Social Housing of Laboratory Animals

Selected Citations – updated April 2021

Compiled by USDA, NAL, Animal Welfare Information Center (AWIC)

This reference list is provided as a starting point from which to find relevant information on social housing of various animal species housed in laboratories. It is by no means a complete list. Contact the AWIC staff if you would like a more detailed search performed.

E-mail: awic@usda.gov
Phone: (301) 504-6212
Web site: https://www.nal.usda.gov/awic

Table of Contents
Nonhuman Primates... 1
Dogs..11
Fish and Amphibians.. 14
Pigs... 18
Rabbits.. 26
Rodents.. 31
Ruminants.. 41
Nonhuman Primates

Online: https://dx.doi.org/10.1002/ajp.20270

Online: http://www.brown.edu/Research/Primate/lpn38-3.html#group

Online: https://dx.doi.org/10.1002/ajp.22543

Online: https://dx.doi.org/10.1002/ajp.22190

Online: https://dx.doi.org/10.1002/ajp.20556

Online: https://dx.doi.org/10.1016/j.applanim.2011.09.010

Online: https://dx.doi.org/10.1002/ajp.20556

Bray, J., C. Krupenye, and B. Hare (2013). Ring-tailed lemurs (*Lemur catta*) exploit information about what others can see but not what they can hear. *Animal Cognition* Epub.

Online: https://dx.doi.org/10.3389/fnbeh.2014.00047

Online: https://dx.doi.org/10.1002/ajp.22464

Online: https://dx.doi.org/10.1016/j.applanim.2012.06.008

Online: https://dx.doi.org/10.1002/ajp.22430

Janavaris, M., Bader, L., Coleman, K., & Kievit, P. (2020). Bedding as an enrichment strategy in group-housed mauritian cynomolgus macaques (Macaca fascicularis). American Journal of Primatology, 82.://WOS:000519103100122

Online: https://dx.doi.org/10.1016/j.applanim.2007.02.009

Pomerantz, O. and K.C. Baker (2017). Higher levels of submissive behaviors at the onset of the pairing process of rhesus macaques (Macaca mulatta) are associated with lower risk of wounding following introduction. *American journal of primatology* (Online version available). Online: https://dx.doi.org/10.1002/ajp.22671

Thompson, C.L. (2016). *To pair or not to pair: Sources of social variability with white-faced saki monkeys (Pithecia pithecia) as a case study.* *American Journal of Primatology* 78(5): 561-572. Online: https://dx.doi.org/10.1002/ajp.22360

Online: https://dx.doi.org/10.1002/ajp.22485

Online: http://www.brown.edu/Research/Primate/lpn41-2.html

Online: https://dx.doi.org/10.1002/ajp.20733

Online: https://dx.doi.org/10.1002/ajp.22521

Online: https://dx.doi.org/10.1002/ajp.22556

Online: https://dx.doi.org/10.1002/ajp.22285

Online: https://dx.doi.org/10.1016/j.vascn.2015.05.004

Dogs

metabolism studies allowing dogs to be pair housed. In LABORATORY ANIMALS. SAGE PUBLICATIONS INC. https://doi.org/10.1177/0023677220905330

Makszin, K., Bohle, D., & Seabrooke, L. (2018). The dog that didn’t bark; Social housing in European peripheries. BASE.

Online: https://dx.doi.org/10.1016/j.applanim.2013.12.002

Online: https://dx.doi.org/10.1016/j.beproc.2014.01.015

Online: https://dx.doi.org/10.1080/10888705.2013.741001

Online: http://www.nc3rs.org.uk/downloaddoc.asp?id=1365&page=51&skin=0

Fish and Amphibians

Kurtzman, MS; Craig, MP; Grizzle, BK; Hove, JR (2010). Sexually segregated housing results in improved early larval survival in zebrafish. Lab animal 39(6). 183-189.

Shams, S.; Chatterjee, D.; Gerlai, R. (2015). **Chronic social isolation affects thigmotaxis and whole-brain serotonin levels in adult zebrafish.** *Behavioural brain research* 292: 283-287. Online: https://dx.doi.org/10.1016/j.bbr.2015.05.061

Williams, TD; Readman, GD; Owen, SF. **Key issues concerning environmental enrichment for laboratory-held fish species.** *Laboratory animals* 43(2): 107-120. Online: https://dx.doi.org/10.1258/la.2007.007023
Pigs

Bohnenkamp, A.-L., Traulsen, I., Meyer, C., Müller, K., & Krieter, J. (2013). *Comparison of growth performance and agonistic interaction in weaned piglets of different weight classes from farrowing systems with group or single housing*. *Animal, 7*(02), 309–315. https://doi.org/10.1017/S1751731112001541

Online: https://dx.doi.org/10.1016/j.jveb.2015.05.002

Online: https://dx.doi.org/10.1016/j.applanim.2004.11.019

Online: http://handle.nal.usda.gov/10113/56673

Desire, S; Turner, SP; D’Eath, RB; Doeschl-Wilson, AB; Lewis, CRG; Roehe, R (2015). Analysis of the phenotypic link between behavioural traits at mixing and increased long-term social stability in group-housed pigs. Applied animal behaviour science 166: 52-62.
Online: https://dx.doi.org/10.1016/j.applanim.2015.02.015

Online: https://dx.doi.org/10.1016/j.applanim.2004.05.003

Online: http://www.prairieswine.com/effects-of-temperament-and-floor-space-allowance-on-sows-at-grouping/

Online: https://dx.doi.org/10.1016/j.physbeh.2014.02.059

Online: https://dx.doi.org/10.1016/j.physbeh.2012.11.002

Online: https://dx.doi.org/10.1016/j.applanim.2013.07.002

Online: https://dx.doi.org/10.1016/j.applanim.2009.08.006

Online: https://dx.doi.org/10.1016/j.applanim.2014.01.006

Online: https://dx.doi.org/10.1016/j.applanim.2012.02.010

Thomsson, O; Bergqvist, AS; Sjunnesson, Y; Eliasson-Selling, L; Lundeheim, N; Magnusson, U (2015). Aggression and cortisol levels in three different group housing routines for lactating sows. *Acta veterinaria scandinavica* 57. Online: https://dx.doi.org/10.1186/s13028-015-0101-7

Rabbits

Online: https://dx.doi.org/10.1016/j.applanim.2003.09.011

Online: https://dx.doi.org/10.1016/j.applanim.2008.08.011

Online: https://dx.doi.org/10.1080/10888705.2016.1247352

Online: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5113872/

Online: https://dx.doi.org/10.2376/0341-6593-116-97

Online: https://dx.doi.org/10.1017/S1751731114001244

Online: https://dx.doi.org/10.1016/j.applanim.2009.02.007

Online: https://dx.doi.org/10.1258/002367707782314247

Szendro, K; Szendro, Z; Matics, Z; Zotte, AD; Odermatt, M; Radnai, I; Gerencser, Z (2015). *Effect of genotype, housing system and hay supplementation on performance and ear lesions of growing rabbits*. Livestock science 174: 105-112. Online: https://dx.doi.org/10.1016/j.livsci.2015.01.008

Rodents

Online: https://dx.doi.org/10.1016/0376-6357(77)90030-4

Online: https://dx.doi.org/10.1016/j.physbeh.2009.03.008

Online: https://dx.doi.org/10.1080/10253890701265362

Online: https://dx.doi.org/10.7554/eLife.01385.001

Online: https://dx.doi.org/10.1016/j.yfrne.2007.02.001

Online: https://dx.doi.org/10.1016/S0306-4530(02)00039-2

Online: https://dx.doi.org/10.1016/S0031-9384(00)00411-X

Online: https://dx.doi.org/10.1016/j.physbeh.2013.10.019

Online: https://dx.doi.org/10.1016/j.applanim.2008.02.007

Online: https://dx.doi.org/10.1016/j.neubiorev.2010.10.004

Online: https://dx.doi.org/10.1016/j.applanim.2012.10.006

Online: https://dx.doi.org/10.1016/j.applanim.2012.06.001

Online: https://dx.doi.org/10.1016/j.bbr.2013.01.015

Online: https://dx.doi.org/10.1016/j.physbeh.2014.04.008

Online: https://dx.doi.org/10.1177/0023677216660740

Online: https://dx.doi.org/10.1258/la.2012.012027

Online: https://dx.doi.org/10.1371/journal.pone.0169705

Online: https://dx.doi.org/10.1016/j.bbr.2015.09.028

Online: https://dx.doi.org/10.1016/j.physbeh.2016.02.040

Maher, RL; Barbash, SM; Lynch, DV; Swoap, SJ (2015). *Group housing and nest building only slightly ameliorate the cold stress of typical housing in female C57BL/6J mice.* *American journal of...*

Stickney, J. D., & Morgan, M. M. (2021). **Social housing promotes recovery of wheel running depressed by**

Taylor, K. (2010). *Reporting the implementation of the Three Rs in European primate and mouse research papers: Are we making progress?* Atla *Alternatives to Laboratory Animals* 38(6): 495-517.

Ruminants

Online: https://dx.doi.org/10.1016/j.applanim.2009.04.005

Online: https://dx.doi.org/10.1016/S0168-1591(02)00217-4

Online: https://dx.doi.org/10.1017/S0022029908003683

Online: https://dx.doi.org/10.3168/jds.2013-7823

Online: https://dx.doi.org/10.1016/j.applanim.2005.10.012

Online: https://dx.doi.org/10.1371/journal.pone.0090205

Guesdon, V; Meurisse, M; Chesneau, D; Picard, S; Levy, F; Chaillou, E (2015). *Behavioral and endocrine evaluation of the stressfulness of single-pen housing compared to group-housing and social isolation conditions*. *Physiology & behavior* 147: 63-70.
Online: https://dx.doi.org/10.1016/j.physbeh.2015.04.013

Online: https://dx.doi.org/10.1016/j.applanim.2004.10.003

Online: https://dx.doi.org/10.1016/j.livsci.2006.04.033

Online: https://dx.doi.org/10.2527/jas.2005-346

Online: https://dx.doi.org/10.3168/jds.2013-7311

Nordmann, E; Barth, K; Futschik, A; Palme, R; Waiblinger, S (2015). Head partitions at the feed barrier affect behaviour of goats. *Applied animal behaviour science* 167: 9-19. Online: https://dx.doi.org/10.1079/9781780642161.0169

Vogeli, S; Wolf, M; Wechsler, B; Gygax, L (2015). **Housing conditions influence cortical and behavioural reactions of sheep to videos showing social interactions of different valence.** *Behavioural brain research* 284: 69-76. Online: https://dx.doi.org/10.1016/j.bbr.2015.02.007

Voegeli, S., J. Lutz, M. Wolf, B. Wechsler, and L. Gygax (2014). **Valence of physical stimuli, not housing conditions, affects behaviour and frontal cortical brain activity in sheep.** *Behavioural Brain Research* 267: 144-155. Online: https://dx.doi.org/10.1016/j.bbr.2014.03.036

Zipp, K. A., & Knierim, U. (2020). **Physical development, ease of integration into the dairy herd and performance of primiparous dairy cows reared with full whole-day, half-day or no mother-contact as calves.** *Journal of Dairy Research,* 87(S1), 154–156. Scopus. https://doi.org/10.1017/S002202992000059X