An official website of the United States government.

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

LEVERAGING NEUROIMMUNE PATHWAYS OF HOST-MICROBE INTERACTION IN THE DEVELOPMENT OF NOVEL E-BEAM ANTIBIOTIC ALTERNATIVE STRATEGIES IN POULTRY

Objective

1. Identify the role that environmental stress-induced enteric dysfunction causes local neuroimmune responses that could affect Electron (E)-beam vaccine efficacy in poultry. Stress-related neurochemicals, such as serotonin, are intimately linked to immune function in the gut, including T-cell responses that are essential for vaccine efficacy. Understanding how physiological stressors in the pre-harvest stage alter the poultry gut neuroimmune environment will provide essential information for the successful delivery and application of novel antibiotic-alternative vaccines, including E-beam-killed vaccines. 2. Examine how the food composition of the poultry diet is a critical factor in providing neurochemical-based substrates impact the gut neuroimmune environment to determine the ability of gut foodborne pathogens growth and colonization. The poultry diet has been shown to contain plant-based neurochemicals that are exactly the same as that produced within the poultry gut, including those that affect inflammation and immune profileâ¿¿elements that are essential in electron (E)-beam vaccine efficacy. Understanding how the poultry diet can contribute plant-based neurochemicals that can influence neuroimmune elements of the gut will provide another novel non-antibiotic platform by which to control the colonization of foodborne pathogens in the poultry gut.

Investigators
DONOGHUE A M; JESUDHASAN P; CALDWELL D J
Institution
UNIVERSITY OF ARKANSAS
Start date
2022
End date
2025
Project number
6022-32420-001-022S
Accession number
442034