An official website of the United States government.

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Rapid Foodborne Illness Detection System


<p>Approximately 47.8 million episodes (one in six Americans) of foodborne illnesses happen each year and result in roughly 128,000 hospitalizations and 3,000 deaths in the U.S. The major goal of this project is to develop a reliable, field-ready device to rapidly detect foodborne hazards (pathogens, microorganisms, chemicals, toxins) during pre- and post-harvest processing, distribution, and storage. In Phase I, POC will demonstrate FPAD feasibility by assembling a benchtop prototype and conducting multiplex immunoassays for detection of three selected pathogens.</p><p>Objective 1. Design and development of the FPAD system. </p><p>Objective 2. Assembly and preliminary laboratory testing of the FPAD prototype. </p><p>Objective 3. Feasibility demonstration of the FPAD prototype for efficient pathogen identification. </p><p>Objective 4. Definition of the commercial market for FPAD technology.</p>

More information

<p>The project will be conducted based on the following tasks. Tasks 5 and 6 will be performed to evaluate the FPAD prototype.</p><p>Task 1. Design the System Architecture of the FPAD PlatformPOC will design the architecture of the FPAD system, including the dimensions and configuration of the microfluidic cartridge, the volumetric flow velocity of the sample and reagents, the architecture of the optical interrogation unit, and the electronic requirements. </p><p>Task 2. Develop the AssayPOC will develop the assay to target three pathogens from the top ten pathogens responsible for the vast majority of foodborne illness events in the U.S., as identified by the CDC. We will optimize the assay conditions of sandwich ELISA for multiplex pathogen detection.</p><p>Task 3. Design and Fabricate the FPAD Microfluidic CartridgePOC will work closely with ALine, Inc., a local microfluidics manufacturing company, to fabricate the FPAD microfluidic chips, which will be cost-effective when mass produced. We will incorporate a glass slide with immobilized capture antibody spots onto a microfluidic chip. Other parts of the cartridge, including sample/reagent reservoirs and pneumatic valves, will be developed and integrated into the microfluidic chip in Phase II. </p><p>Task 4. Design and Assemble the Optical Interrogation Unit, Microfluidic Control Unit, and Electronic UnitThe optical interrogation unit, microfluidic control unit, and electronic unit of the Phase I FPAD prototype will be developed and assembled. The interrogation unit will be situated on a motorized positioning stage for rapid scan through all the detection spots. The power consumption of each unit will be determined to allow for a Phase I FOBID prototype that can be powered via a universal serial bus (USB) port. </p><p>Task 5. Assemble the FPAD Prototype and Perform Initial TestingPOC will assemble a proof-of-concept, benchtop FPAD prototype, which will integrate the microfluidic cartridges, microfluidic control unit, optical interrogation unit, and electronic unit, and use a computer to synchronize the immunoassay process and perform data measurement. Initial testing will be conducted to optimize the operating parameters of the components. </p><p>Task 6. Demonstrate the Feasibility of the FPAD PrototypePOC will conduct laboratory testing and validation of the FPAD prototype by demonstrating the capability of the prototype to quantitatively identify three pathogens from laboratory-prepared samples. The limit of detection, sensitivity, accuracy, and false positive/negative rates will be determined. Software and algorithms will be developed for ELISA process control, interrogation, and data analysis to demonstrate ease of use. In addition, POC will test the FPAD prototype against samples prepared by mixing known pathogens with food samples, such as vegetables and meat, followed by homogenization and filtration for feasibility demonstration.</p><p>Task 7. Explore Commercial Potential and Product ViabilityPOC will explore the potential to transfer the FPAD technology to the USDA. The cost will be estimated to determine the market competitiveness. Market research will identify the most promising applications of the FPAD system. </p><p>Sources of Phase II and Phase III guidance and matching funds will be identified early in the project, and these early business partners will be involved throughout development and commercialization.</p>

Chao, C
Physical Optics Corporation
Start date
End date
Project number
Accession number