<p>Objective 1: Identify and develop key strategies including waste, vaccine, and lighting management strategies for use at animal production facilities that mitigate and reduce the bacterial load of foodborne pathogens without the use of antibiotics during pre-harvest production. Sub-objective 1.A: Determine the effects of vaccine management programs on the viability of pathogenic bacteria in poultry. Sub-objective 1.B: Determine the effects of Intestinal Alkaline Phosphatase on the viability of pathogenic bacteria in poultry. Objective 2: Identify ecological reservoirs of pathogens and the potential role of dispersal of animal waste that enable the retention of foodborne pathogens within animal production facilities and the surrounding environments. Sub-objective 2.A: Determine the dispersal of bacteria including antibiotic resistance (AR) from animal production facilities, animal waste, or carrion decomposition sites by arthropods. Sub-objective 2.B: Determine the effects that management practices have on environmental dispersal (such as by arthropods, machinery, environmental elements, etc.) of bacteria and antibiotic resistance (AR) from animal production facilities, animal waste, or carrion decomposition sites. Objective 3: Investigate potential alternatives to antibiotics, such as chitosan preparations and other commercially available products on the cecal levels of Salmonella and Campylobacter using an experimental model and metagenomics. Sub-objective 3.A: Determine the bactericidal effects of chitosan as a feed additive against human foodborne enteropathogen colonization in poultry. Sub-objective 3.B: Determine the bactericidal and anti-coccidial effects of chlorate as a feed additive against human foodborne enteropathogen colonization in poultry. Objective 4: Investigate the interaction between yeast and fungi and foodborne bacteria to determine their role as commensals, inhibitors, or their use as alternatives to antibiotics as pre-and probiotics. Sub-objective 4.A: Identify fungi and bacteria that will reduce or control the growth of Salmonella and Campylobacter. Objective 5: Investigate the potential for use and the mechanism used by specific nutritional supplements to inhibit the transfer of genetic resistance elements, such as plasmids, by conjugation between commensal and foodborne bacteria. Sub-objective 5.A: Determine the effect of Methylsulfonylmethane (MSM) on antimicrobial resistant bacteria in vitro and in vivo.</p>
Identification of The Ecological Niches and Development of Intervention Strategies to Reduce Pathogenic Foodborne Pathogens in Poultry
Objective
Investigators
Poole, Toni; Hume, Michael; Crippen, Tawni; Byrd, James
Institution
USDA - Agricultural Research Service
Start date
2016
End date
2021
Funding Source
Project number
3091-32000-035-00D
Accession number
430283