An official website of the United States government.

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.



Prion diseases are inevitably fatal infectious neurodegenerative zoonotic disorders of animals, includinghumans, with no known cure. Prions are comprised largely, if not entirely, of PrPSc, a misfolded form of thenormal non-infectious prion protein PrPC. Although the details of how prions enter the nervous system andcause disease are not known the current model consists of prion trafficking to lymphoreticular tissues (LRS),replication/accumulation in these tissues and subsequent transport into the central nervous system (CNS).Neuroinvasion is thought to occur via sympathetic nerves that innervate LRS tissue and parasympatheticnerves that innervate the enteric nervous system in the gut wall. Recent work from our group and others hasshown that prions that come into contact with mucosal surfaces spread to blood within minutes and can bedetected in blood for the duration of disease. The role of this prionemia in pathogenesis, includingneuroinvasion, has not been examined. We provide evidence that structures at the interface of the circulatoryand nervous system can support prion replication and may be important portals of prion neuroinvasion.Overall, very little is known about the site(s) of initial establishment of infection, clearance of inoculum andwhether replication of agent is required for neuroinvasion. This significant problem has been hampered by theinability to differentiate inoculum PrPSc vs. newly formed PrPSc. The long-term goal of these studies is toidentify the sites of initial prion replication and to identify new routes of neuroinvasion. The objective of thisapplication is to determine the temporal and spatial spread of inoculum PrPSc in the host following naturalroutes of inoculation to identify the pathways of prion spread and neuroinvasion. We hypothesize that prionsrapidly spread throughout the host independent of agent replication. To accomplish this objective we havedeveloped powerful animal systems and ultrasensitive prion detection techniques that have resulted inimportant findings in the initial uptake and spread of prions. Our proposed innovative approach does notrequire enrichment or labeling of PrPSc in trans, and avoids artifacts of altered PrPSc amyloid state and limiteddetection sensitivity. We have shown that PrPSc or PrPSc bound to soil crosses epithelia, drains to thelymphatic system and enters blood within minutes of oral or extranasal inoculation. We also show that onceprions enter the peripheral nervous system they are retrogradely transported along defined neuroanatomicalpathways. Finally, we have data indicating that a lymphoreticular system (LRS) replication-deficient prionstrain is transported along known prion pathways but fails to establish disease. Using this new knowledge andtechniques we determine if prionemia results in rapid widespread dissemination of prions, in the absence ofprion conversion, which is followed by a tissue-specific rate of decay. The results of these aims will determinethe early events in prion pathogenesis and if prion conversion is required for neuroinvasion and transynapticspread.

Mathiason, Candace K.; Kincaid, Anthony; Bartz, Jason
Creighton University
Start date
End date
Project number
Accession number