Subjects Assessment

Studies suggesting an EAR greater than 150–200 µg of dietary folate equivalentsa

Jägerstad, 1977; 37 Swedish men and Microbiological analysis
Jägerstad and women, 67 y
Westesson, 1979

Bates et al., 1980 21 elderly men and women Dietary record

Ortega et al., 1993 72 men and women, 5-d food records
65–89 y

Studies suggesting an EAR of 250–300 µg of dietary folate equivalents

Selhub et al., 1993; 1,000 men and women, Food frequency
Tucker et al., 1996 67–80 y questionnaire

Koehler et al., 1996 44 men and women, Food frequency
68–96 y (nonsupplement questionnaire
users)

Other studies

Garry et al., 1982, 304 Caucasian men and 3-d diet records,
1984 women, ≥ 60 y prospective

Sahyoun et al., 1988; 686 free-living adults, 3-d food records
Sahyoun, 1992; ≥ 60 y
Rosenberg, 1992

NOTE: In these studies, it is impossible to calculate dietary folate equivalents because
intake of foods fortified with folic acid was not specified. Moreover, on the basis of data
from Tamura et al. (1997) and Martin et al. (1990), it is believed that folate intakes are
underestimated.
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a Dietary folate equivalents: 1µg food folate = 0.6 µg of folic acid from fortified food
or as a supplement consumed with food = 0.5 µg of a supplement taken on an empty
stomach.

b hcy = total homocysteine.

Results

Median intake of folate was 150 µg/d for males and 125 µg/d for females.
Erythrocyte folate values ranged from approximately 175 to 350 nmol/L (80 to
160 ng/mL)

Mean intake was 135 µg of folate/d; 40% had an erythrocyte folate value < 305
nmol/L (140 ng/mL).

Intake averaged 214 µg/d of folate. Mean erythrocyte folate was 250 nmol/L
(115 ng/mL); 85% of the values were < 327 nmol/L (150 ng/mL).

Plasma hcyb plateaued in normal range (< 14 µmol/L) at folate intakes of
350–400 µg/d and serum folate of 15 nmol/L (7 ng/mL). See Figure 8-1.

Mean erythrocyte folate was ≈1,035 nmol/L (475 ng/mL) and plasma hcy was
11.2 µmol/L for those not taking supplements (average intake ≈300 µg/d).

Values for supplement users were not distinguished from those for nonusers.
For nonusers, 75% had folate intakes < 250 µg/d. Overall, < 3% had
erythrocyte folate of < 305 nmol/L (140 ng/mL).

Median folate intakes of nonsupplement users were 254 µg for men and 216 µg
for women. Median plasma folate was ≈19 nmol/L (9 ng/mL) for both.
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FIGURE 8-1 Mean plasma homocysteine (Hcy) concentrations (and 95% confi-
dence intervals) by deciles of intake of folate. Means are adjusted for age, gender,
and other vitamin intakes. Asterisk indicates significantly different from mean in
the highest decile (p < 0.01). Reprinted with permission, from Selhub et al. (1993).
Copyright 1993 by the American Medical Association.

FIGURE 8-2 Relationship of plasma homocysteine concentrations to plasma folate
concentrations in 209 adult males. A indicates lower limit of normal plasma folate
as used by the Second National Health and Nutrition Examination Survey (6.8
nmol/L). B indicates lower limit of normal plasma folate as used by the World
Health Organization (13.6 nmol/L). Homocysteine concentrations above the dot-
ted line (12 µmol/L) are considered elevated. Reprinted with permission, from
Lewis et al. (1992). Copyright 1992 by the New York Academy of Sciences.



Copyright © National Academy of Sciences. All rights reserved.

Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline 
http://www.nap.edu/catalog/6015.html

FOLATE 233

Folate EAR and RDA Summary, Ages 51 Years and Older

Data from metabolic folate status assessment and epidemiological
studies support an EAR for adults ages 51 years and older of 320
µg/day of DFEs. The EAR for this age group is expected to be the
same as that for younger age groups because the aging process does
not appear to impair folate absorption or utilization nor do studies
separate those over age 70 from those 51 to 70 years.

EAR for Adults
 51–70 years 320 µg/day of dietary folate equivalents

> 70 years 320 µg/day of dietary folate equivalents

The RDA for folate is set by assuming a coefficient of variation
(CV) of 10 percent (see Chapter 1) because information is not avail-
able on the standard deviation of the requirement for folate; the
RDA is defined as equal to the EAR plus twice the CV to cover the
needs of 97 to 98 percent of the individuals in the group (there-
fore, for folate the RDA is 120 percent of the EAR).

RDA for Adults
 51–70 years 400 µg/day of dietary folate equivalents

> 70 years 400 µg/day of dietary folate equivalents

Pregnancy

Folate requirements increase substantially during pregnancy be-
cause of the marked acceleration in single-carbon transfer reactions,
including those required for nucleotide synthesis and thus cell divi-
sion. During pregnancy, cells multiply in association with uterine
enlargement, placental development, expansion of maternal eryth-
rocyte number, and fetal growth (Cunningham et al., 1989). Addi-
tionally, folate is actively transferred to the fetus as indicated by
elevated folate concentrations in cord blood relative to that of ma-
ternal blood. When folate intake is inadequate, maternal serum and
erythrocyte folate concentrations decrease and megaloblastic mar-
row changes may occur (Picciano, 1996). If inadequate intake con-
tinues, megaloblastic anemia may develop. This section does not
address the reduction of risk of neural tube defects because the
neural tube is formed before most women know that they are preg-
nant (see “Neural Tube Defects”).
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Evidence Considered in Estimating the Average Requirement

For pregnant women the maintenance of erythrocyte folate, which
reflects tissue stores, was selected as the primary indicator of ade-
quacy. When this indicator was not measured, serum folate was eval-
uated with the recognition that hemodilution contributes to a nor-
mal reduction in serum folate concentration during gestation.
Homocysteine concentrations have not been shown to reflect folate
status during pregnancy, possibly because of hormonal changes,
hemodilution, or other unknown factors associated with pregnancy
(Andersson et al., 1992; Bonnette et al., 1998).

Population-Based Studies. A number of population-based studies
confirm that folic acid consumed in conjunction with diet prevents
folate deficiency in pregnant women as assessed by maintenance of
normal folate concentration in erythrocytes, serum, or both. The
folate has been provided either by supplements (Chanarin et al.,
1968; Dawson, 1966; Hansen and Rybo, 1967; Lowenstein et al.,
1966; Qvist et al., 1986; Willoughby, 1967; Willoughby and Jewel,
1966) or fortified food (Colman et al., 1975) (see Table 8-5).

Willoughby and Jewel (1966, 1968) conducted a series of studies
involving approximately 3,500 pregnant women beginning at 12
weeks of gestation who were assigned to different levels of folate
supplementation (0, 100, 350, or 450 µg/day). Their dietary folate
was estimated to be less than 100 µg/day. A supplementation level
of 100 µg/day in conjunction with the low-folate diet was insuffi-
cient to prevent deficient (less than 7 nmol/L [3 ng/mL]) serum
concentrations in 33 percent of the group (Willoughby and Jewel,
1966) or to prevent megaloblastic anemia in 5 percent of the group
(Willoughby, 1967). In contrast, 300 µg/day of supplemental folate
was sufficient to maintain a mean serum folate concentration that
was comparable with the mean in healthy nonpregnant control sub-
jects (Willoughby and Jewel, 1966) and to prevent megaloblastic
anemia (Willoughby, 1967). These data agree with those of Dawson
(1966), who found that taking 150 µg/day of folate supplements
(beginning at 28 weeks) in addition to diet resulted in low serum
folate concentrations (less than 7 nmol/L [3 ng/mL]) in 30 percent
of the group at delivery. Also confirming these findings, Hansen
and Rybo (1967) reported that 100 µg of folic acid plus diet was not
sufficient to prevent serum folate reduction (defined as less than 4
nmol/L [2 ng/mL]) in 15 percent of the group whereas a folate
supplement of 500 µg/day resulted in a mean serum folate concen-
tration of 13 nmol/L(6 ng/mL) at 36 to 38 weeks of gestation.
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Lowenstein and colleagues (1966) compared serum and erythro-
cyte folate and bone marrow morphology of women taking 500 µg/
day of supplemental folate with those of women taking a placebo.
In the folate-supplemented women, mean serum and erythrocyte
folate levels were approximately 21 and 870 nmol/L (10 and 400
ng/mL), respectively, at 36 and 38 weeks of gestation and post-
partum. Bone marrow aspirates at 38 weeks were essentially normal.
In contrast, a large percentage of the placebo-treated subjects had
serum and erythrocyte folate concentrations that were less than
normal.

Chanarin and colleagues (1968) compared erythrocyte folate con-
centrations in 103 pregnant women supplemented with 100 µg of
folate from 25 weeks of gestation until delivery with those of 103
unsupplemented pregnant control subjects. Dietary intake was ana-
lyzed in 111, 24-hour duplicate diets and reported to be 676 µg/
day. Supplementation of the usual diet with 100 µg/day resulted in
maintenance of erythrocyte folate concentration throughout preg-
nancy whereas a significant reduction in erythrocyte folate was ob-
served in the unsupplemented subjects.

Colman et al. (1975) evaluated the efficacy of folate-fortified
maize to maintain erythrocyte folate concentrations in 70 pregnant
women. Erythrocyte folate response was compared between women
receiving maize fortified to provide 300, 500, or 1,000 µg of folic
acid and a control group. (Additional groups consumed folic acid
in tablet form to assess the relative bioavailability of the fortified
maize.) Maize containing 300 µg of folic acid in addition to dietary
folate, the lowest level tested, was effective in preventing the pro-
gression of folate depletion in the eighth month of pregnancy.

Controlled Metabolic Study. Caudill and colleagues (1997) conduct-
ed a metabolic study in which either of two levels of folate was
consumed for 12 weeks by pregnant women during the second tri-
mester (14 weeks to 25 weeks of gestation). Their folate status was
compared with that of nonpregnant control subjects. Folate was
provided as a combination of dietary folate (120 µg/day) and folic
acid (either 330 or 730 µg/day) consumed with the diet. After cor-
recting for bioavailability, the intakes of the groups were approxi-
mately 60 µg/day of DFEs and more than 1,300 µg/day of DFEs,
respectively. Folate status was normal (serum folate greater than 7
nmol/L [3 ng/mL] and erythrocyte folate values greater than 305
nmol/L [140 ng/mL]) in all subjects consuming the diet with 680
µg/day of DFEs and was not different from that of the nonpregnant
control subjects with the same folate intake.
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TABLE 8-5 Supplementation Studies in Pregnancy

Number
of Folate Folate

Reference Subjects Diet Supplement

Dawson, 1966 20 Not reported 150

Lowenstein et al., 311 82–92 0
1966 500

Willoughby and 350 < 50 0
Jewell, 1966 100

300
450

Hansen and 95 Not reported 50
Rybo, 1967 100

200
500

Willoughby and 48 Not reported 330
Jewell, 1968

Chanarin et al., 103 676 0
1968 103 100

Colman et al., 1975 122 Not reported 0
300
500

1,000

The data provided by the only diet-controlled metabolic study
that has been conducted in pregnant women (Caudill et al., 1997)
agree with the findings from the population studies and confirm
that a combination of approximately 300 µg of folate from supple-
ments, fortified food, or both plus dietary folate (assumed to be
approximately 100 µg/day before folate fortification) has been
shown to be sufficient to maintain normal folate status during preg-
nancy. When expressed as DFEs, the consistent finding across the
numerous population studies and the controlled metabolic study is
that 600 µg/day of DFEs is adequate to maintain normal folate sta-
tus.
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Three of the four studies provided data that 100 to 150 µg/day of
supplemental folate plus a low-folate diet was inadequate to main-
tain normal serum and hematological indices, which were the only
outcomes measured in all of the subjects. The accuracy of the
dietary estimates could not be ascertained, but they were lower than
the one analyzed intake estimate (676 µg/day) reported by
Chanarin and coworkers (1968).

Other Evidence Considered. McPartlin and colleagues (1993) quanti-
tated the urinary excretion of the major folate catabolites in six
pregnant women and six nonpregnant control subjects. These in-

Total in
Dietary
Folate
Equivalents Results

300 plus diet Serum folate low in 40%

Diet Increase 40–60% abnormal erythrocyte folate normal
1,000 plus diet level compared with 10–20% in supplemented group

≤ 100
200 plus diet
600 plus diet
900 plus diet Prevented deficiency in 72%, 84%, and 94%,

respectively, comparable with nonpregnancy control

100 plus diet Decrease in serum folate in 15%; normal level serum
200 plus diet folate
400 plus diet
1,000 plus diet

660 plus diet Prevented deficiency in supplemented groups

Diet
200 plus diet Maintained normal levels erythrocyte folate

Diet Folate depletion
510 plus diet No apparent folate depletion
850 plus diet
1,700 plus diet
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vestigators converted the quantity of urinary catabolites to urinary
folate equivalents and estimated that the recommended folate in-
take for second-trimester pregnant women would be 660 µg/day.

Folate EAR and RDA Summary, Pregnancy

From these data, low dietary folate intake plus 100 µg of supple-
mental folate (equivalent to approximately 200 µg/day of DFEs) is
inadequate to maintain normal folate status in a significant percent-
age of population groups assessed. The EAR therefore was derived
by adding this quantity in DFEs (200 µg/day) to the EAR for non-
pregnant women (320 µg/day) to provide an EAR of 520 µg/day of
DFEs.

EAR for Pregnancy
14–18 years 520 µg/day of dietary folate equivalents
19–30 years 520 µg/day of dietary folate equivalents
31–50 years 520 µg/day of dietary folate equivalents

The RDA for folate is set by assuming a coefficient of variation
(CV) of 10 percent (see Chapter 1) because information is not avail-
able on the standard deviation of the requirement for folate; the
RDA is defined as equal to the EAR plus twice the CV to cover the
needs of 97 to 98 percent of the individuals in the group (there-
fore, for folate the RDA is 120 percent of the EAR). Data from the
controlled metabolic study support an RDA of 600 µg/day of DFEs
based on maintenance of normal erythrocyte folate concentrations
and agree with the findings from the series of population studies
that 600 µg/day of DFEs is adequate to maintain normal folate sta-
tus in groups of pregnant women.

RDA for Pregnancy
14–18 years 600 µg/day of dietary folate equivalents
19–30 years 600 µg/day of dietary folate equivalents
31–50 years 600 µg/day of dietary folate equivalents

Lactation

Method Used to Estimate the Average Requirement

The EAR for the lactating woman is estimated as the folate intake
necessary to replace the folate secreted daily in human milk plus
the amount required by the nonlactating woman to maintain folate
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status. The average daily amount of folate secreted in human milk
is estimated to be 85 µg/L, as described in the previous section
“Infants Ages 0 through 12 Months” (see “Human Milk”). The dietary
intake needed to provide this amount must account for the estimated
50 percent bioavailability of food folate (see “Bioavailability”).

Other Evidence Considered

There are no metabolic studies in which lactating women con-
sumed controlled amounts of dietary folate. It is unclear whether
the reduction in maternal folate concentration observed in lactat-
ing women (Keizer et al., 1995; Qvist et al., 1986; Smith et al., 1983)
is related to the discontinuation of use of prenatal folate supple-
ments, loss of maternal body folate stores, or other factors. For ex-
ample, in a recent study of lactating adolescents (Keizer et al., 1995),
both breastfeeding mothers and mothers of formula-fed infants
showed a decline in erythrocyte folate between 4 and 12 weeks post-
partum, suggesting that the postpartum decline in folate status may
not be related to lactation. The decrease was prevented by supple-
mental folate (300 µg/day).

In a recent study in which folate status was compared in supple-
mented and nonsupplemented lactating women (Mackey et al.,
1997), dietary folate intake was estimated to be 400 µg/day. In the
unsupplemented lactating women, plasma homocysteine concen-
trations increased significantly but remained well within the normal
range (6 to 7 µmol/L); this increase, therefore, does not appear to
be of nutritional significance.

Folate EAR and RDA Summary, Lactation

The calculation used to obtain the extra amount of folate needed
to cover lactation is

0.78 L (milk volume) × 85 µg/L (folate concentration) ×
2 (bioavailability correction factor) = 133 µg/day.

When this quantity is added to the EAR for the nonlactating non-
pregnant woman (320 µg/day), the result is rounded down, giving
an EAR of 450 µg/day of DFEs. Women who are only partially breast-
feeding would need less.
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EAR for Lactation
14–18 years 450 µg/day of dietary folate equivalents
19–30 years 450 µg/day of dietary folate equivalents
31–50 years 450 µg/day of dietary folate equivalents

The RDA for folate is set by assuming a coefficient of variation
(CV) of 10 percent (see Chapter 1) because information is not avail-
able on the standard deviation of the requirement for folate; the
RDA is defined as equal to the EAR plus twice the CV to cover the
needs of 97 to 98 percent of the individuals in the group (there-
fore, for folate the RDA is 120 percent of the EAR).

RDA for Lactation
14–18 years 500 µg/day of dietary folate equivalents
19–30 years 500 µg/day of dietary folate equivalents
31–50 years 500 µg/day of dietary folate equivalents

Special Considerations

Intakes higher than the RDA may be needed by women who are
pregnant with more than one fetus, mothers nursing more than
one infant, individuals with chronic heavy intake of alcohol, and
individuals on chronic anticonvulsant or methotrexate therapy.
Folate from supplements or fortified foods in addition to dietary
folate is recommended for women capable of becoming pregnant.

REDUCING RISK OF DEVELOPMENTAL DISORDERS
AND CHRONIC DEGENERATIVE DISEASE

Neural Tube Defects

Neural tube defects (NTDs) constitute an important public health
problem in terms of mortality, morbidity, social cost, and human
suffering. Many studies have been conducted regarding the associa-
tion between folate intake and the occurrence of NTDs. The aim of
this section is to review the evidence linking folate with the etiology
and occurrence of NTDs in humans, estimate the risk of NTDs ac-
cording to various levels of folate intake in the U.S. and Canadian
populations, and develop a folate recommendation for women ca-
pable of becoming pregnant. Survey data indicate that fewer than
half of U.S. females aged 15 to 44 years are at any appreciable risk
of conceiving (Abma et al., 1997). Approximately 22 percent of
them are permanently sterile (most often as a result of a specific
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operation done for that purpose); 20 percent are using highly effec-
tive contraceptives, usually long-term in nature; 5 percent are preg-
nant or immediately postpartum at any particular point in time;
and 11 percent have never had sexual intercourse.

Classification, Anatomy, and Embryology

NTDs are the most common major congenital malformations of
the central nervous system. They arise as a result of a disturbance of
the embryonic process of neurulation and are midline defects that
affect neural tissues, their coverings anywhere along the neuraxis,
or both. They are heterogeneous malformations, and the terms used
to define them here (see Box 8-1) are based on clinical descriptions
and the presumed embryological defect (Lindseth, 1996; Volpe,
1995). The terminology in the literature may vary.

NTDs are not to be confused with spina bifida occulta, a common
radiographic finding that does not involve neural elements, or
encephalocele, a protrusion of meninges and brain tissue outside
the cranium, most frequently in the occipital region.

BOX 8-1 Forms of Neural Tube Defects

• Anencephaly: a fatal form characterized by partial absence of brain tissue,
presumably caused by failure of closure of the anterior neuropore.

• Meningomyelocele: a midline defect of the spinal cord in which the neural
tissue is dysplastic and the overlying meninges form a cystic expansion,
presumably because of failure of closure of the neural tube at this site.
This defect is most often in the lumbosacral region, usually results in
peripheral neurological deficit, and may be called spina bifida aperta or
cystica. Myelomeningocele often is associated with the Arnold Chiari mal-
formation and hydrocephalus.

• Meningocele: a less severe result of the embryological defect that causes
meningomyelocele, involving only the meninges.

• Craniorachischisis: a fatal form in which the entire neuraxis—from the
brain to distal spinal cord—is dysplastic and lacks covering by dura,
muscle, or skin. This is presumably due to total failure of neurulation.
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In the less-severe forms of NTD a child may otherwise be normal
and, with appropriate surgical and medical care, can lead a produc-
tive life, including parenthood. Less than 20 percent of NTDs show
associations with malformations in nonneural tissues, chromosomal
defects, or specific genetic syndromes (Khoury et al., 1982). Tech-
niques have been established for prenatal screening for NTDs by
measuring maternal serum and amniotic fluid α-fetoprotein and by
fetal ultrasound (Hobbins, 1991).

Neurulation is the first organogenetic process to be initiated and
completed. It begins in the human at approximately 21 days post-
fertilization and is complete by 28 days. Thus, neurulation is ongo-
ing at the time that a woman may first recognize her pregnancy by a
missed menstrual period. Closure of the neural tube begins sepa-
rately and consecutively in at least three sites: the cervical-hindbrain
boundary, the forebrain-midbrain boundary, and the rostral extrem-
ity of the forebrain. Closure spreads to the intervening regions with
completion of neural tube formation at neuropores in the fore-
brain (anterior neuropore), the hindbrain, and the lumbosacral
region (posterior neuropore). NTDs appear to arise from failure or
inadequacy of this closure process. Different forms of NTD could
arise at different times in neurulation, possibly from distinct mecha-
nisms. Although many specific molecules are involved in the suc-
cessful completion of neurulation, none have been implicated in
the mechanisms underlying the common human NTDs.

Prevalence of NTDs

United States and Canada. National birth-defect registry data are
not available, but a decrease in the prevalence of NTDs at birth has
been observed during the past 30 years. This is not entirely ex-
plained by increased widespread prenatal screening and diagnostic
techniques (De Wals et al., 1999; Yen et al., 1992). Although the
comparison of results of studies using different methods for case
identification should be made cautiously, regional variation in the
risk of NTDs is likely (Table 8-6). It is not known whether the espe-
cially low rate observed in Hawaii is caused by genetic or by environ-
mental factors (Cragan et al., 1995). The populations studied
included women who had taken vitamin supplements at the time of
conception, but the frequency of folate supplementation was esti-
mated only in California (Velie and Shaw, 1996).

Other Countries. The incidence of the common forms of NTD varies
worldwide from less than 1 to approximately 9 per 1,000 total births,



Copyright © National Academy of Sciences. All rights reserved.

Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline 
http://www.nap.edu/catalog/6015.html

FOLATE 243

TABLE 8-6 Total Prevalence Rates of Neural Tube Defect in
Selected Areas of North America, from Birth Defect Registry
Data, 1985–1994

Area Prevalence Rate per 1,000 95% Confidence Interval

Arkansas 1.03 0.85–1.24
Atlanta 0.99 0.78–1.23
California 0.94 0.87–1.01
Iowa 0.90 0.78–1.07
Hawaii 0.72 0.59–0.87
Québec, Canada 1.41 0.95–2.01

SOURCES: Cragan et al. (1995), De Wals et al. (1999), and Velie and Shaw (1996).

with the highest incidence reported in Great Britain and Ireland
(Copp and Bernfield, 1994). Other populations with high incidence
include northern Chinese and Australian Aborigines (Bower et al.,
1984; Moore et al., 1997). Although Sikhs have a high NTD inci-
dence, the defects are often thoracic and associated with minimal
deficit, suggesting a distinct etiology (Baird, 1983). The decrease in
NTDs among Irish immigrants to the United States could be ex-
plained by genetic dilution through interethnic marriages. Howev-
er, some studies of migrant populations in which NTD incidence
decreases with changes in locale suggest a nutritional etiology
(Borman et al., 1986; Carter, 1974).

Etiology of NTDs

The causes of these abnormalities have been the subject of inten-
sive research over many decades. Differences in the pathogenesis
and the epidemiology of different categories of NTD have led to
the idea that NTDs are highly heterogeneous in etiology (Dolk et
al., 1991). Substantial familial aggregation indicates that anenceph-
aly, myelomeningocele, and craniorachischisis are related pathoge-
netically and genetically. Evidence from epidemiological studies of
NTDs indicates that heredity is a major contributor. Indeed, the
recurrence risk in a sibling birth is 3 to 5 percent (Laurence, 1990).
For the most cases the inheritance is believed to be polygenic,
potentially involving multiple genes. Such polygenic traits are influ-
enced by environmental factors, thus the etiology appears to be
multifactorial (Laurence, 1990). Recently, attention has turned to
assessing the genetic basis of NTD and to evaluating the role of
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FIGURE 8-3 Major pathways depicting involvement of vitamin B12 and folate in
homocysteine metabolism.
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vitamins, specifically folate, in the prevention of NTDs. Coverage of
other risk factors for NTDs is beyond the scope of this report.

Genetic Evidence. An assessment of heritability for common forms
of NTDs has been put at 60 percent (Emery, 1986). Data from
demographic, family, and mouse model studies have prompted a
search for candidate genes that predispose individuals to an NTD.
A defect in enzymes involved in homocysteine metabolism is sug-
gested by altered folate, vitamin B12, homocysteine, and methyl-
malonate values in mothers of infants with NTDs (Mills et al., 1995;
Steegers-Theunissen et al., 1994); the prevention of some human
NTDs by folate administration; and the prevention of NTDs in some
rodent models by methionine (Essien, 1992; Vanaerts et al., 1994).
These enzymes are 5,10-methylenetetrahydrofolate reductase
(MTHFR), cystathionine β-synthase, and methionine synthase (Fig-
ure 8-3). Interestingly, families with homocystinuria caused by severe
mutations in genes for each of these enzymes do not exhibit NTDs
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(Haworth et al., 1993; Kang et al., 1991b). Moreover, deletion of
cystathionine β-synthase in the mouse yields a phenocopy of human
homocystinuria but not an NTD (Watanabe et al., 1995). Subse-
quent work on other genetic markers of risk has not provided con-
clusive results (van der Put et al., 1997a, b).

Two studies have shown a statistically significant association be-
tween mothers of children with NTDs and a common variation with-
in the gene for MTHFR (van der Put et al., 1995; Whitehead et al.,
1995). This gene codes for a thermolabile variant of the enzyme
that shows about 50 percent enzymatic activity and is associated
with elevated serum homocysteine concentrations (Kang et al.,
1991a). This association would account for approximately 15 per-
cent of NTD cases (van der Put et al., 1995). The polymorphism was
recently associated with low erythrocyte folate values (Molloy et al.,
1997), which suggests that these values by themselves could account
for the increased NTD risk. However, similar studies using linkage
assessments are needed in suitable (genetically homogeneous) NTD
populations with adequate numbers and types of controls.

No correlation has been found between two common mutations
in cystathionine β-synthase and NTD prevalence in an Irish popula-
tion (Ramsbottom et al., 1997). The gene for methionine synthase
has only recently been cloned in mammals (Chen et al., 1997; Li et
al., 1996). There are no reports of an association between muta-
tions of this gene and NTDs.

The genetic mouse models of NTD suggest a variety of other can-
didate genes for human NTDs (Baldwin et al., 1992; Tassabehji et
al., 1993). However, no reports assess whether any of the causative
genes for mouse models show linkage with the common forms of
human NTD. Because the likely heterogeneity of human NTDs may
make it impossible to demonstrate linkage for any one candidate
gene, candidate genes will need to be assessed in individuals with
NTDs by sequence analysis.

A summary of evidence from animal studies on the etiology of
NTD appears in Appendix M. Animal models of NTD have been
examined and manipulated to elucidate the mechanisms of abnor-
mal neurulation and to test etiologic hypotheses suggested by
human epidemiological data.

Nutrition Evidence. Studies of migrant populations suggest a nutri-
tional etiology for NTD (Borman et al., 1986; Carter, 1974). Lower
socioeconomic class also correlates with NTD incidence (Elwood
and Elwood, 1980; Laurence, 1990). Differences in diet and in sup-
plement use could contribute to the inverse relationship of socio-
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economic status with incidence of NTD, but this has not been ana-
lyzed in recent years.

Nutritional markers, particularly maternal serum vitamin B12 and
serum and erythrocyte folate, as well as their metabolic indicators
of adequacy, have been assessed in relation to the risk of NTD. The
results have been inconsistent, some showing no association with
NTD prevalence (Wald, 1994). Others have demonstrated low or
low normal levels of both vitamin B12 and erythrocyte folate and
suggested that both vitamins represent independent risk factors for
NTD (Kirke et al., 1993). Methylmalonic acid is elevated in mater-
nal serum of midterm NTD pregnancies (Adams et al., 1995). Some
of the women who gave birth to infants with NTDs had elevated
homocysteine values (Mills et al., 1995; Steegers-Theunissen et al.,
1994). These studies support the proposition that NTD is associated
with altered status of vitamin B12, folate, or both during pregnancy.

Teratology Studies. Drugs identified as causes of NTD in humans
include folate antagonists (specifically aminopterin, previously used
as an antitumor agent) (Thiersch, 1952); carbamazepine (Rosa,
1991) and valproate (commonly used antiepileptic drugs) (Blaw
and Woody, 1983; Gomez, 1981; Stanley and Chambers, 1982); and
retinoids, including isotretinoin (used to treat acne) (Dai et al.,
1989; Hill, 1984) and etretinate (used to treat psoriasis) (Happle et
al., 1984). Clomiphene (an oocyte maturation agent) is also sus-
pected as a teratological cause of human NTDs (Wilson, 1973).
These agents account for less than 0.1 percent of all NTDs. In gen-
eral, the induced malformations are not restricted to NTD, and the
precise mechanisms of these teratological effects are not clear.
Indeed, as with other teratogens, the pharmacological and terato-
logical mechanisms may differ because the embryo, especially at
neurulation stages or earlier, is a qualitatively different organism
from other developmental stages and the adult.

Risk of NTD According to Maternal Intake of Folate

The possibility that folate might be involved in NTD was first
raised by Hibbard (1964). This was followed by observational stud-
ies of the effect of both dietary folate and folate supplements on
NTD (Table 8-7), nonrandomized intervention studies of folate sup-
plementation (Table 8-8), and randomized prevention studies, most
of which were conducted with women who had prior NTD pregnan-
cies (Table 8-8). The best evidence comes from the four random-
ized prevention trials (Czeizel and Dudas, 1992; Kirke et al., 1992;
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Laurence et al., 1981; Wald et al., 1991), but the observational evi-
dence (Table 8-7) strongly supports the intervention studies and
provides the only evidence concerning dietary folate.

NTD Risk Associated with Different Levels of Dietary Folate. Data from
two observational studies (Shaw et al., 1995c; Werler et al., 1993)
indicate a statistically significant decreasing risk of NTD with in-
creasing dietary folate in unsupplemented women. In both studies,
the median dietary folate in the control group was approximately
300 µg/day. In the hospital-based case-control study carried out
from 1988 to 1991 (Werler et al., 1993) (Tables 8-7 and 8-9), moth-
ers were interviewed by telephone within 6 months after delivery.
The interview included detailed questions about use of vitamin sup-
plements and a semiquantitative food frequency questionnaire. In
the population-based study from 1989 to 1991 (Shaw et al., 1995c)
(Tables 8-7 and 8-9), folate supplement use and dietary folate in-
take during the periconceptional period were retrospectively as-
sessed by using a face-to-face interview and a semiquantitative food
frequency questionnaire with mothers of children with NTDs and
randomly selected controls. Interviews were completed an average
of 5 months after delivery. The proportion of women reporting no
use of a folate supplement before conception or in the first trimes-
ter was 39 percent (207/526) for cases and 29 percent (149/523)
for controls (Velie and Shaw, l996). From these data, the average
risk of NTD in the fraction of the population taking no supplement
can be estimated to be 1.3 per 1,000.

In a case-control study in Australia, a negative association was
found between NTD occurrence and free and total folate intake in
early pregnancy (Bower and Stanley, 1989). However, the published
results contain only the combined data on supplement use and
dietary intake.

The results from the studies of Werler et al. (1993) and Shaw et
al. (1995c) can be used to draw a tentative risk curve. Point esti-
mates in the two studies are remarkably concordant (Figure 8-4).
There is a quasilinear decreasing NTD risk for dietary folate values
between 100 and 400 µg/day but no further decrease is observed
for higher intake values. A possible explanation for the risk ob-
served at higher intakes could be overreporting of consumption of
folate-rich foods by some women. Also, imprecision in risk estimates
because of the small sample numbers cannot be excluded.

NTD Risk Associated with Periconceptional Folate Supplement Use. The
only randomized trial on the effect of periconceptional vitamin sup-
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TABLE 8-7 Observational Studies of Folate and Risk of Neural
Tube Defect

Study Design Subjects

Mulinare et al., 1988 Case/control in NTDa case infants and normal
(as reported in metropolitan control infants
CDC, 1992) Atlanta

Pregnant women without a prior
NTD-affected pregnancy

Bower and Stanley, Case/control in Spina bifida case infants and
1989 (as reported Western Australia normal control infants
in CDC, 1992)

Pregnant women without a prior
NTD-affected pregnancy

Mills et al., 1989 Case/control in NTD case infants and normal
(as reported in California and control infants
CDC, 1992) Illinois

Pregnant women without a prior
NTD-affected pregnancy

Milunsky et al., 1989 Prospective cohort NTD case infants and normal
(as reported in in New England control infants
CDC, 1992)

Pregnant women without a prior
NTD-affected pregnancy
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Exposure Results Comments

Multivitamin supplement 24 NTD cases in infants from women 60%
containing 0–0.8 mg of supplemented and 157 cases in reduction
folic acid at least 1 mo infants from women unsupplemented in risk
before conception
through the 1st 405 normal cases in infants from
trimester supplemented mothers and 1,075

normal cases in infants from
unsupplemented women controls

Odds ratio = 0.40, p < 0.05

Dietary folate and 77 NTD cases and 154 control mothers 75%
multivitamin in study. The highest folate quartile reduction
supplement at least was compared with the lowest. An  in risk
1 mo before increasing protective effect was
conception through observed from the lowest to the
the 1st trimester highest quartile.

Odds ratio = 0.25, p < 0.05

Multivitamin plus folate 89 NTD cases in infants from No
supplement containing supplemented women and 214 cases protective
up to 0.8 mg of folic in infants from unsupplemented effect
acid plus diet at least women
1 mo before conception
through the 1st trimester 90 normal infants from supplemented

women and 196 normal infants from
unsupplemented women controls

Odds ratio = 0.91, not statistically
significant

Multivitamin plus folate 10 NTD pregnancies among 10,713 72%
supplement containing women who took multivitamin reduction
0.1–1.0 mg of folic acid plus folate in risk
plus diet at least 1 mo
before conception 39 NTD pregnancies among 11,944
through the 1st trimester women who took multivitamins

without folate

Relative risk = 0.28, p < 0.05

continued
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Werler et al., 1993 Case/control in NTD cases and controls with
Boston, other major malformations
Philadelphia,
and Toronto Mothers of cases and controls

Shaw et al., 1995c Case/control NTD cases and normal control
in California infants

a NTD = neural tube defect.

TABLE 8-7 Continued

Study Design Subjects

TABLE 8-8 Controlled Trials Relating Folate Supplementation
and Risk of Neural Tube Defect in the Periconceptual Period

Study Design Subjects

Randomized controlled trials—previous NTD pregnancy

Laurence et al., 1981 Randomized Pregnant women with prior
controlled trial NTDa-affected pregnancy;
in Wales supplemented mothers took

4 mg of folic acid daily

Unsupplemented mothers took
a placebo

Wald et al., 1991 Randomized Pregnant women with prior
controlled NTD-affected pregnancy
multicenter trial
in United Kingdom Supplemented mothers took
and Hungary 4 mg of folic acid daily

Unsupplemented mothers took
a placebo
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Daily use of 34 supplemented and 250 40%
multivitamins, mostly unsupplemented NTD case women reduction
0.4 mg of folic acid, in risk
from 28 d before 339 supplemented and 1,253
through 28 d after last unsupplemented women controls
menstrual period

Adjusted odds ratio = 0.6
(95% CI = 0.4–0.8)

Any use of 88 supplemented and 207 35%
folate-containing unsupplemented NTD case women reduction
vitamins in the 3 mo in risk
before conception 98 supplemented and 149

unsupplemented women controls

Odds ratio = 0.65
(95% confidence interval = 0.45–0.94)

Exposure Results Comments

Exposure Results Comments

4 mg of folic acid or 2 NTD pregnancies in 60 60%
placebo daily at least supplemented women reduction
1 mo before conception in risk
through the 1st 4 NTD pregnancies in 51
trimester placebo-treated women

Relative risk = 0.40, not
statistically significant

4 mg of folic acid or 6 NTD pregnancies in 593 72%
placebo daily at least supplemented women reduction
1 mo before conception in risk
through the 1st 21 NTD pregnancies in 602
trimester unsupplemented women

Relative risk = 0.28, p < 0.05

continued
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Kirke et al., 1992 Randomized Pregnant women with prior
controlled NTD-affected pregnancy
multicenter trial
in Ireland Supplemented women took

0.36 mg of folic acid with or
without multivitamins daily

Unsupplemented women took
multivitamins daily excluding
folic acid

Nonrandomized controlled trials—previous NTD pregnancy

Smithells et al., 1983 Nonrandomized Pregnant women with prior
controlled NTD-affected pregnancy
multicenter trial
in UK Supplemented mothers took

0.36 mg of folic acid plus
multivitamins daily

Unsupplemented mothers took
nothing

Vergel et al., 1990 Nonrandomized Pregnant women with prior
controlled trial NTD-affected pregnancy
in Cuba

Supplemented mothers took
5 mg of folic acid daily

Unsupplemented mothers took
nothing

Randomized controlled trial—all women planning pregnancy

Czeizel and Dudas, Randomized Women planning a pregnancy
1992 controlled trial

in Hungary Supplemented women took
0.8 mg of folic acid plus
multivitamins daily

Unsupplemented women took a
trace-element supplement

a NTD = neural tube defect.
SOURCE: Adapted from CDC (1992).

TABLE 8-8 Continued

Study Design Subjects
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Supplements taken for at 0 NTD in 172 infants/fetuses of Trial was
least 2 mo before supplemented women prematurely
conception and until terminated
the date of the third 1 NTD in 89 infants/fetuses of
missed menstrual period unsupplemented women

Indeterminate protective effect,
not statistically significant

0.36 mg of folic acid plus 3 NTD pregnancies in 454 86%
multivitamins or no use supplemented women reduction
from 1 mo before in risk
conception through the 24 NTD pregnancies in 519
1st trimester unsupplemented women

Relative risk = 0.14, p < 0.05

5 mg of folic acid or no 0 NTD pregnancies in 81 Complete
use from 1 mo before supplemented women protective
conception through the effect
1st trimester 4 NTD pregnancies in 114

untreated women

Indeterminant protective effect,
not statistically significant

Supplements taken for 0 NTD pregnancies in 2,104 Complete
at least 1 mo before supplemented women protective
conception and until effect
the date of the second 6 NTD pregnancies in 2,052
missed period unsupplemented women

Relative risk = 0.0, p = 0.029

Exposure Results Comments
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TABLE 8-9 Relative Risk of Neural Tube Defect Based on
Reported Folate Intake During the Periconception Period

Adjusted
Intake Average Relative Risk, Relative Risk,
Category n (cases/ Value 95% Confidence 95% Confidence
(µg/d) controls) (µg/d) Interval Interval

Werler et al., 1993
Quintiles: Did not use supplements (intake from foods)

31–196 58/262 114 Reference (1.0) 1.52
197–252 62/260 225 1.0 (0.7–1.5) 1.52 (1.07–2.28)
253–310 46/258 282 0.7 (0.4–1.1) 1.07 (0.61–1.67)
311–391 38/237 351 0.6 (0.3–0.9) 0.91 (0.46–1.37)
392–2,195 46/236 1,294 0.6 (0.4–1.1) 0.91 (0.61–1.67)

Quintiles: Did use supplements (intake from supplements only)
0 214/1,236 Reference (1.0)
< 400 3/50 0.5 (0.2–1.5)
400 8/185 0.3 (0.1–0.6)
500–900 2/15 0.9 (0.2–4.2)
≥ 1,000 3/52 0.4 (0.1–1.3)

Shaw et al., 1995b
Quartiles: Did not use supplements (intake from foods)

10–227 140/116 119 Reference (1.0) 1.24
228–312 117/115 270 0.89 (0.62–1.3) 1.10 (0.77–1.61)
313–428 98/115 371 0.69 (0.47–1.0) 0.86 (0.58–1.24)
429–1,660 105/115 1,045 0.69 (0.47–1.0) 0.86 (0.58–1.24)

Quartiles: Did use supplements (intake from supplements only)
0 (and 1st 55/30 Reference (1.0)
quartile of
dietary
intake)
228–399 75/54 0.76 (0.41–1.40)
400–999 89/74 0.66 (0.37–1.20)
≥ 1,000 33/46 0.39 (0.20–0.77)

NOTE: Dietary data were obtained by using semiquantitative food frequency ques-
tionnaires. The data do not allow the computation of dietary folate equivalents in toto
because intake of folic acid from fortified foods is not available. Both studies were
conducted in the United States prior to mandatory folate fortification.
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FIGURE 8-4 Risk of neural tube defect (NTD) according to folate intake based
on two retrospective studies. Intake values appear next to each point, in micro-
grams. Midpoint values for each reference intake category have been used for
defining folate intake, and relative NTD risks have been linearly adjusted to a
baseline absolute risk of 1.29 per 1,000 for a folate intake of 312 µg/d. Values that
include folate supplements (indicated by a) are estimated in dietary folate equiva-
lents (1 dietary folate equivalent = 1 µg food folate = 0.6 µg folate from fortified
food or as a supplement taken with food = 0.5 µg supplemented folate when
fasting). SOURCE: Data from Shaw et al. (1995c) and Werler et al. (1993).
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plementation (800 µg/day of folic acid) on the risk of a first occur-
rence of NTD was prematurely terminated after 4,753 women had
been enrolled (Czeizel and Dudas, 1992) (Table 8-8). No case of
NTD was observed in the group taking multivitamins containing
800 µg of folate daily compared with six cases in the group receiving
a trace element supplement (p = 0.029). The effect of supplemental
folate alone was not assessed. Although no protective effect was
observed in one case-control study (Mills et al., 1989), a significant
reduction in risk associated with supplementation was seen in one
cohort (Milunsky et al., 1989) and four other case-control studies
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(Bower and Stanley, 1992b; Mulinare et al., 1988; Shaw et al., 1995c;
Werler et al., 1993) (Table 8-7). The optimal timing for supplemen-
tation seems to be during the 4 weeks before and after conception
(Mulinare et al., 1988).

In the United States the risk reduction achieved with a daily sup-
plement of 400 µg of folate, the most usual dose in multivitamins,
was 70 percent (relative risk 0.3; 95 percent confidence interval
[CI], 0.2 to 0.6) in New England (Werler et al., 1993) and 35 per-
cent (relative risk 0.65; 95 percent CI, 0.45 to 0.94) in California
(Shaw et al., 1995c) in unselected populations with average daily
dietary folate intake of about 300 µg. The intake values assume a
high level of compliance with supplementation, and the points rep-
resent values adjusted for bioavailability because they are given in
dietary folate equivalents. It is not clear whether supplements at
doses lower than 400 µg/day of folic acid provide the same level of
protection as 400 µg/day or whether higher doses are associated
with increased risk reduction.

The Medical Research Council Trial (Wald et al., 1991) (Table
8-8), which addressed reduction of the recurrence of NTD, used a
factorial design to investigate folate in a dose of 4.0 mg/day and a
mixture of other vitamins (A, thiamin, riboflavin, B6, C, D, and
nicotinamide). This study found a 71 percent decreased NTD inci-
dence in offspring of women taking the folate supplement relative
to those on no supplements but no reduction with the other vita-
mins. In a nonrandomized trial on the risk of NTD recurrence con-
ducted in the United Kingdom, a daily supplement of 360 µg in
addition to normal diet was apparently protective (Smithells et al.,
1981).

Because NTDs represent a heterogeneous group of congenital
malformations both etiologically and pathogenetically, it is proba-
ble that there are cases not preventable even by large doses of folate,
as was the case in the Medical Research Council Vitamin Study
(Wald et al., 1991). More studies are needed to evaluate whether
fortification of foods is similarly associated with reduced risk or with
a valid proxy for NTD risk.

NTD Risk According to Maternal Folate Status. The erythrocyte folate
concentration is a marker of long-term folate status. Studies looking
for an association of erythrocyte folate with NTD risk based on esti-
mating erythrocyte folate levels in blood samples taken early in preg-
nancy are preferred because maternal folate status is likely to
change during pregnancy and postpartum. In four studies with
blood specimens taken during pregnancy, erythrocyte folate values
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were higher in women with a normal pregnancy than in women
carrying a fetus with an NTD (Kirke et al., 1993; Laurence et al.,
1981; Smithells et al., 1976) or with a fetus having another type of
malformation (Bunduki et al., 1995). This difference was not found
in one study with only eight NTD cases (Economides et al., 1992).

In a case-control study in three maternity hospitals in Dublin,
Ireland, from 1986 to 1990, erythrocyte folate values were measured
in frozen samples taken at a median gestational age of 15 weeks
(Daly et al., 1995; Kirke et al., 1993). The percentage of women
using folate supplements was 5 percent. A negative apparently non-
linear association was observed between NTD risk and erythrocyte
folate concentration (Table 8-10). It is not known whether the risk
would continue to decrease as erythrocyte folate values increased to
higher than 1,241 nmol/L (570 ng/mL), which was the mean eryth-
rocyte concentration of the controls who had concentrations in the
highest category in Table 8-10. However, the population studied
had a relatively high incidence of NTD, around 2 per 1,000 births.
Extrapolation of results should be made with great care because the
NTD risk in the U.S. population could be lower at every level of
erythrocyte folate.

Determinants of Erythrocyte Folate. In a recent study in women aged
22 to 35 years in the Minneapolis-St. Paul area, folate supplements
and folate-fortified cereals were found to be independent predic-

TABLE 8-10 Distribution of Cases and Controls and Risks of
Neural Tube Defect (NTD) by Erythrocyte Folate
Concentration

Risk of NTD 95%
Erythrocyte Folate N (%) of N (%) of per 1,000 Confidence
nmol/L (ng/mL)a Cases Controls Birthsb Interval

0–339 (0–149) 11 (13.1) 10 (3.8) 6.6 3.3–11.7
340–452 (150–199) 13 (15.5) 24 (9.0) 3.2 1.7–5.5
453–679 (200–299) 29 (34.5) 75 (28.2) 2.3 1.6–3.3
680–903 (300–399) 20 (23.8) 77 (29.0) 1.6 1.0–2.4
≥ 906 (400) 11 (13.1) 80 (30.0) 0.8 0.4–1.5
Total 84 (100.0) 266 (100.0) 1.9 1.5–2.3

a 1 ng/mL = 2.27 nmol/L, as reported in the original study. This conversion factor
differs from that used in the rest of this report.

b Absolute NTD risk has been extrapolated from the odds ratio computed in a case-
control study.

SOURCE: Adapted from Daly et al. (1995).
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tors of erythrocyte folate levels (Brown et al., 1997). An apparently
nonlinear correlation was observed between folate intake from vari-
ous sources and erythrocyte folate. These results are concordant
with those of a controlled experiment in women who were random-
ly assigned to receive 0, 100, 200, or 400 µg/day of supplemental
folate (Daly et al., 1997). In this randomized placebo trial, Daly and
coworkers estimated the quantity of additional folate associated with
an erythrocyte folate concentration of greater than 870 nmol/L
(400 ng/mL), which is the amount previously shown to be associated
with a significant reduction in NTD risk. The initial erythrocyte
folate concentrations of the women were in the normal range (327
to 870 nmol/L [150 to 400 ng/mL], median 707 nmol/L [325 ng/
mL]). The median incremental changes in erythrocyte folate con-
centration in the 100-, 200-, and 400-µg/day groups were + 146
nmol/L (67 ng/mL), + 283 nmol/L (130 ng/mL), and + 435 nmol/
L (200 ng/mL), respectively.

The relative effectiveness of different interventions in increasing
erythrocyte folate concentrations was evaluated in a 3-month ran-
domized trial in 62 healthy women aged 17 to 40 years in Northern
Ireland (Cuskelly et al., 1996). Erythrocyte folate concentrations
improved significantly only in the groups taking folate supplements
or food fortified with folate; there was no increase in the group
provided extra food folate or dietary advice. Because food intake
was not controlled, further studies are needed to evaluate more
precisely the relative efficacy of different supplementation regimens
in reducing NTD risk.

Mechanism. The mechanism by which folate could reduce NTD
risk is not known. Increasing folate intake and thus the concentra-
tions of folate derivatives in tissues might overcome a metabolic
deficiency in the production of proteins or in DNA synthesis at the
time of neural tube closure (Mills et al., 1995). Another hypothesis
is that folate does not prevent the occurrence of NTD but selectively
increases the abortion rate of affected fetuses (Hook and Czeizel,
1997). Certainly, more research is needed to understand the effect
of folate on embryonic and fetal development.

Recommendations for NTD Risk Reduction

To summarize the data, a reduced risk of NTD has been observed
for women who took a folate supplement of 360 to 800 µg/day in
addition to a dietary folate intake of 200 to 300 µg/day. Folate in-
take is positively associated with erythrocyte folate concentration
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(Bower and Stanley, 1989; Brown et al., 1997; Cuskelly et al., 1996;
Daly et al., 1997), and NTD risk is inversely associated with both
folate intake (Bower and Stanley, 1989; Shaw et al., 1995c; Werler et
al., 1993) and erythrocyte folate concentration (Daly et al., 1995).

Although it is recognized that there are still uncertainties about
the relationships among folate intake, erythrocyte folate, and NTD
risk and the extent to which there are differences in the absorption
of folate from food compared with supplements, the evidence is
still judged sufficient to support a recommendation to reduce the
risk of NTD. The recommendation made here for women capable
of becoming pregnant is for intake that exceeds the Recommended
Dietary Allowance (RDA) for folate. In particular, it is recommended
that women capable of becoming pregnant consume 400 µg of
folate daily from supplements, fortified foods, or both in addition
to consuming food folate from a varied diet. At this time the evi-
dence for a protective effect from folate supplements is much stronger
than that for food folate. It is certainly conceivable that, if taken in
adequate quantity, food folate will be shown to be as effective as
folic acid, but it remains to be demonstrated. When more data are
available, this recommendation will be revised.

An even larger dose of folate has been recommended to prevent
recurrence in women with a previous NTD-affected pregnancy
(CDC, 1991). However, some NTDs are not prevented by increas-
ing folate intake.

To date there is no conclusive evidence to support any population
screening for genetic markers of NTD risk. In the event that the
correlation between the 5,10-MTHFR T677 allele and NTD is con-
firmed, screening women for the gene that codes for the thermo-
labile variant would identify only about 15 percent of those at risk
for NTD. Thus, recommending consumption of 400 µg folate daily
from supplementation or fortified foods for all women capable of
becoming pregnant would be a more effective prevention measure
than screening for the variant (Mills and Conley, 1996).

Other Congenital Anomalies

Folate may also prevent the occurrence of other types of congeni-
tal anomalies. In one randomized trial (Czeizel, 1993) and several
case-control studies (Botto et al., 1996; Czeizel et al., 1996; Hayes et
al., 1996; Munger et al., 1997; Shaw et al., 1995a, b; Tolarova and
Harris, 1995), a reduction in the frequency of orofacial clefts and
cardiovascular malformations was observed in women taking vita-
min supplements and folate-fortified food. The results, however,
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were not always consistent across the studies, and negative findings
have also been reported (Bower and Stanley, 1992a; Hayes et al.,
1996; Scanlon et al., 1998). Because multivitamins were used in all
these studies, it is difficult to disentangle the effect of folate from
that of other constituents. Also, the presence of unmeasured con-
founding cannot be excluded.

Vascular Disease

The link between homocysteine and the risk of vascular disease
was derived from the study of homocystinuria. Classical homocystin-
uria is a rare autosomal recessive disease caused by a deficiency of
cystathionine β-synthase and characterized by excessively elevated
plasma homocysteine (Mudd et al., 1985). Clinical manifestations
include mental retardation, skeletal abnormalities, lens dislocation,
and a marked tendency to develop premature and severe athero-
sclerosis with thromboembolic events. In 1976 a study first showed a
significant difference in homocysteine plasma concentration be-
tween patients with vascular disease and normal control subjects
(Wilcken and Wilcken, 1976).

Since then, many observational and experimental studies have
been published on the risk of vascular disease associated with ele-
vated homocysteine levels. In 1995 Boushey and coworkers first pub-
lished a meta-analysis; this work has recently been updated and in-
cludes a total of 20 studies (Beresford and Boushey, 1997). The
relative increase in risk of coronary heart disease (CHD) as estimat-
ed by the combined odds ratio was 1.6 (95 percent CI, 1.5 to 1.7)
for men and 1.5 (95 percent CI, 1.3 to 1.7) for women for each
increment of 5 mmol/L in total plasma or serum homocysteine.
The combined odds ratio for data from both men and women was
1.8 (95 percent CI, 1.6 to 2.0) for cerebrovascular disease and 2.0
(95 percent CI, 1.5 to 2.6) for peripheral vascular disease. There is
evidence that hyperhomocysteinemia is a risk factor for CHD inde-
pendent of other known risk factors such as smoking, cholesterol,
body mass index, age, high blood pressure, and diabetes (Beresford
and Boushey, 1997; Graham et al., 1997; Mayer et al., 1996; Verhoef
et al., 1996). Similarly, Nygård and colleagues (1997) reported that
plasma homocysteine values were a strong predictor of mortality in
patients with angiographically confirmed coronary artery disease.

The mechanism by which elevated homocysteine might increase
the risk of developing vascular disease is unclear. Several hypotheses
have been proposed, and the subject was reviewed by Mayer et al.
(1996). Homocysteine can exert a direct toxic effect on endothelial
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cells and promote the growth of smooth muscle cells, leading to
atherosclerotic lesions (Tsai et al., 1994). It can also increase adhe-
siveness of platelets and affect several factors involved in the clot-
ting cascade (Harpel et al., 1996). Folate is required in the form of
methyltetrahydrofolate as a substrate for methionine synthase.
Therefore, the remethylation of homocysteine depends on ade-
quate quantities of folate. Homocysteine levels can be markedly ele-
vated in folate deficiency (Kang et al., 1987; Stabler et al., 1988).
Negative correlations between serum and plasma folate and homo-
cysteine have been seen in studies of normal subjects (Bates et al.,
1997; Jacobsen et al., 1994; Pancharuniti et al., 1994; Selhub et al.,
1993; Ubbink et al., 1993). Beresford and Boushey (1997) reviewed
14 intervention studies, 2 metabolic studies, and 1 observational
study that included folate supplementation to reduce homocysteine
levels. Results demonstrated an effect of various doses of supple-
mental folate in reducing homocysteine levels. Apparently, the
effect of a given dose of folate was greater at higher pretreatment
homocysteine values (Landgren et al., 1995; Ubbink et al., 1995b).
The latter observation could, however, be partially explained by a
regression to the mean of higher-than-usual values in some individ-
uals.

As seen in Figure 8-5, the inverse association between mean dietary
folate and mean homocysteine concentration is not linear but seems
to reach a plateau at total folate intake levels greater than 300 mg/
day. A review of seven studies indicates that homocysteine concen-
trations are also inversely correlated with plasma folate concentra-
tions, and there seems to be a serum folate concentration around 9
nmol/L (4 ng/mL) above which homocysteine values do not de-
crease significantly (Beresford and Boushey, 1997).

In two case-control studies, concentrations of plasma and serum
folate were significantly lower in patients with early-onset vascular
disease than in control subjects (Pancharuniti et al., 1994; Verhoef
et al., 1996). Such an association was not found or was only ob-
served in a subset of patients in six other studies (Bergmark et al.,
1993; Brattstrom et al., 1984, 1990; Dalery et al., 1995; Giles et al.,
1995; Molgaard et al., 1992). In a retrospective cohort study of par-
ticipants in the Nutrition Canada Survey, a statistically significant
association between serum folate concentration and risk of fatal
CHD was found, with a rate ratio of 1.69 (95 percent CI: 1.10 to
2.61) for individuals in the lowest serum folate category compared
with those in the highest category (Morrison et al., 1996). For par-
ticipants in the U.S. Physicians’ Health Study, the reported inverse
association of plasma folate concentrations with risk of myocardial
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FIGURE 8-5 Mean intakes of folate and plasma levels of homocysteine (Hcy). Data
points based on groups from Jacob et al. (1994) (1a–1f), mean levels of Hcy at
three levels of dietary folate; Selhub et al. (1993) (2a–2d), mean levels of Hcy from
lowest deciles and highest decile of folate intake; O’Keefe et al. (1995) (3a–3c),
mean values of Hcy at three levels of dietary folate; Brattstrom et al. (1988) (4),
mean Hcy level after added supplements of 5,000 µg of folate, pretreatment folate
intake unknown. Reprinted with permission, from Beresford and Boushey (1997).
Copyright 1997 by Humana Press.
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infarction was not statistically significant (Chasan-Taber et al., 1996).
For participants in the Multiple Risk Factor Intervention Trial, no
association was observed between homocysteine concentration and
the risk of heart disease (Evans et al., 1997).

A recent prospective observational study examined the effect of
self-selection for intake of folate and vitamin B6 on the incidence of
myocardial infarction and CHD (Rimm et al., 1998). After control-
ling for other risk factors for CHD and adjusting vitamin intake on
the basis of energy intake, about a twofold reduction in CHD was
found for individuals in the quintile with the highest folate and
vitamin B6 intakes compared with those with the lowest intakes.
When intakes of each of the vitamins were considered separately,
the multivariate analyses suggested a reduction of about 30 percent
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in disease incidence between the highest and lowest quintiles of
intake for each of the vitamins. For folate the data are compatible
with the Framingham study (Selhub et al., 1993), in which the low-
est deciles of folate intake were associated with higher circulating
homocysteine. In the Rimm et al. (1998) study, although multivariate
analysis indicated a trend in risk reduction across the quintiles of
intake, the major reduction appeared to occur between the first
and second quintiles of intake (median intakes 158 and 217 mg of
folate). In the subgroup analysis there appeared to be no risk
reduction beyond the second quintile of folate intake (217 mg) in
nondrinkers, but in alcohol consumers risk reduction increased
over the quintiles of intake. Although these data are consistent with
the hypothesis that self-selection for increased folate reduces vascu-
lar disease risk, other variables associated with lifestyle differences
of individuals who consume higher vitamin intakes may also have
influenced CHD risk. Some of these variables were not or could not
have been considered in the analysis. Several ongoing randomized
trials are addressing whether supplements per se will decrease risk
of CHD.

Individuals homozygous for the 5,10-MTHFR T677 allele tend to
have high homocysteine concentrations as a result of reduced enzy-
matic activity (Frosst et al., 1995). A few investigations found the
risk of vascular disease to be increased in persons homozygous for
the T677 allele (deFranchis et al., 1996; Gallagher et al., 1996;
Kluijtmans et al., 1996) but the association has not been found in
most studies (Ma et al., 1996; Schmitz et al., 1996; Schwartz et al.,
1997; Verhoef et al., 1997a; Wilcken et al., 1996). In a meta-analysis
the combined odds ratio of CHD associated with homozygosity for
T677 allele was 0.98 (95 percent CI, 0.83 to 1.17) (Verhoef et al.,
1997b).

The inverse relationship between folate intake and homocysteine
concentration is well established. However, there are conflicting
data on the association among indicators of folate status or metabo-
lism, homocysteine concentration, and risk of vascular disease.
Whether increasing intake of folate could reduce the risk of vascu-
lar disease remains to be demonstrated. Folate may reduce the risk
of cardiovascular disease through other mechanisms. For example,
the data from the study by Verhaar and colleagues (1998) support a
direct effect of folate catabolites in restoring or preserving the endo-
thelium function and integrity by affecting cellular oxidative metab-
olism. More evidence concerning a causal relationship between
folate status and vascular disease will be provided by data from
prospective controlled intervention trials that are currently under
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way. At present it is premature to consider vascular disease risk
reduction as an indicator for setting the Estimated Average Require-
ment (EAR) and Recommended Dietary Allowance (RDA) for folate.

Cancer

Experimental data indicate that changes in folate status may influ-
ence the process of neoplastic changes in certain epithelial tissue: a
negative change in folate status may stimulate carcinogenesis. It is
unclear if supraphysiological doses obtained from supplements
afford any protection.

Dysplasia and Metaplasia

Dysplastic and metaplastic changes have been reported to reverse
in response to high-dose supplemental folate. Butterworth and co-
workers (1982) conducted a prospective, controlled clinical inter-
vention trial giving supplements of 10 mg/day of folate to 47 women
with dysplastic changes in the epithelium of the uterine cervix. They
observed a significant attenuation of dysplasia, but the alteration in
cytology may have been an attenuation of dysplasia or simply a
reduction in megaloblastic cellular changes. A subsequent interven-
tion trial by the same research group (Butterworth et al., 1992b)
was unable to reproduce the results. However, the subjects in this
second intervention study initially had the lowest grade of dysplasia,
which has a greater than 60 percent spontaneous rate of reversion
to normal. Heimburger and colleagues (1988) observed a signifi-
cant reduction in metaplastic change in bronchial epithelial tissue
in response to 10 mg of folate with 500 µg of vitamin B12 given daily
for 4 months to 36 subjects compared with changes in 37 subjects
given a placebo. These findings may be questioned because of spon-
taneous variation in bronchial cytology, small sample size, short
duration of trial, and the very high doses of folate and vitamin B12
used.

It has been hypothesized that poor folate status by itself is not
carcinogenic but may enhance an underlying predisposition to can-
cer (Heimburger et al., 1987; Mason and Levesque, 1996). Support
for this theory includes data from a case-control intervention trial
of patients with cervical dysplasia who also were at significantly high-
er risk for cervical cancer because of cervical infection with human
papilloma virus-16 (HPV-16) (Butterworth et al., 1992a). Subjects
with the HPV-16 infection had a fivefold greater risk of having dys-
plasia if they also had diminished erythrocyte folate values (660
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nmol/L [303 ng/mL]) (Butterworth et al., 1992a). On the basis of
these data and other data from study of the colorectum (Lashner,
1993), Mason and Levesque (1996) suggested that even a minor
decrease in folate status may promote carcinogenesis.

Potential mechanisms for folate-related enhancement of carcino-
genesis include the induction of DNA hypomethylation (Kim et al.,
1997), increased chromosomal fragility or diminished DNA repair
(Kim et al., 1997), secondary choline deficiency, diminution in
natural killer cell surveillance, misincorporation of uridylate for
thymidylate in DNA synthesis, and facilitation of tumorigenic virus
metabolism (Mason and Levesque, 1996).

Cervical Neoplasia

Although several studies suggest that increased consumption of
folate reduces the relative risk of cervical neoplasia (Brock et al.,
1988; Potischman et al., 1991; Verreault et al., 1989; Ziegler et al.,
1990, 1991), statistical significance was not attained in these studies
after adjustments were made for confounding variables. These stud-
ies had several limitations: folate intake was assessed with a food
frequency instrument that had not been validated for folate intake
(Mason and Levesque, 1996); because subjects were not stratified
for HPV infections as was done by Butterworth and colleagues
(1992a), the inverse association between folate intake and cervical
neoplasia in high-risk subjects was not examined; and the subjects
had either carcinoma in situ or invasive cancer—advanced stages of
neoplasia that may be unresponsive to folate (Heimburger et al.,
1987; Mason and Levesque, 1996). Therefore, the effect of folate
status on carcinogenesis in the cervix remains uncertain.

Colorectal Cancer

Data supporting the modulation of carcinogenesis by folate status
are the strongest for the colorectum. Patients with chronic ulcer-
ative colitis are at increased risk for colonic cancer and also coexist-
ing folate deficiency. Sulfasalazine, a drug taken chronically by these
patients, inhibits folate absorption (Halsted et al., 1981) and metab-
olism (Selhub et al., 1978). Lashner and coworkers (1989) observed
that the rate of colonic neoplasia was 62 percent lower in folate-
supplemented patients with chronic ulcerative colitis than in un-
supplemented patients and that sulfasalazine therapy was associated
with an increase in the risk of dysplasia. These observations were
not statistically significant but pointed to an important area of
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investigation. Lashner (1993) subsequently compared prospectively
the erythrocyte folate concentrations in patients with neoplastic
changes in the colorectum with those for disease-matched control
patients without neoplasia. The mean erythrocyte concentration was
significantly lower in the individuals with neoplasia (988 nmol/L
[454 ng/mL]) than in the control patients (1,132 nmol/L [520 ng/
mL]) but was still well within the normal range, which is in line with
observations of erythrocyte folate concentrations and dysplasia in
the uterine cervix (Butterworth et al., 1992a). Meenan and col-
leagues (1996) described the lack of association between erythro-
cyte folate levels and colonic biopsy specimens in healthy individu-
als, indicating the potential difficulty in predicting localized folate
deficiency. In a subsequent report (Meenan et al., 1997), epithelial
cell folate depletion occurred in neoplastic but not adjacent normal
colonic mucosa.

In general, epidemiological studies support an inverse relation-
ship between folate status and the rate of colorectal neoplasia
(Mason and Levesque, 1996). Two large, well-controlled prospec-
tive studies support the inverse association between folate intake
and incidence of colorectal adenomatous polyps (Giovannucci et
al., 1993) and colorectal cancers (Giovannucci et al., 1995). In these
two studies, moderate-to-high alcohol intake greatly increased the
neoplastic risk of a low-folate diet. There was a significant 35 per-
cent lower risk of adenoma in those in the highest quintile of folate
intake (approximately 800 µg/day) relative to those in the lowest
quintile (approximately 200 µg/day, relative risk approximately
0.65). The adverse effect of high alcohol intake coupled with a low-
folate diet was confirmed by Glynn and colleagues (1996), who ob-
served a significant fourfold increase in risk of colorectal cancer.
Physicians’ Health Study participants with the MTHFR poly-
morphism had reduced risk of colon cancer, but low folate intake
or high alcohol consumption appeared to negate some of the pro-
tective effect (Ma et al., 1997) (see Appendix L for further discus-
sion of MTHFR polymorphism).

More evidence for or against a causal relationship between folate
status and colorectal cancer will be provided by data from prospec-
tive controlled intervention trials that are currently under way.

Lung, Esophageal, and Stomach Cancer

As reviewed by Mason and Levesque (1996), data are not suffi-
cient for making conclusions regarding the possible role of folate in
reducing the risk of cancer of the lung, esophagus, or stomach.
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Psychiatric and Mental Disorders

The suggestion that folate deficiency might produce psychiatric
disturbances was made more than 30 years ago (Herbert, 1962a).
Since then the issue has been examined by three approaches: assess-
ment of the incidence of psychiatric disturbances in patients
presenting with a medical condition related to folate deficiency
(e.g., megaloblastic anemia), assessment of the incidence of folate
deficiency in patients presenting with a psychiatric condition (of
any etiology), and evaluation of the efficacy of folate treatment in
the resolution of psychiatric disorders. In general, the database link-
ing folate to altered mental function is not large but appears suffi-
cient to suggest the likelihood of a causative association. However,
it is still unclear whether reduced folate intake is the cause or an
effect of the mental disorders.

The most unambiguous observation suggesting this link is derived
from studying patients with megaloblastic anemia. Shorvon and co-
workers (1980) reported that among such patients having a clear
folate deficiency (plasma folate 3.4 ± 1.4 [standard deviation] nmol/
L [1.5 ± 0.6 ng/mL]) in the absence of vitamin B12 deficiency, the
prevalence of an affective (mood) disturbance was 56 percent.
Other studies of nonpsychiatric patients are consistent with this
observation, showing changes in mood and in mental function
(Goodwin et al., 1983; Herbert, 1962a; Reynolds et al., 1973).

Most studies that attempt to link folate deficiency and mental
disorder are in psychiatric patients. The studies involved measure-
ments of serum, plasma, or erythrocyte folate concentrations in
patients on long-term drug therapy, some of whom were drug free
when examined. No patients with a psychiatric diagnosis appear to
have been assessed at first admission before drug therapy was in-
stituted. Coppen and Abou-Saleh (1982), for example, measured
serum folate concentrations in unipolar and bipolar depressed
patients: mean plasma folate concentrations were significantly lower
than those in a group of control subjects (13 vs. 15 nmol/L [6 vs. 7
ng/mL]). They further observed that in the psychiatric subjects,
morbidity was significantly higher in individuals with plasma folate
concentrations below 9 nmol/L (4 ng/mL) than in those with values
at or above 18 nmol/L (8 ng/mL). In subjects with depression, the
prevalence of folate deficiency (plasma folate less than 5.7 nmol/L
[2.5 ng/mL]) was found to be 15 to 17 percent, a value substantially
higher than the 2 percent found in control subjects (Abou-Saleh
and Coppen, 1989); erythrocyte folate was also measured and found
to correlate highly with plasma folate concentrations.
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In a study of erythrocyte folate concentrations, Carney and col-
leagues (1990) observed that among patients admitted to a psychi-
atric unit with endogenous depression, 20 percent had erythrocyte
folate concentrations below 327 nmol/L (150 ng/mL), a prevalence
markedly higher than that observed in euthymic, manic, schizo-
phrenic, or alcoholic patients. A recent study involving plasma folate
determinations suggests that the prevalence of folate deficiency may
not be this high (Fava et al., 1997). Nevertheless, patients with low
plasma folate levels responded less well to standard antidepressant
(fluoxetine) therapy than did those with normal folate values. In
these studies, there appears to be no uniform definition of folate
deficiency (as indexed via the plasma or erythrocyte folate determi-
nation); moreover, folate assays (and absolute folate values) dif-
fered among laboratories (and within studies, e.g., Coppen et al.
[1986]), making any blood deficiency threshold difficult to stan-
dardize (Young and Ghadirian, 1989).

Two double-blind studies (Coppen et al., 1986; Godfrey et al.,
1990) evaluated the efficacy of folate supplementation in the recov-
ery from psychiatric illness, but the use of nutrients for treatment is
not relevant to this report and will not be discussed here.

Although the connection between folate and mental function has
been most strongly made for depression and affective state, intake
of the vitamin has also been linked (though less convincingly at
present) to other psychiatric conditions and to deficits in learning
and memory, particularly in the elderly (Joyal et al., 1993; Riggs et
al., 1996; Wahlin et al., 1996).

The mechanism by which folate modifies brain functions has been
sought for more than two decades and is generally hypothesized to
be related to its role in single-carbon metabolism (Alpert and Fava,
1997). In particular, methylene tetrahydrofolate is the methyl donor
in methionine synthesis from homocysteine and is postulated to be
important in maintaining adequate methionine pools for S-
adenosylmethionine (SAM) biosynthesis (Bottiglieri et al., 1994).
SAM is the cofactor in key methylation reactions in catecholamine
synthesis and metabolism in brain (Turner, 1977); catecholamines
are transmitters known to be important in maintaining affective
state, and exogenous SAM has been shown by some to elevate mood
(Bell et al., 1988). Folate has also been linked to the maintenance
of adequate brain levels of tetrahydropterin (Hamon et al., 1986), a
key cofactor in the hydroxylation reactions leading to the synthesis
of transmitters such as serotonin and the catecholamines (Turner,
1977). Methylation reactions involving folate may be important in
maintaining neuronal and glial membrane lipids (Hirata and Axelrod,
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1980), which could have effects on more general brain functions as
reflected in changes in mood, irritability, and sleep.

Although available information may suggest that a link exists be-
tween folate deficiency and abnormal mental function, more than
three decades of research have not produced a definitive connec-
tion. There is a clear need to evaluate folate supplementation more
completely at multiple doses, under double-blind conditions, and
in individuals with mental disease as well those having nonpsychiat-
ric illnesses in order to make this connection more convincing
(Joyal et al., 1993). Furthermore, coexistent conditions in subjects
with low folate status rather than the folate deficiency may account
for observed deficits in mental function and affective state. These
conditions include chronic disease, drug history, alcohol use, age,
education, and family history and must be more carefully consid-
ered in future studies (Young and Ghadirian, 1989).

Summary of Evidence Concerning the Risk of Developmental
Disorders and Chronic Degenerative Disease

Reducing the Risk of NTD

Uncertainties still exist about the relationships among folate in-
take, erythrocyte folate, and NTD risk and about the extent to which
the effect of food folate should be distinguished from the effect of
folate from supplements or fortified foods, but the evidence is
judged sufficient to support a specific recommendation to reduce
the risk of NTD.

Reducing the Risk of Cardiovascular Disease, Cancer, and
Psychiatric and Mental Disorders

The evidence that folate may reduce the risk of cardiovascular
disease, certain types of cancer, and psychiatric and mental dis-
orders is provocative and promising. However, it is not yet suffi-
ciently substantiated and is somewhat conflicting. It is premature to
consider reduction of any of these risks as a basis for setting an EAR
or Adequate Intake (AI).

INTAKE OF FOLATE

Food Sources

Data obtained from the Continuing Survey of Food Intakes by
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Individuals (CSFII) indicates that the greatest contribution to folate
intake of the U.S. adult population in 1992–1994 came from forti-
fied ready-to-eat cereals and a category called “other vegetables”
(see footnote d in Table 8-11 for the list of vegetables in this
category). Although many of the vegetables in the “other vegeta-
bles” category have lower folate content than dark green vegetables
such as spinach, some of them (e.g., green beans and vegetable
soup) are so commonly eaten that their contribution to total folate
intake is relatively high.

As of January 1, 1998, all enriched cereal grains (e.g., enriched
bread, pasta, flour, breakfast cereal, and rice) are required to be
fortified with folate at 1.4 mg/kg of grain (DHHS, 1996). During
the period when data were collected in CSFII, with few exceptions
the only grain products that were fortified with folate were ready-to-
eat cereals (most kinds) and cooked cereals. Because enriched
cereal grains are widely consumed in the United States, they are
now an even more important contributor of folate than is indicated
in Table 8-11. In Canada the fortification of flour and cornmeal
with folate is proposed at a level of 1.5 mg/kg and fortification of

TABLE 8-11 Food Groups Providing Folate in the Diets of
U.S. Men and Women Aged 19 Years and Older, CSFII, 1995a

Foods Within the Group that
Contribution to Total Provide at Least 80 µg of
Folate Intakeb (%) Folatec per Serving

Food Group Men Women 80–160 µg > 160 µg

Food groups providing at least 5% each of total folate intake

Ready-to-eat cereals 16.1 18.6 Moderately Highly
fortified fortified

Other vegetablesd 11.5 12.4 Green beans, —
green peas,
lettuce,
cabbage, and
vegetable
soup

Bread and bread 8.1 7.6 — —
products

Citrus fruits and 6.3 7.5 Orange juice —
juices

continued
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Mixed foodse 6.0 4.3 NAf NA
Legumes 5.6 4.9 Chickpeas; Cowpeas and

pink, pinto, lentils
red kidney,
mung, and
fava beans;
and black-eye
peas

Mixed foods, main 5.6 4.4 NA NA
ingredient is grain

Folate from other foods

Pasta, rice, and 3.2 3.2 — Fortified
cooked cereals oatmeal

Dark green 2.7 4.3 Spinach and —
vegetables turnip greens

Organ meats 0.5 0.6 Kidney Liver

NOTE: The fortification in the United States of all enriched cereal grains with folate
that began in 1998 and the recommended use of mg of dietary folate equivalents in
place of mg of folate, which takes into account bioavailability of the various sources,
would cause major changes in the relative contributions of each food group to total
folate intake following mandatory fortification of enriched cereals and grains.

a CSFII = Continuing Survey of Food Intakes by Individuals.
b Contribution to total intake reflects both the concentration of the nutrient in the

food and the amount of the food consumed. It refers to the percentage contribution to
the American diet for both men and women, based on 1995 CSFII data.

c 80 µg represents 20% of the Reference Daily Intake (400 µg) of folate—a value set
by the Food and Drug Administration. Values do not represent dietary folate equiva-
lents; expressed as dietary folate equivalents, values for ready-to-eat cereals or other
food fortified with folate would be higher.

d Includes artichoke, asparagus, green beans, fresh lima beans, beets, Brussels sprouts,
cabbage, cauliflower, corn, cucumber, eggplant, kohlrabi, lettuce, mushrooms, onions,
okra, green peas, peppers, rutabaga, snowpeas, squash, turnips, vegetable salads, vege-
table combinations, and vegetable soups.

e Includes sandwiches and other foods with meat, poultry, or fish as main ingredient.
f NA = not applicable. Mixed foods were not considered for this table.
SOURCE: Unpublished data from the Food Surveys Research Group, Agricultural

Research Service, U.S. Department of Agriculture, 1997.

TABLE 8-11 Continued

Foods Within the Group that
Contribution to Total Provide at Least 80 µg of
Folate Intakeb (%) Folatec per Serving

Food Group Men Women 80–160 µg > 160 µg
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alimentary paste is proposed at a level of at least 2.0 mg/kg (Health
Canada, 1997). It is estimated that folate fortification will increase
the folate intake of most U.S. women by 80 µg/day (136 µg of di-
etary folate equivalents [DFEs]) or more. This amount would be
provided by one cup of pasta plus one slice of bread. Depending on
what cereal grains are chosen and how much is consumed, five
servings daily might add 220 µg/day or more of folate from fortified
foods (nearly 400 µg of DFEs) to the diet (see Chapter 13).

Dietary Intake

According to the U.S. Department of Agriculture’s CSFII (Appen-
dix G), the mean dietary folate intake by young women in the
United States in 1994 through 1995 was approximately 200 µg/day.
Intake data from the Third National Health and Nutrition Exami-
nation Survey (NHANES III) (Appendix H) gathered from 1988 to
1994 indicate a mean dietary intake of approximately 220 µg for
young women and a total intake (including supplements) that was
only slightly higher (250 µg). These values substantially underesti-
mate actual current intake, partly because of the problems with
analysis of the folate content of food (DeSouza and Eitenmiller,
1990; Pfeiffer et al., 1997b; Tamura et al., 1997), partly because of
underreporting of intake (LSRO/FASEB, 1995), and partly because
of the change in fortification discussed above. Thus, it is not possi-
ble to use these data to accurately assess the adequacy of current
folate intake by Americans.

Survey data from the early 1990s from two Canadian provinces
found similar or lower mean dietary intakes of folate for young
women (approximately 200 µg/day in Québec and 160 µg/day in
Nova Scotia) (Appendix I).

The Boston Nutritional Status Survey (Appendix F) conducted
from 1981 to 1984 estimated that this relatively advantaged group
of people over age 60 who were not taking supplements had median
folate intakes of 254 µg/day for men and 208 µg/day for women.

Intake from Supplements

Results of a nationwide telephone survey conducted during
January and February 1997 indicated that 43 percent of women of
childbearing age reported taking some form of vitamin supplement
containing folate. Thirty-two percent reported taking a folate sup-
plement daily and 12 percent reported taking a supplement less
frequently (CDC, 1998).
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Information from the Boston Nutritional Status Survey on folate
supplement use by a free-living elderly population from 1981 to
1984 is given in Appendix F. Both the fiftieth percentile and seventy-
fifth percentiles of folate intake from supplements were 400 µg for
supplement users. Largely because of supplement use, the median
folate intake by pregnant women in NHANES III in 1988 to 1994
was nearly 1,000 µg/day (Appendix H). Supplements containing
1,000 µg or more of folate are available only by prescription in the
United States and Canada. Smaller doses, usually 400 (g, are avail-
able over the counter.

TOLERABLE UPPER INTAKE LEVELS

Hazard Identification

This section reviews the potential hazards associated with high
intake of folate as one of the primary steps in developing a Tolerable
Upper Intake Level (UL). In reviewing potential hazards, careful
consideration was given to the metabolic interrelationships between
folate and vitamin B12, which include shared participation of the
two vitamins in an enzymatic reaction; identical hematological com-
plications resulting from deficiency of either nutrient; amelioration
by folate administration of the hematological complications caused
by either folate or vitamin B12 deficiency; and in vitamin B12 defi-
ciency, the occurrence of neurological complications that do not
respond to folate administration.

Adverse Effects

No adverse effects have been associated with the consumption of
the amounts of folate normally found in fortified foods (Butter-
worth and Tamura, 1989). Therefore, this review is limited to evi-
dence concerning intake of supplemented folate. The experimental
data in animal studies and in vitro tissue and cell culture studies
were considered briefly to determine whether they supported the
limited human data.

Neurological Effects. The risk of neurological effects described in
this section applies to individuals with vitamin B12 deficiency. Vita-
min B12 deficiency is often undiagnosed but may affect a substantial
percentage of the population, especially older adults (see Chapter
9). Three types of evidence suggest that excess supplemental folate
intake may precipitate or exacerbate the neurological damage of
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vitamin B12 deficiency. First, numerous human case reports show
onset or progression of neurological complications in vitamin B12-
deficient individuals receiving supplemental folate (Table 8-12).
Second, studies in monkeys (Agamanolis et al., 1976) and fruit bats
(van der Westhuyzen and Metz, 1983; van der Westhuyzen et al.,
1982) show that vitamin B12-deficient animals receiving supple-
mental folate develop signs of neuropathology earlier than do con-
trols. The monkey studies used dietary methods to induce vitamin
B12 deficiency whereas the fruit bat studies used a well-described
method involving nitrous oxide (Metz and van der Westhuyzen,
1987). Third, a metabolic interaction between folate and vitamin
B12 is well documented (Chanarin et al., 1989). Although the asso-
ciation between folate treatment and neurological damage observed
in human case reports does not provide proof of causality, the
hazard associated with excess supplemental folate cannot be ruled
out. The hazard remains plausible given the findings from animal
studies and the demonstrated biochemical interaction of the two
nutrients. The resulting neurological damage may be serious, irre-
versible, and crippling.

For many years, it has been recognized that excessive intake of
folate supplements may obscure or mask and potentially delay the
diagnosis of vitamin B12 deficiency. Delayed diagnosis can result in
an increased risk of progressive, unrecognized neurological damage.

Evidence from animal as well as in vitro tissue and cell culture
studies (Baxter et al., 1973; Hommes and Obbens, 1972; Kehl et al.,

TABLE 8-12 Dose and Duration of Oral Folate
Administration and the Occurrence of Neurological
Manifestations in Patients with Pernicious Anemia

Occurrence of
Number of Dose Neurological

Study Subjects (mg/d) Duration Manifestationsa

Crosby, 1960 1 0.35 2 y 1 of 1
Ellison, 1960 1 0.33–1 3 mo 1 of 1
Allen et al., 1990 3 0.4–1 3–18 mo 3 of 3
Baldwin and Dalessio, 1 0.5 16 mo 1 of 1

1961
Ross et al., 1948 4 1.25 9–23 mo 1 of 4
Chodos and Ross, 1951 4 1.25b 3.5–26 mo 3 of 4
Victor and Lear, 1956 2 1.5–2.55 10–39 mo 2 of 2
Conley and Krevans, 1 4.5 3 y 1 of 1

1951
continued



Copyright © National Academy of Sciences. All rights reserved.

Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline 
http://www.nap.edu/catalog/6015.html

FOLATE 275

Schwartz et al., 1950 48 5 48 mo 32 of 48
Ross et al., 1948 2 5 20–23 mo 1 of 2
Conley and Krevans, 2 5–8 2–2.5 y 2 of 2

1951
Will et al., 1959 36 5–10 1–10 y 16 of 36
Bethell and Sturgis, 15 5–20 12 mo 4 of 15

1948
Chodos and Ross, 1951 11 5–30 3–25 mo 7 of 11
Israels and Wilkinson, 20 5–40 35 mo 16 of 20

1949
Wagley, 1948 10 5–600 12 mo 8 of 10
Ellison, 1960 1 5.4–6.4 2 y 1 of 1
Victor and Lear, 1956 1 6.68 2.5 y 1 of 1
Berk et al., 1948 12 10 > 17 mo 3 of 12
Best, 1959 1 10 26 mo 1 of 1
Spies and Stone, 1947 1 10 22 d 1 of 1
Ross et al., 1948 6 10–15 ≤ 12 mo 4 of 6
Hall and Watkins, 1947 14 10–15 2–5 mo 3 of 14
Heinle et al., 1947 16 10–40 ≤ 12 mo 2 of 16
Jacobson et al., 1948 1 10–65 5 mo 1 of 1
Heinle and Welch, 1947 1 10–100 4 mo 1 of 1
Spies et al., 1948 38 ≥10 24 mo 28 of 38
Ross et al., 1948 7 15 28–43 moc 3 of 7
Chodos and Ross, 1951 1 15 10.5 moc 1 of 1
Fowler and Hendricks, 2 15–20 4–5 mo 2 of 2

1949
Vilter et al., 1947 21 50–500 10–40 d 4 of 4

NOTE: All studies except Allen et al. (1990) were conducted before folate was added
to any foods as a fortificant. In most of the case reports for which hematological status
was reported, some degree of hematological improvement occurred. Studies are pre-
sented in increasing order by dose. When different doses were reported within a study,
there is more than one entry for that study. Case reports that covered hematological
rather than neurological effects were excluded, namely, Alperin (1966), Heinle and
Welch (1947), Herbert (1963), Reisner and Weiner (1952), Ritz et al. (1951), Sheehy et
al. (1961), and Thirkettle et al. (1964). The exception was the study by Allen et al.
(1990) in which the subjects were vitamin B12 deficient but did not have pernicious
anemia.

a Refers to neurological relapses or progression of preexisting neurological manifes-
tations while on folate therapy.

b In two patients, the neurological progression was characterized as minimal or slight.
Neurological progression was also observed when the dose was increased to 15 mg/d in
these patients.

c The initial dosage of 1.25 mg/d was increased to 15 mg/d after variable durations
of treatment. Neurological progression occurred only at 15 mg/d in these patients.

TABLE 8-12 Continued

Occurrence of
Number of Dose Neurological

Study Subjects (mg/d) Duration Manifestationsa



Copyright © National Academy of Sciences. All rights reserved.

Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline 
http://www.nap.edu/catalog/6015.html

276 DIETARY REFERENCE INTAKES

1984; Loots et al., 1982; Olney et al., 1981; Spector, 1972; Weller et
al., 1994) suggests that folate in the form of folic acid is neurotoxic
and epileptogenic in animals; however, there is no clear evidence of
folate-induced neurotoxicity in humans. Concerns have been raised
about the possibility of decreased effectiveness of treatment if indi-
viduals treated with anticonvulsant drugs take high doses of folate.
However, the UL does not apply to drug-drug interactions or to
high doses taken under medical supervision (see “Anticonvulsants”
and “Methotrexate”).

General Toxicity. In one nonblinded uncontrolled trial, oral doses
of 15 mg/day of folate for 1 month were associated with mental
changes, sleep disturbances, and gastrointestinal effects (Hunter et
al., 1970). However, studies using comparable or higher doses,
longer durations, or both failed to confirm these findings (Gibberd
et al., 1970; Hellstrom, 1971; Richens, 1971; Sheehy, 1973; Suarez et
al., 1947).

Reproductive and Developmental Effects. Many studies have evaluated
the periconceptional use of supplemental folate (in doses of ap-
proximately 0.4 to 5.0 mg) to prevent neural tube defects (Table
8-13). No adverse effects have been demonstrated, but the studies
were not specifically designed to assess adverse effects. No reports
were found of adverse effects attributable to folate in long-term
folate supplement users or in infants born each year to mothers
who take supplements, but this has not been investigated systemati-
cally. Because it is possible that subtle effects might have been
missed, investigations designed to detect adverse effects are needed.

Carcinogenicity. In a large epidemiological study, positive associa-
tions were found between supplemental folate intake and the inci-
dence of cancer of the oropharynx and hypopharynx and of total
cancer (Selby et al., 1989). However, the authors of this study sug-
gest that these associations might have been related to unmeasured
confounding variables such as alcohol and smoking. Additionally,
other studies suggest that folate might be anticarcinogenic (see
“Cancer”) (Campbell, 1996).

Hypersensitivity. Individual cases of hypersensitivity reactions to oral
and parenteral folate administration were reported (Gotz and Lauper,
1980; Mathur, 1966; Mitchell et al., 1949; Sesin and Kirschenbaum,
1979; Sparling and Abela, 1985). Such hypersensitivity is rare, but
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reactions have occurred at supplemental folate doses as low as 1
mg/day (Sesin and Kirschenbaum, 1979).

Intestinal Zinc Absorption. Although there has been some contro-
versy regarding whether supplemental folate intake adversely affects
intestinal zinc absorption (Butterworth and Tamura, 1989), a com-
prehensive review of the literature reveals that folate supplementa-
tion has either no effect on zinc nutriture or an extremely subtle
one (Arnaud et al., 1992; Butterworth et al., 1988; Hambidge et al.,
1993; Keating et al., 1987; Milne et al., 1984; Tamura, 1995; Tamura
et al., 1992). In a study of prenatal folate supplementation,
Mukherjee et al. (1984) noted a significant association between the
occurrence of fetomaternal complications and the combination of
low maternal plasma zinc and high maternal plasma folate concen-
trations. However, this study may have failed to control for poten-
tial confounding factors. Furthermore, these findings are not sup-
ported by Tamura and colleagues (1992), who found high serum
folate concentrations to be associated with favorable pregnancy out-
comes including higher birth weight and Apgar scores of newborns,
reduced prevalence of fetal growth retardation, and lower incidence
of maternal infection close to the time of delivery.

Summary

The weight of the limited but suggestive evidence that excessive
folate intake may precipitate or exacerbate neuropathy in vitamin
B12-deficient individuals justifies the selection of this endpoint as
the critical endpoint for the development of a UL for folate.

Dose-Response Assessment

Adults

Data Selection. To evaluate a dose-response relationship and derive
a UL for folate, case reports were used that involved oral adminis-
tration of folate in patients with vitamin B12 deficiency who showed
development or progression of neurological complications. Because
a number of apparently healthy individuals are vitamin B12 deficient
(see Chapter 9), these individuals are considered part of the general
population in setting a UL.

Identification of a No-Observed-Adverse-Effect Level (NOAEL) and a
Lowest-Observed-Adverse-Effect Level (LOAEL). The literature was re-
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TABLE 8-13 Assessing Adverse Reproductive Effects from
Studies Involving Supplemental Folate

Duration of
Reference Subjects Study Study Design

Laurence et al., 95 women ≥ 9 wk Clinical trial: randomized,
1981 controlled, double-blinded

Smithells et al., 550 women 110 d (mean Clinical trial: controlled
1981 duration)

Mukherjee et al., 450 pregnant ≥ 9 mo Prospective cohort study
1984 women

Vergel et al., 1990 81 women ≥ 3 mo Clinical trial: controlled
Wald et al., 1991 910 women A few monthsd Clinical trial: randomized,

double-blinded, controlled
Czeizel and 4,753 women 3 mo Clinical trial: randomized,
Dudas, 1992 (< 35 y) controlled

Holmes-Siedle 100 women Periconceptional Observational study
et al., 1992 period; 7–10 y

follow-up
Kirke et al., 1992 354 pregnant 5 mo Clinical trial: randomized,

women controlled
Czeizel et al., 5,502 women 3 mo Randomized, controlled
1994 trial

a NR = not reported. Study was not designed to assess adverse effects.
b Plasma folate was measured at different times in pregnancy, but compliance with

prenatal vitamin use was not recorded.
c There was no control of confounding variables making it difficult to interpret the

results.
d The average duration of exposure is not indicated in the publication but was likely

a few months.

viewed to find cases in which vitamin B12-deficient patients who
were receiving oral doses of folate experienced progression of
neurological disorders. Data were not available on which to set a
NOAEL. A LOAEL of 5 mg of folate is based on the data presented
in Table 8-12:

• at doses of folate of 5 mg/day and above, there were more than
100 reported cases of neurological progression;

• at doses of less than 5 mg/day of folate (0.33 to 2.5 mg/day),
there are only eight well-documented cases;
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e The frequency of developmental anomalies was not greater than expected but
parental reports of worries, fearfulness, and fussiness in the children were greater than
expected.

f This may be a chance finding resulting from multiple comparisons. It has been
reported that prenatal multivitamin supplementation (which includes folic acid) can
reduce preterm deliveries, causing an apparent increase in recognized abortions as the
duration of all pregnancies increases (Scholl et al., 1997).

Folate Dose Adverse Effects Methods for Assessing
 (mg/d) Observed Associations and Adverse Effects

4 None NRa

1 None NR

0.4–1b Pregnancy complications, Statistical association between
fetal distressc 12 indices of nutrient status and

7 poorly defined categories of
complications

5 None NR
4 None Medical exams performedb

0.8 None NR

1 Frequency of developmental NR
anomalies not greater than
expectede

0.36 None NR

0.8 13.4% fetal death rate in Documentation for all pregnancy
supplemented group outcomes was collected. Statistical
compared with 11.5% fetal evaluation based on two-tailed
death rate on controls f chi-square test.

• in most cases throughout the dose range, folate supplementa-
tion maintained the patients in hematological remission over a con-
siderable time span; and

• the background intake of folate from food was not specified,
but all except for three cases (those reported by Allen and co-
workers [1990]) occurred before the fortification of breakfast cereal
with added folate.

Uncertainty Assessment. An uncertainty factor (UF) of 5 was select-
ed. Compared with the UFs used to date for other nutrients for
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which there was also a lack of controlled, dose-response data, a UF
of 5 is large. The selection of a relatively large UF is based primarily
on the severity of the neurological complications observed but also
on the use of a LOAEL rather than a NOAEL to derive the UL. The
UF is not larger than 5 on the basis of the uncontrolled observation
that millions of people have been exposed to self-treatment with
about one-tenth of the LOAEL (i.e., 400 µg in vitamin pills) without
reported harm.

Derivation of a UL. The LOAEL of 5 mg/day of folate was divided
by a UF of 5 to obtain the UL for adults of 1 mg/day or 1,000 µg/
day of folate from supplements for fortified food. A UL of 1,000
µg/day is set for all adults rather than just for the elderly because of
(1) the devastating and irreversible nature of the neurological con-
sequences, (2) data suggesting that pernicious anemia may develop
at a younger age in some racial or ethnic groups (Carmel and
Johnson, 1978), and (3) uncertainty about the occurrence of vita-
min B12 deficiency in younger age groups. In general, the preva-
lence of vitamin B12 deficiency in females in the childbearing years
is very low and the consumption of supplemental folate at or above
the UL in this subgroup is unlikely to produce adverse effects.

Folate UL Summary, Adults

UL for Adults
19 years and older 1,000 µg/day of folate from fortified

food or supplements

Other Life Stage Groups

There are no data on other life stage groups that can be used to
identify a NOAEL or LOAEL and derive a UL. For infants the UL
was judged not determinable because of a lack of data on adverse
effects in this age group and concern about the infant’s ability to
handle excess amounts. To prevent high levels of intake, the only
source of intake for infants should be from food. No data were
found to suggest that other life stage groups have increased suscep-
tibility to adverse effects of high supplemental folate intake. There-
fore, the UL of 1,000 µg/day is also set for adult pregnant and
lactating women. The UL of 1,000 µg/day for adults was adjusted
for children and adolescents on the basis of relative body weight as
described in Chapter 3. Values have been rounded down.
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ULs for Infants
 0–12 months Not possible to establish for supplemental

folate

ULs for Children
1–3 years 300 µg/day of folate from fortified foods

or supplements
4–8 years 400 µg/day of folate from fortified foods

or supplements
9–13 years 600 µg/day of folate from fortified foods

or supplements
14–18 years 800 µg/day of folate from fortified foods

or supplements

ULs for Pregnancy
14–18 years 800 µg/day of folate from fortified foods

or supplements
19 years and older 1,000 µg/day of folate from fortified foods

or supplements

ULs for Lactation
14–18 years 800 µg/day of folate from fortified foods

or supplements
19 years and older 1,000 µg/day of folate from fortified

foods or supplements

Special Considerations

Individuals who are at risk of vitamin B12 deficiency (e.g., those
who eat no animal foods [vegans] and other individuals identified
in Table 9-4) may be at increased risk of the precipitation of neuro-
logical disorders if they consume excess folate.

Intake Assessment

It is not possible to use data from the Third National Health and
Nutrition Examination Survey (NHANES III) or the Continuing
Survey of Food Intakes by Individuals to determine the population’s
exposure to folic acid. Currently, survey data do not distinguish
between food folate and folic acid added as a fortificant or taken as
a supplement. Based on data from NHANES III and excluding preg-
nant women (for whom folate supplements are often prescribed),
the highest reported total folate intake from food and supplements
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TABLE 8-14 Folate Content of Selected Fortified Cereal-
Grain Productsa and Commonly Used Folate-Containing
Supplements

Folic Acid Content
Food Product Serving Size per Serving (µg)

Ready-to-eat cereal
Highly fortified 30 g 400
Moderately fortified Variesb 100

Noodles, pasta, rice (prepared) 140 g (1 cup) 60
Bread 25 g (1 slice) 20
Over-the-counter supplements 1 unit 400

a Other products containing grains (such as prepared macaroni and cheese, crack-
ers, cookies, donuts, and hot cereal) may also be fortified with folate. See DHHS, 1993b.

b Serving size ranges from 15 g for puffed cereals to 55 g for dense cereals (e.g.,
biscuit types); the volume of a serving would be approximately 1 cup to 1/2 cup, respec-
tively.

SOURCE: Data adapted from DHHS (1996).

at the ninety-fifth percentile, 983 µg/day, was found in females aged
30 through 50 years. This intake was obtained from food (which
probably included fortified ready-to-eat cereals, a few of which con-
tain as much as 400 µg of folic acid per serving) and supplements.
For the same group of women, the reported intake at the ninety-
fifth percentile from food alone (which also probably included for-
tified ready-to-eat cereal) was 438 µg/day. In Canada, the contribu-
tion of ready-to-eat cereals is expected to be lower because the
maximum amount of folic acid that can be added to breakfast cereal
is 60 µg/100 g (Health Canada, 1996).

It would be possible to exceed the UL of 1,000 µg/day of folic
acid through the ingestion of fortified foods, supplements, or both,
as indicated by the information on the folate content of foods in
Table 8-14.

Risk Characterization

The intake of folate is currently higher than indicated by
NHANES III because enriched cereal grains in the U.S. food sup-
ply, to which no folate was added previously, are now fortified with
folate at 140 µg/100 g of cereal grain. Using data from the 1987–
1988 U.S. Department of Agriculture’s Nationwide Food Consump-
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tion Survey, the U.S. Food and Drug Administration (FDA) estimated
that the 95th percentile of folate intakes for males aged 11 to 18
years would be 950 µg of total folate at this level of fortification; this
value assumes that these young males would also take supplements
containing 400 µg of folate (DHHS, 1993a). Excluding pregnant
women, for whom estimates were not provided, the 95th percentile
for total folate for all other groups would be lower, and folic acid
intake would be lower still. Using a different method of analysis, the
FDA estimated that those who follow the guidance of the Food
Guide Pyramid and consume cereal grains at the upper end of the
recommended range would obtain an additional 440 µg of folate
under the new U.S. fortification regulations (DHHS, 1993a). (This
estimate assumes 8 servings [16 slices] of bread at 40 µg of folic acid
per serving and approximately two 1-cup servings of noodles or
pasta at 60 µg of folic acid per serving.) Those who eat other forti-
fied foods (such as cookies, crackers, and donuts) instead of bread
might ingest a comparable amount of folic acid. By either method
of analysis and with the assumption of regular use of an over-the-
counter supplement that contains folate (ordinarily 400 µg per
dose), it is unlikely that intake of folate added to foods or as supple-
ments would regularly exceed 1,000 µg for any of the life stage or
gender groups.

RESEARCH RECOMMENDATIONS FOR FOLATE

High-Priority Recommendations

Priority should be given to four topics of research related to folate:

• Determination of the mechanisms and magnitude of relation-
ships of folate intake with risk reduction for the occurrence of
neural tube defects (NTDs) and vascular disease and the influence
of related factors, including genetic polymorphism, on these rela-
tionships. Targeted intervention programs need a clearer under-
standing of the mechanisms by which adequate folate intake ensures
normal embryogenesis and may reduce vascular disease risk.

• Estimation of folate requirements in high-risk groups for which
data are limited and for which public health problems may result
from deficiencies. These groups include children, adolescents, women
of reproductive age (including pregnant women by trimester and
lactating women), and the elderly. These studies should identify
and use new folate status indicators that are linked to metabolic
function and traditional indices of folate status.
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• Development of more precise and reproducible methods of
analysis for the estimation of both blood and food folate and for the
estimation of folate bioavailability. Improved methods would allow
for comparison of status indicators among laboratories, revision of
the food folate databases, and improved estimation of how dietary
requirements are influenced by the food matrix and the source of
folate (food or synthetic).

• Identification and quantitation of adverse effects of high intakes.
Further investigation is needed on the effect of increasing folate
intake from supplements and fortified foods on the onset and pro-
gression of vitamin B12 deficiency.

Other Research Areas

Other areas of recommended research are as follows:

• Determination of the mechanisms by which maternal folate suf-
ficiency reduces the occurrence of NTDs in the infant, including
the establishment of which genes are responsible for the heritability
and folate-responsiveness of NTD.

• Determination of the effect of folate fortification on folate in-
take and occurrence of NTD and vascular disease.

• Determination of whether folate status affects the risk of birth
defects other than NTDs and of chronic diseases other than vascu-
lar disease (e.g., cancer).
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