Regulation of Secondary Metabolism and
Development in Aspergillus flavus:
From Genes to Metabolites

Jeffrey W. Cary

United States Department of Agriculture
Agricultural Research Service

Food and Feed Safety Research
Southern Regional Research Center
New Orleans, Louisiana

= des



Complex “Molecular Switches” Controlling Secondary Metabolism
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* SM is tightly regulated by environmental cues- C and N source, pH, light , stress

« GPCR — signal transduction relay systems —> TF —> SM cluster gene expression

» Characterization of components of some of these signaling networks by use of
techniques like mutagenesis, protein-protein interaction, genomics, transcriptomics
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Regulation of Aflatoxin Biosynthesis
and Fungal Development

Pathway-Specific Regulators
AfIR and AflJ

Globally-Acting Transcriptional Factors
NsdC and Hbx1

Global Regulators- Velvet Complex
VeA-LaeA-VelB



aflR o aflJ

aflR (Payne et al., 1993; Chang et al., 1993)

* AfIR is a Gal4-type, Zn-finger transcription factor that is required for
expression of all AF biosynthetic genes.

* AfIR activates transcription by binding to a conserved 11 bp palindromic
sequence found in just about all AF pathway gene promoters and also ST
pathway genes in A. nidulans.

* AfIR deletion mutants do not produce AF and do not express AF pathway
genes and overexpression of AfIR results in increased expression of AF
pathway genes and AF production.

aflJ (aflS) (Meyers et al., 1998)

* Divergently transcribed from afiR

 Functional copy needed for WT levels of AF
» Shown to bind to C-terminal region of AfIR (Chang et al., 2003)

* Involved in modulating the expression of AF pathway genes perhaps
via interaction with AfIR.



Relationship of Aflatoxin Biosynthesis
and Fungal Development
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Regulation of Aflatoxin Biosynthesis
and Fungal Development

Pathway-Specific Regulators- AfIR and AflJ

Globally-Acting Transcription Factors
NsdC and Hbx1

Global Regulators- Velvet Complex
VeA-LaeA-VelB



Functional Analysis of the A. flavus
nsdC Transcription Factor
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Regulation of Aflatoxin Biosynthesis
and Fungal Development (2)

Pathway-Specific Regulators- AfIR and AflJ

Globally-Acting Transcription Factors
NsdC and Hbx1

Global Regulators- Velvet Complex
VeA-LaeA-VelB



The Velvet Complex

Global Regulation of Fungal Development and Secondary Metabolism
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VeA is Required for Aflatoxin and Sclerotial Production

Aflatoxin AF Gene Expression
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VeA is Required for Normal Virulence in A. flavus

Growth and Development
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ldentification of VeA-Regulated SM
Gene Clusters using Genomics,
Transcriptomics and Metabolomics



Why Study SM Clusters in A. flavus?

* Determine the biological function of the SM
e.g. role in development, virulence, survival

* New insights into the regulation of SM clusters during the
plant-fungus interaction. Possible virulence factors?

* Possible genetic cross-talk between SM clusters- potential
to modulate aflatoxin production?

* Possible synergy of SMs with aflatoxins that may increase
the toxicity of the producing strain



Use of Genome Sequence Data to Identify
SM Gene Clusters in Asperqilli

Computational prediction of SM clusters is Aspergillus species.

Organism SMURF antiSMASH Experimental Total Predicted

A. nidulans 66 S 71
A. fumigatus 38 5 39
A. niger 70 0 81
A. oryzae 57 73 2 75

A. flavus 55 61 10 62

PKS/PKS-like- 28 NRPS/NRPS-like- 32 PKS-NRPS-2 DMATS-7




SM Cluster Metabolites Experimentally
ldentified in A. flavus
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Transcriptomics to Identify VeA-Regulated

A. flavus SM Cluster Genes
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Comparative Metabolomics to
ldentify VeA-dependent SM
Cluster Metabolites in A. flavus

New School




Cluster 27

Asparasone A
Sobolev et al.,J. Nat Prod, 1997

PKS-derived

Cary et al., FG&B 2014



Asparsone A Is a Sclerotial Pigment
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Asparasone A Functions in Resistance of
Sclerotia to Abiotic and Biotic Stress

dark bars- control

white bars- pks mutant

Viable Sclerotia (%)

Insect antifeedant

UV treatment

Table 2. Amounts of A. flavus sclerotia consumed after 4 d in no-choice and
choice assays by C. freemani

mg of sclerotia consumed
Mutant

No-choice

6.3+08a 15.0+09b

123+04a 21.9+07b

Values are means + standard errors for at least 7 replicates. Values on rows
followed by different letters are significantly different by analysis of variance.
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Cluster 23

Leporins
TePaske et al., Tetrahedron Lett, 1991

PKS-NRPS derived

Cary et al.,, FG&B 2015



Leporins Constitute a Family of 2-Pyridones
That Can Form Dimers and Trimers

leporin C leporin B

leporin C dimer

leporin A

Time (min)



Leporin B trimer- Fe Complex

* Responsible for orange-red pigmentation
« 1st description of a 2-pyridone forming an iron-chelate

 Possible role of leporin B in iron homeostasis and/or
response to oxidative stress due to excess free iron?



Summary and Future Directions

e Both AfIR and AflJ have been identified as aflatoxin pathway-specific regulatory
proteins required for aflatoxin production.

e We have identified a number of globally-acting regulatory genes that control
both fungal secondary metabolism and development in A. flavus (nsdC, veA,
velB, hbx1).

* Perform RNA-Seq analysis of the A. flavus-corn interaction to identify
additional regulatory genes and gene networks involved in A. flavus
virulence/toxin production and corn resistance.

» Better elucidate the mechanisms by which the NsdC and Hbx1 globally-
acting transcription factors regulate A. flavus development and secondary
metabolism by identifying interacting genes and proteins using ChlP-Seq
and TAP-Tag/Y2H protein interaction methods, respectively.

» Use some of these transcription factor genes in the development of RNAI-
based binary vectors for host-induced gene silencing of A. flavus genes
to reduce fungal growth and aflatoxin contamination in crops.

e We have identified the aflatoxin gene cluster as well as a number of other
previously uncharacterized clusters and their metabolites (asparasone, leporins,
aspergillic acid, etc.)

* Continue to identify metabolites produced by uncharacterized A. flavus
secondary metabolic gene clusters and define their biological activities.
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How will Studying Regulation of Secondary Metabolism
and Development in A. flavus Aid in Mitigation
of Aflatoxin Contamination?

e Gaining knowledge of how different environmental and nutritional
conditions modulate expression of key regulatory genes and signaling
pathways controlling A. flavus secondary metabolism and development.

e Information gained from RNA-Seq studies of the A. flavus-crop interaction
will be used identify gene networks critical for virulence and toxin production
as well as identifying crop genes/proteins involved in resistance to A. flavus
Infection and aflatoxin contamination.

e Fungal genes identified as key global regulators required for A. flavus
growth, toxin production and virulence can be used as targets for inactivation
using RNAI-based host-induced gene silencing intervention strategies.
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