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Impact of Trichothecene Producing Cereal Pathogens
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Impact of Trichothecene Producing Cereal Pathogens

Food Security

Value of yield forgone:
* Wheat: $1,176,000,000
* Barley: $293,000,000
e Corn: $500,000,000

~ §2 Billion Annually Loss

(Mueller et al., 2016; Wilson et al., 2018)
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Holistic Ecological Approach to Understanding the

Plant-Mycotoxin-Fungal Disease Triangle
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Holistic Ecological Approach to Understanding the

Plant-Mycotoxin-Fungal Disease Triangle (Microbiome)

Climate
Temperature,

[CO;],
Precipitation
Resillence

Plant Fusarium
Host susceptibility Genomic diversity,
to mycotoxin Virulence,
contamination Toxin production

2
\ Detoxifjcation /

Microbiome

Objective: Identify and characterize microorganisms and microbial genes
that can reduce trichothecene contamination of grain-based food and feed.



Trichothecene Resistance Mechanisms

Detoxification mechanisms of trichothecenes:
target key structural features tied to toxicity (do not degrade)
e Acetylation

* Glucosylation — in plants (allows for sequestration) and also in yeast
and fungi

* Deacetylation followed by glucosylation
* Deacylation
* Oxygenation (addition of hydroxyl group)

e Oxidative transformations (3-keto)
Assess phytotoxicity with Chlamydomonas



Detoxification of T-2 toxin by Trichomonascus and Blastobotrys yeast

Testing for direct
modifications of toxins
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Detoxification transformations of DON

Testing for direct
modifications of toxins

Laccase enzyme known for
making radicals

From fungus: Trametes versicolor
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Search for novel trichothecene resistance mechanisms in fungi:
Absence of 3-hydroxyl in non-Fusarium trichothecenes indicate the producing fungi
have a self-protection mechanism other than the 3-O-acetylation

Fusarium graminearum Microcyclospora tardicrescens Trichothecium roseum
Cereal pathogen Apple pathogen Saprotroph/plant pathogen
@) 0
0 J\ © ~
~o on
Myrothecium roridum Stachybotrys chartarum Trichoderma arundinaceum
Melon pathogen Saprotroph, in damp buildings Saprotroph, biocontrol activity

(@]
qg
H 2C\

o

@]
@]
HOX/\/

cDNA libraries

DON sensitive
yeast

Screen for
resistance

Identify
resistance gene

(Proctor)



Examination of content of trichothecene biosynthetic (TR/) genes in
trichothecene-producing fungi: some TR/ genes are unique to Fusarium

Fungus

Fusarium graminearum

Fusarium longipes

Fusarium sporotrichioides

F. incarnatum-equiseti complex

Aspergillus hancockii
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Beauveria bassiana

Cordyceps confragosa

Microcyclospora tardicrescens

Myrothecium roridum

Spicellum ovalisporum

Spicellum roseum

Stachybotrys chartarum

Stachybotrys chlorohalonata

Trichoderma brevicompactum

Trichoderma arundinaceum

Trichothecium roseum

(Proctor et al., 2018)



TRI14 is present in all trichothecene-producing fungi, but is not
required for biosynthesis: is TRI14 a resistance gene?

Gene | Gene | Gene

TRI TRI TRI TRI TRI TRI TRI TRI TRI TRI TRI TRI
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Plan: heterologously express TRI14 in yeast to determine
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whether it confers trichothecene resistance

(Proctor et al., 2018)




Trichothecene C8 oxygenation has evolved independently at
least three times

Fusarium TRI1 Fusarium * Suggests a selective

: : advantage to fungiin at
Deoxynivalenol T-2 toxin least some
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Trichothecium Microcylospora (Proctor et al., 2018)
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Trichoderma harzianum + TRI5 emits the volatile trichodiene which
stimulates plant defenses and down regulates DON production d
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Microbiome characteristics relate significantly to toxin content and
pathogen biomass within wheat kernels
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The efficacy of biocontrol microbes
antagonistic to Fusarium varies with
environmental conditions

(Whitaker and Bakker, 2019)
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Holistic Ecological Approach to Understanding the

Plant-Mycotoxin-Fungal Disease Triangle (Fusarium)
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Three North American Populations of F. graminearum

F. graminearum

F522

F562
F. boothii F535

F53

F501

(Kelly and Ward, 2018)
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Genomic Signatures of Adaptive Divergence

Degradative enzymes
Adhesin

Trichothecene toxin cluster

Heterokaryon incompatibility

Chitinases

Ecp2 effector with a chitinase
domain

Photolyase
Cryptochrome
Perithecial pigment (PKS1)

DEAD DNA/RNA helicase

Essential for adaptation to
local climate conditions

(Kelly and Ward, 2018)




Characterization of FgShy1 salicylate hydroxylase
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FgShy1 is highly induced by addition of

exogenous SA. (Hao et al., 2019)



F. graminearum arabinanase (Arb93B) enhances wheat
head blight susceptibility by suppressing plant immunity

F. graminearum arabinanase (Arb93B) mutant reduces FHB

(Hao et al., 2019)
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Population genetic background influences
disease development

Experiment A
30 r BNA1 (NX) BNA3 (NX)

Disease (%)
o

Day post inoculation

« NX toxin a contributing factor

Disease (%)

Experiment B
30 r BNA1T (NX) BENA3 (NX)

a

7 14 17 21
Day post inoculation

 NA1 genetic background is more virulent than NA3

Hypothesis:

1) NA3 has an effector that stimulates plants defenses more strongly
2) NA1 has an effector that down regulates host defenses that NA3 is missing

(Vaughan and Ward et al.)



Holistic Ecological Approach to Understanding the

Plant-Mycotoxin-Fungal Disease Triangle (Plant)
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Effects of elevated CO, level on the metabolic response of
resistant and susceptible wheat to F. graminearum infection

1x[CO,] = 400 ppm 2x[CO,] = 800 ppm

EE

FHB susceptible and resistant Spring
Wheat varieties:
* Norm and Alsen

F. graminearum strains:
« 9F1 DON+

+ Gz3639 DON+

* Gzt40 DON-

Dip inoculation method
 Evaluated 7 pdi
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Resistant variety Alsen:
e Effect dependent on Fg strain

* Compromised resistance to 9F1
biomass and DON

* Enhanced resistance Gz3639
biomass but no change in DON

Bl 1xCO2 Alsen
B 2xCO02 Alsen

B 1xCO2 Norm
B 2xC0O2 Norm

the F. graminearum strain and the wheat variety

Susceptible variety Norm:

* enhanced resistance to pathogen
biomass accumulation

* nochange in DON

* DON production per unit Fg
biomass was increased

 Enhanced resistance not
dependent on DON

(Cuperlovic-Culf and Vaughan et al., 2018)




Non-Targeted Metabolomic Analysis
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illustrated variances in the metabolic profiles across all samples (Cuperlovic-Culf and Vaughan et al., 2018)



Relative Concentration of Targeted Metabolites

Norm Alsen
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Metabolomic Analysis

Metabolic pathways that contribute to the primary source of FHB resistance, are upregulated in Fg
inoculated Alsen relative to Norm at both CO2 concentrations.

Fhb loci containing varieties will likely remain more resistant to FHB than non Fhb-containing
varieties even at elevated CO,.

Identification of FHB resistance markers that are not effected by CO, concentration differences

f. L-alanine A
 isoleucine
*  hydroxybutarate
*  myoinositol

§ J

(Cuperlovic-Culf and Vaughan et al., 2018)




Metabolites with concentration differences at 1xCO2 vs 2xC0O2
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Difference in asparagine, myoinositol and choline are dependent on the infecting Fg
strain and may serve as markers for enhanced FHB susceptibility at elevated CO,

(Cuperlovic-Culf and Vaughan et al., 2018)




Hypothesis:

The aggressiveness of Fg strains on Alsen is determined by-

1) its ability to inhibit the host from sequestering nitrogen in asparagine

2) its ability to the induction of myoinositol

-and elevated CO, interferes with this process in a strain specific manner.

Do environmental conditions influence the expression of Fg effectors?




Growth at elevated CO, reduces grain protein content of FHB
resistant variety significantly more than susceptible variety

Alsen vs. Norm acclimated at elevated [CO,]

25
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% Moisture % Fat % Protein | % Carbohydrate | % Ash
Alsen T2 400 ppm CO2 11.03¢ +£0.08 0.58AB £0.15 18.80B +0.32 77.10BC€£1.28 | 2.364+0.04
Alsen T2 800 ppm CO2 11.568 +0.14 0.538 £0.10 12.26P £0.25 83.864 +0.88 2.04€ £0.03
Norm T2 400 ppm CO2 12.974+0.13 0.87A+0.18 20.404 £0.33 74.74C€ £1.82 2.534+0.18
Norm T2 800 ppm CO2 13.104+0.06 0.76AB £0.12 16.58€ +0.25 78.96B +£1.49 2.21B +£0.05

(Hay and Vaughan)
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Future Objectives (2)

Continuation of Holistic Ecological Approach

Develop climate resilient control strategies of FHB and DON.

*  Determine the influence of environmental conditions and cultivars on Fg secondary
metabolites and virulence factors

. Identify climate resilient biocontrol microorganisms

Screen microbial communities and identify novel detoxification mechanisms of
trichothecenes

Determine the impact of elevated CO, and other abiotic factors on the nutritional quality
of FHB moderately resistant parent lines being used in breeding programs.

Identify the strain specific and variety specific differences that result changes in FHB and
DON severity under conditions of abiotic stress

Evaluate differences in host metabolic responses to Fg populations



Future Objectives (3)

New lIdeas:

Soliciting input directly from our Stakeholders

/‘//7/;0ﬂa/ Association of Wheat Growers
//

NATIONAL
CORNGROWERS
» ASSOCIATION
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