An official website of the United States government.

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Research Publications (Food Safety)

This page tracks research articles published in national and international peer-reviewed journals. Recent articles are available ahead of print and searchable by Journal, Article Title, and Category. Research publications are tracked across six categories: Bacterial Pathogens, Chemical Contaminants, Natural Toxins, Parasites, Produce Safety, and Viruses. Articles produced by USDA Grant Funding Agencies (requires login) and FDA Grant Funding Agencies (requires login) are also tracked in Scopus.

Displaying 1 - 2 of 2

  1. Co-expression of four penaeidins in transgenic rice seeds: an alternative strategy for substitute antibiotic agricultural products

    • Transgenic Research
    • The co-expression of multiple antimicrobial peptides (AMPs) in genetically modified (GM) crops can give plants a broader antibacterial spectrum and lower the pathogen risk of drug resistance. Therefore, four penaeidins (shrimp-derived AMPs) were fused and encoded in an artificial gene (PEN1234), driven by the seed-specific promoter Pzein, with the aim of co-expression in seeds of transgenic rice.

      • Bacterial pathogens
      • Staphylococcus aureus
  2. Functional evaluation of a monotreme-specific antimicrobial protein, EchAMP, against experimentally induced mastitis in transgenic mice

    • Transgenic Research
    • EchAMP, the tenth most abundant transcript expressed in the mammary gland of echidna, has in vitro broad-spectrum antibacterial effects. However, the effects of EchAMP on mastitis, a condition where inflammation is triggered following mammary gland infection, has not been investigated. To investigate the impact of EchAMP against mastitis, EchAMP transgenic mice were generated.

      • Bacterial pathogens
      • Staphylococcus aureus