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Complex “Molecular Switches” Controlling Secondary Metabolism 

 

Nature Reviews Microbiology 11, 21-32 (January 2013)  

• SM is tightly regulated by environmental cues- C and N source, pH, light , stress 

• GPCR → signal transduction relay systems → TF → SM cluster gene expression 

• Characterization of components of  some of these signaling networks by use of 

techniques like mutagenesis, protein-protein interaction, genomics, transcriptomics 
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Regulation of Aflatoxin Biosynthesis 

and Fungal Development 

Pathway-Specific Regulators 

   AflR and AflJ 

 

Globally-Acting Transcriptional Factors 
  NsdC and Hbx1 

 

Global Regulators- Velvet Complex 

  VeA-LaeA-VelB 

 



aflR (Payne et al., 1993; Chang et al., 1993) 

• AflR is a Gal4-type, Zn-finger transcription factor that is required for 

expression of all AF biosynthetic genes. 

• AflR activates transcription by binding to a conserved 11 bp palindromic 

sequence found in just about all AF pathway gene promoters and also ST 

pathway genes in A. nidulans. 

• AflR deletion mutants do not produce AF and do not express AF pathway 

genes and overexpression of AflR results in increased expression of AF 

pathway genes and AF production. 

aflJ (aflS) (Meyers et al., 1998)  

• Divergently transcribed from aflR 

• Functional copy needed for WT levels of AF 

• Shown to bind to C-terminal region of AflR (Chang et al., 2003) 

• Involved in modulating the expression of AF pathway genes perhaps 

via interaction with AflR. 



 

Relationship of Aflatoxin Biosynthesis 

and Fungal Development  

 

G-Protein/cAMP/Protein kinase A 

Signaling Pathway 

(Hicks et al., 1997) 



Regulation of Aflatoxin Biosynthesis 

and Fungal Development 

 

Pathway-Specific Regulators- AflR and AflJ 

Globally-Acting Transcription Factors 

 NsdC and Hbx1 

Global Regulators- Velvet Complex 

 VeA-LaeA-VelB 



Functional Analysis of the A. flavus 

nsdC Transcription Factor 

Development 

Cary et al., Eukaryotic Cell 2012 

Aflatoxin production 

Aflatrem production 

Gilbert et al., Microbiol Res 2016 



Regulation of Aflatoxin Biosynthesis 

and Fungal Development (2) 

Pathway-Specific Regulators- AflR and AflJ 

 

Globally-Acting Transcription Factors 
 NsdC and Hbx1 

 

Global Regulators- Velvet Complex 

 VeA-LaeA-VelB 

 



The Velvet Complex 
Global Regulation of Fungal Development and Secondary Metabolism 



VeA is Required for Aflatoxin and Sclerotial Production 

Aflatoxin AF Gene Expression 

Development 

Duran et al., Appl. Micro. Biotechnol. 2007 



VeA is Required for Normal Virulence in A. flavus 

Growth and Development 

Aflatoxin Production 

Duran et al., Open Mycology J. 2009 



Identification of VeA-Regulated SM 

Gene Clusters using Genomics, 

Transcriptomics and Metabolomics 



Why Study SM Clusters in A. flavus? 

• Determine the biological function of the SM 

 e.g. role in development, virulence, survival 

 

• New insights into the regulation of SM clusters during the 

 plant-fungus interaction. Possible virulence factors? 

 

• Possible genetic cross-talk between SM clusters- potential  

 to modulate aflatoxin production? 

 

• Possible synergy of SMs with aflatoxins that may increase 

 the toxicity of the producing strain 



Use of Genome Sequence Data to Identify 

SM Gene Clusters in Aspergilli 



SM Cluster Metabolites Experimentally 

Identified in A. flavus 



Transcriptomics to Identify VeA-Regulated 

A. flavus SM Cluster Genes 

Cary et al., Eukaryotic Cell, 2015 



Comparative Metabolomics to 

Identify VeA-dependent SM 

Cluster Metabolites in A. flavus 

Old School 

NGS 

+ 

LC-MS 

New School 



Cluster 27 
Asparasone A 

Sobolev et al.,J. Nat Prod, 1997 

PKS-derived 
Cary et al., FG&B 2014  



Asparsone A is a Sclerotial Pigment  



Asparasone A Functions in Resistance of 

Sclerotia to Abiotic and Biotic Stress  

dark bars- control 

 

white bars- pks mutant 

Insect antifeedant 



Cluster 23 
Leporins 

TePaske et al., Tetrahedron Lett, 1991 

PKS-NRPS derived 
Cary et al., FG&B 2015  



Leporins Constitute a Family of 2-Pyridones 

That Can Form Dimers and Trimers  



Leporin B trimer- Fe Complex 

• Responsible for orange-red pigmentation 

• 1st description of a 2-pyridone forming an iron-chelate 

• Possible role of leporin B in iron homeostasis and/or 

response to oxidative stress due to excess free iron? 



Summary and Future Directions 

● Both AflR and AflJ have been identified as aflatoxin pathway-specific regulatory 

 proteins required for aflatoxin production. 

● We have identified a number of globally-acting regulatory genes that control 

 both fungal secondary metabolism and development in A. flavus (nsdC, veA, 

 velB, hbx1). 

• Perform RNA-Seq analysis of the A. flavus-corn interaction to identify 

 additional regulatory genes and gene networks involved in A. flavus 

 virulence/toxin production and corn resistance. 

• Better elucidate the mechanisms by which the NsdC and Hbx1 globally-

 acting transcription factors regulate A. flavus development and secondary 

 metabolism by identifying interacting genes and proteins using ChIP-Seq 

 and TAP-Tag/Y2H protein interaction methods, respectively.  

• Use some of these transcription factor genes in the development of RNAi-

 based binary vectors for host-induced gene silencing of A. flavus genes 

 to reduce fungal growth and aflatoxin contamination in crops.  

● We have identified the aflatoxin gene cluster as well as a number of other 

previously uncharacterized clusters and their metabolites (asparasone, leporins, 

aspergillic acid, etc.) 

 • Continue to identify metabolites produced by uncharacterized A. flavus 

  secondary metabolic gene clusters and define their biological activities.  
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How will Studying Regulation of Secondary Metabolism 

and Development in A. flavus Aid in Mitigation  

of Aflatoxin Contamination? 

● Gaining knowledge of how different environmental and nutritional 

 conditions modulate expression of key regulatory genes and signaling  

pathways controlling A. flavus secondary metabolism and development.  

 

● Information gained from RNA-Seq studies of the A. flavus-crop interaction 

 will be used identify gene networks critical for virulence and toxin production 

 as well as identifying crop genes/proteins involved in resistance to A. flavus 

 infection and aflatoxin contamination. 

 

● Fungal genes identified as key global regulators required for A. flavus 

 growth, toxin production and virulence can be used as targets for inactivation 

 using RNAi-based host-induced gene silencing intervention strategies. 
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